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The prime divisors of the number of points on
abelian varieties

par Antonella PERUCCA

Résumé. Soient A,A′ des courbes elliptiques ou variétés abéli-
ennes pleinement de type GSp définies sur un corps de nombres.
Cette classe contient les variétés abéliennes principalement po-
larisées avec anneau d’endomorphismes Z et de dimension 2 ou
impaire. On compare le nombre de points des réductions des deux
variétés. On montre que A et A′ sont K-isogènes si la condition
suivante est satisfaite pour un ensemble d’idéaux premiers p de K
de densité 1: les nombres premiers qui divisent #A(kp) divisent
aussi #A′(kp). On généralise ce théorème dans une certaine me-
sure aux produits de telles variétés. On améliore des résultats de
Hall et Perucca (2011) et de Ratazzi (2012).

Abstract. Let A,A′ be elliptic curves or abelian varieties fully
of type GSp defined over a number field K. This includes prin-
cipally polarized abelian varieties with geometric endomorphism
ring Z and dimension 2 or odd. We compare the number of points
on the reductions of the two varieties. We prove that A and A′

are K-isogenous if the following condition holds for a density-one
set of primes p of K: the prime numbers dividing #A(kp) also
divide #A′(kp). We generalize this statement to some extent for
products of such varieties. This refines results of Hall and Perucca
(2011) and of Ratazzi (2012).

1. Introduction
Let A,A′ be abelian varieties defined over a number field K. Let S be

a density-one set of primes of K of good reduction for both A and A′. A
well-known result of Faltings of 1983 [1, Cor. 2] implies that A,A′ are K-
isogenous if and only if for every p ∈ S the following holds: the reductions
of A and A′ modulo p are isogenous over the residue field kp. For elliptic
curves, this is equivalent to requiring that the number of points #A(kp)
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and #A′(kp) are equal. The aim of this paper is investigating analogous
relations on the number of points that ensure that A,A′ are isogenous.

In this paper we call an abelian variety admissible if it is either an el-
liptic curve or an abelian variety fully of type GSp. These are defined by
considering the Galois action on the torsion points: a principally polari-
zed abelian variety A of dimension g is said to be fully of type GSp if for
all but finitely many prime numbers ` the image of the mod-` representa-
tion of A is GSp2g(F`). This condition holds in particular if the geometric
endomorphism ring is Z and the dimension is 2 or odd.

We refine results by Hall and Perucca [3] and by Ratazzi [8]. We weaken
the assumptions of respectively [3, Thm.] and [8, Thm. 1.6], obtaining the
following:
Theorem 1.1. Let A,A′ be admissible abelian varieties defined over a num-
ber field K. Let S be a density-one set of primes of K over which A,A′ have
good reduction. If the condition

` | #A(kp) ⇒ ` | #A′(kp)
holds for infinitely many prime numbers ` and for every p ∈ S then A,A′

are K-isogenous.
The proof is based on the following theorem, which is an application of

results for elliptic curves by Serre and by Frey and Jarden ([9, Lem. 9 and
Thm. 7], [2, Thm. A]) and the corresponding results for abelian varieties
fully of type GSp by Hindry and Ratazzi ([5, Thm. 1.6], [8, Thm. 1.5]).
These kind of statements also relate to a problem considered by Kowalski [6,
Problem 1.2].
Theorem 1.2 (Horizontal isogeny theorem). Let A,A′ be admissible abelian
varieties defined over a number field K. If the condition K(A[`]) ⊆ K(A′[`])
holds for infinitely many prime numbers ` then A,A′ are K-isogenous.

Note, the condition K(A[`]) = K(A′[`]) for every prime number ` does
not in general imply that A and A′ are K-isomorphic because of an exam-
ple by Zarhin, see [11, §12]: there are elliptic curves that are not K-
isomorphic but such that for every prime number ` there exists a K-isogeny
between them of degree coprime to `.

We also consider products:
Theorem 1.3. Let A and A′ be abelian varieties defined over a number
field K. Suppose that the geometrically simple K̄-quotients of A and of A′
are admissible. Let S be a density-one set of primes of K over which A,A′
have good reduction.

(1) If the condition
#A(kp) = #A′(kp)

holds for every p ∈ S then A and A′ are K̄-isogenous.
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(2) If the condition
` | #A(kp) ⇒ ` | #A′(kp)

holds for infinitely many prime numbers ` and for every p ∈ S then
every geometrically simple K̄-quotient of A is also a K̄-quotient
of A′.

In other words, knowing which prime numbers divide #A(kp) for a
density-one set of primes p is sufficient to characterize the simple factors of
the Poincaré Reducibility Theorem decomposition of A⊗K K̄ up to isogeny.

