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Generalized jacobians and Pellian polynomials

par Daniel BERTRAND

On the occasion of A. Thue’s 150th birthday

Résumé. Bien qu’elles aient une infinité de solutions, on peut
voir les équations de Pell-Fermat comme des ancêtres des équa-
tions de Thue. L’analogie se resserre lorsqu’on les étudie sur les
anneaux de polynômes en caractéristique nulle. Nous poursuivons
l’étude entreprise par D. Masser et U. Zannier dans ce cadre, en
considérant le cas de discriminants admettant une racine double.

Abstract. Pell equations over the ring of integers are the fore-
runners of Thue equations. In fact, they too often have only finitely
many solutions, when set over polynomial rings in characteristic
zero. How often this happens has been the theme of recent work
of D. Masser and U. Zannier. We pursue this study by considering
Pell equations with non square-free discriminants over such rings.
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1. Introduction

Let k be a field, and let V be an absolutely irreducible variety over k.
Let further R be a finitely generated k-subalgebra of the field F = k(V )
of rational functions on V , and let R∗ be the group of units of R. Then,
R∗/k∗ is a finitely generated group (see [11], 2.7). Combined with Dirichlet’s
theorem on units in number fields, this implies Samuel’s classical theorem
that the group of units of a reduced ring, finitely generated over Z, is
itself finitely generated. See [9] for extensions of this result in the setting
of schemes.

Computing the rank of R∗/k∗ is another matter, which strongly depends
on the base field k. For instance, if k is a finite field, and if V/k is an affine
curve, with a given number, say s+ 1, of k-rational places at infinity, then,
the group of units of the subalgebra R = k[V ] of k(V ) has rank s, in perfect
analogy with Dirichlet’s theorem. But when k has characteristic 0 and k(V )
has positive genus, the rank of R∗/k∗, although always bounded from above
by s, can be much smaller : it is governed in a (theoretically) computable
way by elements in the class-group of R, and it is an interesting question
to try and determine it explicitely on any concretely given curve V .

As a corollary of their work on the relative Manin-Mumford conjecture
(see in particular [15], [18], [19]), D. Masser and U. Zannier have recently
addressed this problem when

k = Q
is the algebraic closure of Q in C, and V runs through an algebraic family
of algebraic curves defined over k. Their work encompasses the study of a
one-parameter family {Vλ, λ ∈ S(k)} of plane curves

(Vλ) : v2 = Dλ(t), Dλ(t) = D(λ, t),
where D ∈ k[η, t] is a polynomial in two variables of positive degree d in
t, the parameter space S is a cofinite subset of the affine line, while at the
generic point η of S, with

K = k(η) = k(S),
the following conditions are satisfied :

(i) the curve Vη/K is irreducible over K and has s + 1 = 2 places at
infinity, defined over K, i.e. the polynomial Dη(t) ∈ K[t] is not a square,
its degree d is even, and a K-rational homothety on t turns it into a monic
polynomial;

(ii) Vη is non-singular, i.e. Dη ∈ K[t] has no square factor, so the genus
of the field F = K(Vη) is g = 1

2d− 1.
Restricting to a non-empty open subset of S if necessary, we can assume
that these conditions are satisfied at all closed points λ ∈ S(k). For each



Generalized jacobians and Pellian polynomials 441

such λ, the field k(Vλ) is a quadratic extension of k(t), the ring Rλ := k[Vλ]
is k[t,

√
Dλ(t)] and up to a constant factor, its units X(t)+Y (t)v are given

by the solutions of Pell’s equation in polynomial unknowns

X2 −Dλ(t)Y 2 = 1, with X,Y ∈ k[t].

From our introductory remark, the rank of R∗λ/k∗ is at most s = 1. It
is equal to 1 if and only if this Pell equation has a solution (X,Y ) with
Y 6= 0, in which case, following [19], we will say that Dλ ∈ Q[t] is a
Pellian polynomial. As in the classical case, there then exists a solution
(Xλ

1 , Y
λ

1 ) with minimal degrees such that on setting (Xλ
1 +
√
DλY

λ
1 )n =

Xλ
n+
√
DλY

λ
n , n ∈ Z≥1, all non trivial solutions take the shape (±Xλ

n ,±Y λ
n ).

Let ∞+(λ),∞−(λ) be the two places at infinity of Vλ. By a standard
criterion, recalled in Proposition 1 below, Dλ is Pellian if and only if the
point

p(λ) = {class of the divisor (∞+(λ))− (∞−(λ))} ∈ Pic0(V̂λ)

in the jacobian Pic0(V̂λ/k) of the smooth completion V̂λ of the curve Vλ
is a torsion point. The relative Manin-Mumford conjecture predicts how
often this occurs, and Masser and Zannier deduce from their work [15] on
abelian surface schemes that for g = 2, i.e. in the sextic case d = 6, the set
of parameters

SD := {λ ∈ S(Q), Dλ(t) is Pellian}

is finite, unless we are in one of the exceptional cases deduced from the list of
Theorem 1 below. On the other hand, allDλ’s are Pellian if d = 2. As for the
quartic case d = 4, it usually leads to an infinite, but sparse set SD, in the
sense that for any integer δ, the set SD contains only finitely many algebraic
numbers λ of degree ≤ δ over Q. In fact, more is true (cf. [18], 3.2.3, [4],
3.1) : all the sparse sets we will meet in the present paper have bounded
height. See [19] for a general survey on these problems, and [10], [8], for
connections with the arithmetic case and with Zolotarev polynomials.

