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Upper bounds for the Euclidean minima of
abelian fields

par Eva BAYER-FLUCKIGER et Piotr MACIAK

Résumé. Le but de cet article est de donner des bornes supéri-
eures pour les minima euclidiens de corps abéliens, en particulier
dans le cas des corps abéliens de conducteurs des puissances de
nombres premiers.

Abstract. The aim of this paper is to survey and extend recent
results concerning bounds for the Euclidean minima of algebraic
number fields. In particular, we give upper bounds for the Eu-
clidean minima of abelian fields of prime power conductor.

1. Introduction
LetK be an algebraic number field, and let OK be its ring of integers. We

denote by N : K → Q the absolute value of the norm map. The number field
K is said to be Euclidean (with respect to the norm) if for every a, b ∈ OK
with b 6= 0 there exist c, d ∈ OK such that a = bc+ d and N(d) < N(b). It
is easy to check that K is Euclidean if and only if for every x ∈ K there
exists c ∈ OK such that N(x− c) < 1. This suggests to look at

M(K) = supx∈K infc∈OKN(x− c),
called the Euclidean minimum of K.

The study of Euclidean number fields and Euclidean minima is a classical
one. However, little is known about the precise value of M(K) (see for
instance [11] for a survey, and the tables of Cerri [7] for some numerical
results). Hence, it is natural to look for upper bounds for M(K). This is
also a classical topic, for which a survey can be found in [11].

Let n be the degree of K and DK the absolute value of its discriminant.
It is shown in [3] that for any number field K, we have M(K) ≤ 2−nDK .
The case of totally real fields is especially interesting, and has been the
subject matter of several papers. In particular, a conjecture attributed to
Minkowski states that if K is totally real, then M(K) ≤ 2−n

√
DK . This

conjecture is proved for n ≤ 8, cf. [13], [9], [10].
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Several recent results concern the case of abelian fields. In [4], upper
bounds are given for abelian fields of conductor pr, where p is an odd
prime. The present paper complements these results by handling the case
of abelian fields of conductor a power of 2. In particular, we have

Theorem. If K is totally real of conductor pr, where p is a prime and
r ≥ 2, then

M(K) ≤ 2−n
√
DK .

In other words, Minkowski’s conjecture holds for such fields.

These results are based on the study of lattices associated to number
fields (see [1], [2]). In §2, we recall some results on lattices and number fields,
and in §3 we survey the results of [4] concerning abelian fields of conductor
an odd prime power. The case of abelian fields of power of 2 conductor is the
subject matter of §4. Finally, we survey some results concerning cyclotomic
fields and their maximal totally real subfields in §5.

2. Lattices and number fields
We start by recalling some standard notions concerning Euclidean lat-

tices (see for instance [8] and [12]). A lattice is a pair (L, q), where L is a
free Z–module of finite rank, and q : LR × LR → R is a positive definite
symmetric bilinear form, where LR = L⊗ZR. If (L, q) is a lattice and a ∈ R,
then we denote by a(L, q) the lattice (L, aq). Two lattices (L, q) and (L′, q′)
are said to be similar if and only if there exists a ∈ R such that (L′, q′)
and a(L, q) are isomorphic, in other words if there exists an isomorphism
of Z-modules f : L→ L′ such that q′(f(x), f(y)) = aq(x, y).

Let (L, q) be a lattice, and set q(x) = q(x, x). The maximum of (L, q) is
defined by

max(L, q) = sup
x∈LR

inf
c∈L

q(x− c).

Note that max(L, q) is the square of the covering radius of the associated
sphere covering. The determinant of (L, q) is denoted by det(L, q). It is
by definition the determinant of the matrix of q in a Z–basis of L. The
Hermite–like thickness of (L, q) is

τ(L, q) = max(L, q)
det(L, q)1/m ,

where m is the rank of L. Note that τ(L, q) only depends on the similarity
class of the lattice (L, q).