Note, in our results we cannot consider only finitely many prime num-
bers `: for example if the Mordell-Weil groups A(K) and A′(K) respectively
contain all points of order ` for every prime number under consideration,
then our assumptions provide no further information.

We conclude with an open problem, namely investigating to which extent
the following property fails: for an abelian variety A defined over a number
field K, and for p varying in a density-one set of primes of K, the function
p 7→ #A(kp) characterizes the isogeny class of A.

2. Preliminaries
Let K be a number field, and fix a Galois closure K̄ of K. Let A be

an abelian variety of dimension g defined over K. If ` is a prime number,
we denote by A[`] the group of `-torsion points and by K` := K(A[`]) the
smallest extension of K over which these points are defined. We call G` the
Galois group of K`/K, which we consider embedded in GL2g(F`) via the
mod-` representation, after having fixed a basis for A[`].

We fix a polarization of A and suppose ` does not divide its degree so
that one can define the Weil pairing on A[`]. The pairing takes its values
in µ`, the group of `-th roots of unity, so its existence implies µ` ⊆ K`.
We write H` ⊆ G` for the Galois group of K`/K(µ`). There is a natural
embedding G`/H` → Aut(µ`) = F×` , and we write χ` : G` → F×` for the
composition of this embedding with the quotient map G` → G`/H`. The
induced homomorphism χ` : GK → F×` is the cyclotomic character.

The group G` is contained in the general symplectic group GSp2g(F`) so
we can consider the multiplier map

ν : GSp2g(F`)→ F×` .

The g-th power νg equals the determinant and restricting to G` the multi-
plier map ν gives the cyclotomic character χ`. ConsequentlyH` is contained
in the symplectic group Sp2g(F`).

Let S be a density-one set of primes of K of good reduction for A. If v`
denotes the `-adic valuation, we define Φ` to be the following map:

Φ` : S → {0, 1} p 7→ min{1, v`(#A(kp))} .
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Note, this map distinguishes for each p ∈ S whether ` divides or not the
positive integer #A(kp). We also write E := EndK̄(A)⊗Q.

We repeatedly make use of the following: If A is an elliptic curve without
CM then for all but finitely many ` we have G` = GL2(F`), see [9, Thm. 2].
If A is an elliptic curve with CM defined over K then for all but finitely
many ` we have that G` is a Cartan subgroup of GL2(F`), see [9, §4.5,
Cor.]. Recall that the cardinality of a Cartan subgroup of GL2(F`) is either
(` − 1)2 or `2 − 1 according to whether it is split or non split. Moreover,
all elements of a Cartan subgroup of GL2(F`) are semi simple because they
are diagonalizable over F̄`.

As a reference for abelian varieties (fully) of type GSp we suggest [10,
5, 8]. A principally polarized abelian variety A of dimension g is said to be
fully of type GSp if for all but finitely many prime numbers ` the image
of the mod-` representation is the group GSp2g(F`). A necessary condition
for A to be fully of type GSp is EndK̄ A = Z, and this condition is also
sufficient in dimension 2 or odd by [10, Thm. 3]. In particular, abelian
varieties fully of type GSp are geometrically simple. Abelian varieties fully
of type GSp are also of type GSp (i.e. the Mumford-Tate group is GSp2g)
by a result of Deligne and others, see [4, Thm. 2.7]. In particular the Hodge
group is Sp2g, see [5, Def. 5.1].

We make use of the following two lemmas about the mod-` representation
of abelian varieties:

Lemma 2.1. Let A be an abelian variety defined over a number field K.
Suppose p ∈ S is not over ` and does not ramify in K` and q is a prime of
K` over p. If φq ∈ G` is the Frobenius q | p, then Φ`(p) = 1 if and only if
det(φq − 1) = 0.

Proof. The embedding A(kp)→ A(kq) identifies A(kp)[`] with ker(φq−1) ⊆
A[`], hence ` | #A(kp) if and only if 1 is an eigenvalue of φq. �

We also consider an abelian variety A′ over K and analogously define
K ′`, G′`, H ′`, Φ′`, E ′. We then suppose that the primes in S are also of
good reduction for A′. We write Γ` ⊆ G` ×G′` for the Galois group of the
compositum K`K

′
`/K.

Lemma 2.2. Let A,A′ be abelian varieties defined over a number field K.
If Φ` ≤ Φ′`, then det(γ−1) = 0 implies det(γ′−1) = 0 for every (γ, γ′) ∈ Γ`.