Next we introduce a family of lattices that naturally occur in connec-
tion with abelian fields, and for which one has good upper bounds of the
Hermite-like thickness. This family is defined as follows:
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Let m ∈ N, and b ∈ R with b > m. Let L = Lb,m be a lattice in Rm with
Gram matrix

bIm − Jm =


b− 1 −1 . . . −1

−1 . . . . . . ...
... . . . . . . −1
−1 . . . −1 b− 1

 ,
where Im is the m×m-identity matrix and Jm is the all-ones matrix of size
m×m. These lattices were defined in [5], §4.1. Note that the lattice Lm+1,m
is similar to the dual lattice A#

m of the root lattice Am (see for instance [8],
Chapter 4, §6, or [12] for the definition of the root lattice Am).

LetK be an number field of degree n, and suppose thatK is either totally
real or totally complex. Let us denote by : K → K the identity in the first
case and the complex conjugation in the second one, and let P be the set of
totally positive elements of the fixed field of this involution. Let us denote
by Tr : K → Q the trace map. For any α ∈ P , set qα(x, y) = Tr(αxy) for
all x, y ∈ K. Then (OK , qα) is a lattice. Set

τmin(OK) = inf{τ(OK , qα) | α ∈ P}.
If DK is the absolute value of the discriminant of K, then, by [3], Corol-

lary 5.2, we have

(2.1) M(K) ≤
(
τmin(OK)

n

)n
2 √

DK ,

This is used in [3], [5], [6] and [4] to give upper bounds of Euclidean minima
(see also §3 and §5). The bounds of §4 are also based on this result.

3. Abelian fields of odd prime power conductor
The set of all abelian extensions of Q of odd prime power conductor will

be denoted by A. For K ∈ A we denote by n the degree of K/Q, by D the
absolute value of the discriminant of K, by p the unique prime dividing the
conductor of K, and by r the p-adic additive valuation of the conductor of
K. If the dependence on the field K needs to be emphasized, we shall add
the index K to the above symbols. For example, we shall write nK instead
of n.

Definition. Let D ⊂ A, and let ψ : D → R be a function. We shall say
that ψo ∈ R is the limit of ψ as nK goes to infinity and write

lim
nK→∞

ψ(K) = ψ0

if for every ε > 0 there exists N > 0 such that for every field K ∈ D
nK > N =⇒ |ψ(K)− ψ0| < ε.
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We shall also write
lim

pK→∞
ψ(K) = ψ0

if for every ε > 0 there exists N > 0 such that for every field K ∈ D
pK > N =⇒ |ψ(K)− ψ0| < ε.

The following is proved in [4], theorems 3.1 and 3.2:

Theorem 3.1. Let K ∈ A. Then there exist constants ε = ε(K) ≤ 2 and
C = C(K) ≤ 1

3 such that

M(K) ≤ Cn (
√
DK)ε.

If [K : Q] > 2, then one may choose ε(K) < 2. Moreover,
lim

nK→∞
ε(K) = 1.

If rK ≥ 2, or rK = 1 and [Q(ζ) : K] is constant, then we also have

lim
pK→∞

C(K) = 1
2
√

3
.

Theorem 3.2. Let K ∈ A. Then there is a constant ω = ω(K) such that
M(K) ≤ ωn

√
DK .

If rK ≥ 2, or rK = 1 and [Q(ζ) : K] is constant, then

lim
pK→∞

ω(K) = 1
2
√

3
.

Moreover, if rK ≥ 2, then ω(K) ≤ 3−2/3.

Note that this implies that Minkowski’s conjecture holds for all totally
real fields K ∈ A with composite conductor:

Corollary 3.3. Let K ∈ A, and suppose that the conductor of K is of the
form pr with r > 1. Then

M(K) ≤ 2−n
√
DK .

This follows from Theorem 3.2, since 3−2/3 < 1/2, and for K totally real
this is precisely Minkowski’s conjecture.

The proofs of these results are based on the method of [3], outlined in the
previous section. ForK ∈ A, we denote byOK the ring of integers ofK, and
we consider the lattice (OK , q), where q is defined by q(x, y) = TrK/Q(xy).
As we have seen in §2, the Hermite–like thickness of this lattice can be used
to give an upper bound on the Euclidean minimum of K.