Proof. By the Cebotarev Density Theorem there is some prime p ∈ S not
over `, unramified in K`K

′
` and whose Frobenius conjugacy class in Γ`

contains (γ, γ′). Lemma 2.1 implies the values Φ`(p), Φ′`(p) respectively
identify whether or not det(γ − 1),det(γ′ − 1) are non-zero, and thus the
hypothesis Φ`(p) ≤ Φ′`(p) implies the statement. �
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We will apply the following lemma to assume that for elliptic curves the
CM is defined over the base field:

Lemma 2.3. If two elliptic curves A,A′ defined over a number field K are
KEE ′-isogenous, then they are K-isogenous.

Proof. This assertion is proven for example in [3, Lem. 4]. �

3. Independence properties of torsion fields
In this section, we consider finitely many abelian varieties and investigate

the fields obtaining by adding the respective torsion points of prime order.

Proposition 3.1. Let A be an abelian variety defined over a number field
K. Suppose that A is fully of type GSp or that A is an elliptic curve with
CM defined over K. If L is a finite extension of K then for all but finitely
many prime numbers ` we have L ∩K` = K.

Proof. For elliptic curves, we refer to [3, Prop. 1]. The proof for abelian
varieties fully of type GSp is analogous, see [8, Lem. 5.7]. �

The following theorem is an easy application of results of Hindry, Ratazzi
and Lombardo:

Theorem 3.2. Let A1, . . . , AN be admissible abelian varieties defined over
a number field K, in pairs not K̄-isogenous. Then there is some integer
c > 0 such that the following holds: for every prime number ` the extensions
K(Ai[`]) for i = 1, . . . , N are linearly disjoint over some Galois extension
of K(µ`) of degree dividing c.

Proof. Up to increasing c, it suffices to find an extension of K(µ`) of degree
at most c, rather than dividing c. Since the Galois closure of an extension
of degree d has degree at most d!, it is also not a problem to require that
the extension is Galois, again up to increasing c. For N elliptic curves, we
may apply [4, Prop. 6.2] N − 1 times, where the assumptions are satisfied
by [4, Lem. 2.4 and Thm. 2.10]. Note, the finite index in [4, Prop. 6.2] is
independent of ` because the same is true for the cokernel in [4, Thm. 2.10].
If the abelian varieties are all fully of type GSp then the assertion is proven
in [5, Thm. 1.4 (2) and (3)].

Recall that elliptic curves without CM are fully of type GSp. Then the
mixed case consists of one product of abelian varieties fully of type GSp
times one product of elliptic curves with CM. Up to multiplying c by a finite
constant, we may suppose that the CM of each elliptic curve is defined over
K. We apply Theorem 3.3 to conclude. �

The following statement relates to results in [5] and [7]:
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Theorem 3.3 (Lombardo 2015). Let A =
∏n
i=1Ai and B =

∏m
j=1Bj be

abelian varieties defined over K. Suppose that A1, . . . , An are fully of type
GSp, in pairs not K̄-isogenous. Suppose that B1, . . . , Bm are elliptic curves
with CM defined over K, in pairs not K̄-isogenous. Then for every prime
number ` � 0 the torsion fields K(A[`]) and K(B[`]) are linearly disjoint
over K(µ`).

Proof. Since we are assuming that the CM of the elliptic curves is de-
fined over K, the extension K(B[`])/K(µ`) is abelian. By Lemma 3.4 we
know that for ` � 0 the group K(A[`])/K(µ`) does not have any non-
trivial abelian quotients. By a straight-forward application of the Gour-
sat’s Lemma we deduce that K(A[`]) and K(B[`]) are linearly disjoint over
K(µ`). �

If g is a positive integer, we denote by ν : GSp2g(F`)→ F×` the multiplier
map. The kernel of ν is Sp2g(F`).

Lemma 3.4. Let A =
∏n
i=1Ai, where A1, . . . , An are abelian varieties

defined over K, fully of type GSp and in pairs not K̄-isogenous. For every
`� 0 the group Gal(K(A[`])/K) equals

{(σ1, . . . , σn) ∈
n∏
i=1

GSp2 dim(Ai)(F`) | ν(σi) = ν(σi′) ∀i, i′ = 1, . . . , n}

so in particular we have Gal(K(A[`])/K(µ`)) =
∏n
i=1 Sp2 dim(Ai)(F`) and

this group does not have any non-trivial abelian quotients.

Proof. We write
G` := Gal(K(A[`])/K) and H` := Gal(K(A[`])/K(µ`)) .

By assumption we can identify Gal(K(Ai[`])/K) with GSp2 dim(Ai)(F`) and
Gal(K(Ai[`])/K(µ`)) with Sp2 dim(Ai)(F`) for every `� 0.