Let ζ be a primitive root of unity of order pr, let us denote by e the degree
[Q(ζ) : K]. Let ΓK be the orthogonal sum of pr−1−1

e copies of the lattice
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pr−1A#
p−1. Set d = p−1

e , and let ΛK = epr−1L p
e
,d (note that the scaling is

taken in the sense of the previous section, that is it refers to multiplying
the quadratic form by the scaling factor). We have (see [4], Theorem 6.1):

Theorem 3.4. The lattice (OK , q) is isometric to the orthogonal sum of
ΓK and of ΛK .

This leads to the following upper bound on τmin(OK):

Corollary 3.5. We have

τmin(OK) ≤ τ(OK , q) ≤ n · pr−
υ
n · p

r+1 + pr + 1− e2

12pr+1 ,

where
υ = rn− (pr−1 − 1)

e
− 1.

This is proved in [4], Corollary 6.7. The proof uses an upper bound for
the Hermite–like thickness of the lattices Λb,m proved in [5], §4.1.

Using this corollary and (2.1), one proves (3.2) and (3.3) as in [4], §7.

4. Abelian fields of power of two conductor
We keep the notation of §§1 and 2. In particular, K is a number field of

degree n = nK , and the absolute value of its disciriminant is denoted by
D = DK . Let r ∈ N, and let ζ be a primitive 2r-th root of unity. A field K
is said to have conductor 2r if K is contained in the cyclotomic field Q(ζ),
but not in Q(ζ2). Note that there is no field of conductor 2 and the only
field of conductor 4 is Q(i). For r ≥ 3, we have:

Proposition 4.1. Suppose that K is an abelian field of conductor 2r, where
r ≥ 3. Then we have

K = Q(ζ),Q(ζ + ζ−1), or Q(ζ − ζ−1).
Moreover,

(a) If K = Q(ζ) or Q(ζ + ζ−1), then

M(K) ≤ 2−n
√
DK .

(b) If K = Q(ζ − ζ−1), then

M(K) ≤ 2−n(2n− 1)
n
2 .

Proof. Let us first prove that K = Q(ζ), Q(ζ + ζ−1) or Q(ζ − ζ−1). Let
G = Gal(Q(ζ)/Q). Then G = 〈σ, τ〉 where τ is the complex conjugation,
and σ(ζ) = ζ3. The subgroups of order 2 of G are

H1 = 〈τ〉 , H2 =
〈
σ2r−3〉

, and H3 =
〈
σ2r−3

τ
〉
.
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It is easy to check that we have Q(ζ)H1 = Q(ζ+ ζ−1), Q(ζ)H2 = Q(ζ2) and
Q(ζ)H3 = Q(ζ − ζ−1). Note that any proper subfield of Q(ζ) is a subfield
of Q(ζ)Hi for i = 1, 2 or 3, and the statement easily follows from this
observation.

Part (a) follows from Proposition 10.1 in [3] for K = Q(ζ), and from
Corollary 4.3 in [5] for K = Q(ζ + ζ−1).

Let us prove (b). Suppose that K = Q(ζ − ζ−1). Recall that Q(ζ)H3 =
Q(ζ − ζ−1), and that the ring of integers of Q(ζ) is Z[ζ]. Therefore the
ring of integers of Q(ζ − ζ−1) is Z[ζ − ζ−1]. Set ei = ζ + (−1)iζ−1 for all
i ∈ Z and n = 2r−2. Then an easy computation shows that the elements
1, e1, . . . , en−1 form an integral basis of OK = Z[ζ − ζ−1], and that for
−2n ≤ i ≤ 2n we have

TrK/Q(ei) =


2n if i = 0,
−2n if i = ±2n,

0 otherwise.

Recall that τ : K → K is the complex conjugation, and let

q : OK ×OK → Z

given by
q(x, y) = TrK/Q(xτ(y))

be the trace form. Then the Gram matrix of (OK , q) with respect to the
basis 1, e1, . . . , en is

diag(n, 2n, . . . , 2n).
Note that this implies that we have

DK = nn2n−1.