Let σ ∈ G` and for i = 1, . . . , n denote by σi the restriction of σ to
K(Ai[`]). Since the restriction of σi to K(µ`) is independent of i and is
determined by the multiplier ν(σi), we deduce that the condition ν(σi) =
ν(σi′) for every i, i′ = 1, . . . , n must hold. We have thus shown that G` is
contained in the set as in the statement.

For every ` � 0 the cyclotomic character χ` : GK → F×` is surjective:
since automorphisms of K(µ`) can be extended to K(A[`]) we deduce that
ν(σi) takes all values in F×` by varying σ. Thus we are left to show that

H` =
n∏
i=1

Sp2 dim(Ai)(F`)

holds for every ` � 0. By assumption the Hodge group of Ai equals
Sp2·dimAi

and the strong Mumford Tate conjecture [5, Conj. 1.2] holds for
Ai. Then by [5, Thm. 1.4] the Hodge group of A is

∏
i Sp2 dim(Ai) and the
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strong Mumford Tate conjecture holds for A. Consequently the index of H`

inside
∏
i Sp2 dim(Ai)(F`) is bounded by a constant that is independent of `.

For ` � 0 the index must be 1 because the index m of a proper subgroup
of Sp2g(F`) satisfies m! ≥ 1

2 ·# Sp2g(F`) ≥ `, see for example [5, Lem. 2.5
and 2.13].

For the last assertion it suffices to consider the projections of some
abelian quotient of H`: these are trivial because for ` � 0 the group
Sp2g(F`) has no non-trivial abelian quotients. �

We will use the following application of the above theorem:

Lemma 3.5. Let A1, . . . , An, A
′
1, . . . , A

′
m be admissible abelian varieties

defined over a number field K, in pairs not K̄-isogenous. Then for every
prime number ` � 0 we may find σ ∈ Gal(K̄/K) such that σ acts as
the identity on Ai[`] for every i = 1, . . . , n and does not fix any point in
A′i[`] \ {0} for every i = 1, . . . ,m.

Proof. We may suppose for elliptic curves with CM that this is defined over
K because if the requested property holds over a finite Galois extension of
K then it also holds over K. Let c be as in Theorem 3.2 for the varieties
A1, . . . , An, A

′
1, . . . , A

′
m. Without loss of generality it suffices to show that

the following holds for every prime number ` � 0: any normal subgroup
of index dividing c of the Galois group of K(A1[`])/K(µ`) contains an
automorphism that does not fix any point in A1[`] \ {0}. If A1 is an elliptic
curve that has CM over K and `� 0 then all elements of K(A1[`])/K(µ`)
correspond to semi simple matrices of determinant 1 thus every such matrix
that is not the identity does not fix any point in A1[`] \ {0}. Now suppose
that A1 is fully of type GSp, and let g = dimA1. Consider the diagonal
matrices of the form (

λIdg
λ−1Idg

)
where λ is in the multiplicative group F×` and λ−1 is the inverse of λ.
These matrices belong to GSp2g(F`) and have multiplier 1 hence they are
in the Galois group of K(A1[`])/K(µ`), see also [8, Lem. 2.2]. By taking
` sufficiently large we have ` − 1 > 2c so any normal subgroup of index
dividing c of this Galois group contains a matrix of the above type with
λ 6= 1 hence not fixing any point in A1[`] \ {0}. �

4. Proof of the theorems
Proof of Theorem 1.2. We first exclude the possibility that one of the two
abelian varieties is an elliptic curve with CM and the other is fully of
type GSp. Since these two abelian varieties are not K̄-isogenous then the
assumption on the torsion fields does not hold by Theorem 3.2. We may
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now assume that A,A′ are both elliptic curves or are both fully of type
GSp.

For two elliptic curves, we first reduce to the case where the CM is defined
over K. Indeed, if L := KEE ′ then we have LK` ⊆ LK ′` for every ` ∈ Λ
so the assumptions of the theorem also hold over L. We may then apply
the theorem over L and use Lemma 2.3 to show that since A and A′ are
L-isogenous then they are also K-isogenous.

We now prove that A and A′ are K̄-isogenous. For elliptic curves we
have: by [2, Thm. 3.5 and Prop. 2.8] (applied with E1 = A′ and E2 = A
and c = 1) then either A,A′ both have CM or they both do not have CM
and moreover the two elliptic curves are K̄-isogenous. If A and A′ are fully
of type GSp then the assumptions of [8, Thm. 1.5] are satisfied (setting
c = 1) hence we deduce that A and A′ are K̄-isogenous.

We conclude the proof by showing that any K̄-isogeny is defined over K.
Let f : A→ A′ be a K̄-isogeny of degree d defined over some finite Galois
extension F of K. Let σ be in Gal(F/K). We want to prove f −σf = 0 and
we accomplish this by showing that the kernel of f −σf contains A[`] for
infinitely many prime numbers `. Indeed, if `� 0 and if K` ⊆ K ′` then we
have

F ∩K`K
′
` = F ∩K ′` = K

by applying to A′ Proposition 3.1. In particular, we may extend σ to FK`K
′
`

and suppose that σ acts as the identity on K`K
′
`. Then for every R ∈ A[`]

we have σR = R and σ(f(R)) = f(R) ∈ A′[`]. So we have
σf(R) =σf(σR) =σ(f(R)) = f(R)

hence (f −σf)(R) = f(R)−σf(R) = 0 for every R ∈ A[`]. �

Proof of Theorem 1.1. For two elliptic curves, we first reduce to the case
where the CM is defined over K. Consider the field L := KEE ′. For a
density-one set of primes q of L we have: q is of good reduction for A and
A′; the prime p := q∩K is in S; q has degree one hence kq = kp. We deduce
that the assumptions of the theorem hold for L if they hold for K. Then it
suffices to apply Lemma 2.3 to conclude.

By Theorem 1.2, it suffices to show that for all prime numbers ` � 0
as in the statement we have K` ⊆ K ′`. The proof goes as in [3, Lem. 5]
and [8, §5.1]: we apply Lemma 2.2 and under the assumption Φ` ≤ Φ′` we
get K` ⊆ K ′`. �

Proof of Theorem 1.3. Both conditions also hold over a finite extension of
K because every number field has a density-one set of primes of degree
one (the corresponding residue fields are unchanged). Since we are only
interested in a K̄-isogeny we may then replaceK by a finite Galois extension
and assume that all homomorphisms are defined over K. In particular, the
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simple factors of the Poincaré Reducibility Theorem decomposition of A
and A′ are geometrically simple and every geometrically simple K̄-quotient
of A (respectively, of A′) is K̄-isogenous to a factor of A (respectively, of A′).
The assumptions are also invariant under a K-isogeny so we may suppose
that the factors of A and A′ are in pairs either equal or not K̄-isogenous.

Proof of (1): We first reduce to the case where A and A′ have no common
factor. Let B be a common factor of A and A′. If A/B = A′/B = 0 then
A = A′ = B and the statement is proven. If without loss of generality
A/B = 0 and A′/B 6= 0 then we find a contradiction. Indeed, there is a
positive density of primes p splitting completely in the fieldK(A′/B[2]) and
in particular such that #A′/B(kp) is even. Since S is a set of density-one,
there are primes as such in S and they satisfy

#(A/B)(kp) = 1 and #(A′/B)(kp) 6= 1 hence #A(kp) 6= #A′(kp)
against the assumptions. Now suppose that A/B and A′/B are both non-
zero. Then these varieties again satisfy the assumptions in the statement.
Moreover, having a K̄-isogeny between A/B and A′/B implies that A and
A′ are K̄-isogenous. We may then iterate the above process and reduce to
the case where the given abelian varieties have no common factor.

Let A1, . . . , An be the different factors of A and let A′1, . . . , A′m be the
different factors of A′. By Lemma 3.5 we can find a prime number ` and σ
in Gal(K̄/K) such that σ acts as the identity on Ai[`] for every i = 1, . . . , n
and does not fix any point in A′j [`]\{0} for every j = 1, . . . ,m. By applying
the Cebotarev Density Theorem with respect to the compositum of the
extensions K(Ai[`]) and K(A′j [`]) for every i, j we find a positive density
of primes p of K such that ` | #A(kp) and ` - #A′(kp), contradicting the
assumptions.

Proof of (2): We may suppose that A (respectively A′) does not have
repeated factors because neither the assumptions nor the conclusions would
be affected. We have already reduced to the case where every geometrically
simple K̄-quotient of A (respectively, of A′) is K̄-isogenous to a factor of A
(respectively, of A′), and where the factors of A and A′ are in pairs either
equal or not K̄-isogenous. Then it suffices to prove that every factor of A
is also a factor of A′. Let A′1, . . . , A′m with m ≥ 1 be the different factors
of A′ and suppose that A1 is a factor of A which is not one of A′1, . . . , A′m.
Analogously to the proof of the first assertion, we may apply Lemma 3.5
to find a prime number ` satisfying the condition in the statement and a
positive density of primes p of K such that ` | #A(kp) and ` - #A′(kp),
contradiction. �
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