Since 1, e1, . . . , en−1 is an orthogonal basis for (OK , q), it follows from the
Pythagorean theorem that the point x = 1

2(1 + e1 + · · · + en−1) is a deep
hole of the lattice (OK , q). Thus we have

max(OK , q) = inf
c∈OK

q(x− c) = q(x) = n(2n− 1)
4 .

Set

τ(OK , q) = max(OK , q)
det(OK , q)1/n .

Then we have

τ(OK , q) = n(2n− 1)
4(nn2n−1)1/n = n

√
2 ·
(2n− 1

8

)
.
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By (2.1), we have

M(K) ≤
(
τ(OK , q)

n

)n
2 √

DK .

Thus we obtain
M(K) ≤ 2−n(2n− 1)

n
2 .

This completes the proof of the proposition. �

Let r ≥ 3 and let K be an abelian field of conductor 2r of the form
Q(ζ − ζ−1). The following two corollaries show an asymptotic behavior of
the bound obtained in Proposition 4.1(b).

Corollary 4.2. We have

M(K) ≤ 2−n(
√
DK)1+ε(n),

where

ε(n) ∼
ln 2− 1

2
n lnn .

Proof. We set

ε(n) = ln an + ln 2
n ln(2n)− ln 2 ,

where
an =

(
1− 1

2n

)n
.

Using the fact that DK = nn2n−1, the inequality of Proposition 4.1(b) can
rewritten as

M(K) ≤ 2−n(
√
DK)1+ε(n).

A simple calculation shows that

lim
n→∞

(n lnn) · ε(n) = ln 2− 1
2 .

The result follows. �

Corollary 4.3. We have

M(K) ≤ (
√

2 e−1/4) · 2−n
√
DK .

Proof. Using the same notation as in the proof of Corollary 4.2, we can
rewrite the inequality of Proposition 4.1(b) as

M(K) ≤ (
√

2an) · 2−n
√
DK .

The result follows from the fact that the sequence (an) is increasing and its
limit equals to e−1/2. �
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5. Cyclotomic fields and their maximal totally real subfields
Let m ∈ N, and let ζ be a primitive m-th root of unity. Let K = Q(ζ),

and let F = Q(ζ + ζ−1) be its maximal totally real subfield. Let us denote
by nK , respectively nF , their degrees, and by DK , respectively DF , the
absolute values of their discriminants. The aim of this section is to survey
some results concerning M(K) and M(F ).

Theorem 5.1. We have
M(K) ≤ 2−nK

√
DK

Proof. This is proved in [3], Proposition 10.1. �

For certain values of m, one obtains better bounds:

Theorem 5.2. We have
(i) Suppose that m is of the form m = 2r3s5t, with r ≥ 0, s ≥ 1 and

t ≥ 1; m = 2r5s with r ≥ 2, s ≥ 1; m = 2r3s with r ≥ 3, s ≥ 1. Then
M(K) ≤ 8−nK/2√DK .

(ii) Suppose that m is of the form m = 2r5s7t, with r ≥ 0, s ≥ 1, t ≥ 1;
m = 2r3s5t with r ≥ 0, s ≥ 2, t ≥ 1; m = 2r3s7t with r ≥ 2, s ≥ 1, t ≥ 1.
Then

M(K) ≤ 12−nK/2√DK .

Proof. This is proved in [3], Proposition 10.2. The result follows from (2.1),
and the fact that an orthogonal sum of lattices of type E8 is defined over K
in the sense of §2 in case (i), and an orthogonal sum of lattices isomorphic
to the Leech lattice in case (ii). �

The results are less complete for the maximal totally real subfields. We
have

Theorem 5.3. Suppose that m = pr where p is a prime and r ∈ N, or that
m = 4k with k ∈ N odd. Then we have

M(F ) ≤ 2−nF
√
DF

Proof. This is proved in [3], Proposition 8.4 for m = pr and p an odd prime;
in [5], Corollary 4.3 for m = 2r; and in [6], Proposition 4.5 for m = 4k. �
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