Now, what happens if the curve under study has a singularity? Not
surprisingly, generalized jacobians provide the required answer. For the
sake of clarity, let us call W such a singular curve, with normalisation
V →W and completions V̂ → Ŵ , and let us assume that W has a unique
singularity which is nodal over k, so defines two k-rational points q+, q−

on the normalized curve V . Then, the generalized jacobian Pic0(Ŵ/k) is a
semi-abelian variety, which is an extension

1→ Gm → Pic0(Ŵ )→ Pic0(V̂ )→ 0
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of the standard jacobian Pic0(V̂ /k) by Gm, and the isomorphism class of
this extension is given by the class q of the divisor (q+)− (q−) in (the dual
of) Pic0(V̂ ).

In the above setting with hyperelliptic curves and with k = Q, this brings
us to the study of a family of Pell equations with discriminants Dλ(t) of
the form

Dλ(t) = (t− ρ(λ))2∆λ(t), λ ∈ S(k),
where ρ ∈ k(S) = K is a rational (or more generally, ρ ∈ K is an algebraic)
function of the parameter, and ∆λ is a separable polynomial which does not
vanish at ρ(λ) (see §4.1 for a more precise formulation). The corresponding
affine curves are

(Wλ) : u2 = Dλ(t) ; (Vλ) : v2 = ∆λ(t),
and q±(λ) are the two distinct points on Vλ(k) with abscissa t = ρ(λ).
Clearly, for any value of λ ∈ S(k), the polynomial Dλ(t) is Pellian if and
only if ∆λ(t) is Pellian and one of the non-trivial solutions (X = Xλ

n , Y =
Y λ
n ) ∈ k[t] × k[t] of X2(t) − ∆λ(t)Y 2(t) = 1 satisfies : Y (ρ(λ)) = 0, i.e.

defines a regular function X(t) + Y (t)
(t−ρ(λ))u on the affine singular curve Wλ.

The above criterion then still holds for Dλ to be Pellian, at the cost of
replacing p(λ) by the point

p̃(λ) = [class of the divisor (∞+(λ))− (∞−(λ))] ∈ Pic0(Ŵλ)

in the generalized jacobian Pic0(Ŵλ/k). From my recent joint work [4]
with D. Masser, A. Pillay and U. Zannier on the relative Manin-Mumford
conjecture for semi-abelian surface schemes, finiteness statements for the set
SD of non-separable Pellian sextic Dλ’s can again be obtained (for a study
of quartics and over Q, see [16], §3). After recalling these results in Theorem
2 of §3.2, we will sharpen them in §4 by showing that one of the families of
possibly exceptional cases alluded to in [4], Appendix II, is actually a finite
set, and by constructing, on the converse side, an “extremely exceptional"
family of non-separable Pellian sextics : see Examples 1 and 2 just below.

For the classical Pell equations over Z, such problems correspond to
non-square free numbers D = f2∆, boiling down to the study of units
of a non-maximal order R of the quadratic field F = Q(

√
∆). Now, the

ranks of the unit groups do not change when we go from the maximal order
O of a number field F to a non-maximal one R : indeed, R∗ contains the
kernel of the projection of O∗ to the finite group (O/nO)∗, where n denotes
the (finite) index of R in O. This finiteness has no counterpart when R is
replaced k[W ], and O by its integral closure k[V ] in k(W ), with k = Q. So,
one can guess that even if ∆λ is Pellian, the non-separable discriminant Dλ

will rarely be so. Or said in geometric terms : even if the projection p(λ)
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of p̃(λ) to Pic0(V̂λ)(Q) is a torsion point, the point p̃(λ) will usually have
infinite order in Pic0(Ŵλ)(Q). The case studies of §4 illustrate the scope of
this expression, resp. its limits, as follows :
Example 1 (see Corollary 2). - Let S∆ be the set of algebraic numbers λ
such that

∆λ(t) = t4 + t+ λ ∈ Q[t]
is a Pellian polynomial. Then, S∆ is infinite, but for any algebraic function
ρ outside a finite (and conjecturally empty) subset of K, there are only
finitely many λ’s in S∆ such that the polynomial (t−ρ(λ))2∆λ(t) is Pellian.
For instance, there are only finitely many λ’s in S∆ such that the polynomial
(t+ 1

2)2∆λ(t) is Pellian.
Example 2 (see Corollary 3). - Let S∆′ be the set of algebraic numbers
λ 6= 0, 1 such that

∆′λ(t) = t4 + (2λ+ 1)t3 + 3λt2 + λt ∈ Q[t]
is a Pellian polynomial. Then, S∆′ is infinite. Moreover, for all λ’s in S∆′,
the polynomial (t+ 1

2)2∆′λ(t) too is Pellian. However, there exists an infinite
sequence of points λ` in S∆′ such that among the solutions of the polynomial
equation X2 − ∆′λ`Y

2 = 1, the proportion of those satisfying Y (−1
2) = 0

tends to 0 when ` tends to ∞.
In both cases, the infinite sets S∆, S∆′ are sparse in the sense given

above. As will become apparent in §3.2, it is its last conclusion which then
makes Example 2 so exceptional. We will express this in a more precise way
as a comparison between the degrees of the fundamental solutions of the
corresponding Pell equations.

Acknowledgements : I thank the organizers of the Thue 150 meeting for
accepting quadratic equations into their programme, and the referee for
useful comments. I also thank my co-authors of [4] and of [3] for allowing
me to present here these consequences of our main results. In particular, D.
Masser and U. Zannier suggested the application of [4] to non-square free
discriminants, the computation of orders which concludes §4.2 is due to B.
Edixhoven, and U. Zannier devised the proof of Proposition 3 of §4.1. His
paper [19], to which I refer for a survey of further types of singularities,
was also of great help.

2. Generalized jacobians

Here k denotes a field of characteristic 0. Following [17] (see also [6]
§10.3, [5] §9.2.8, [12] §7.5, [3]), we begin by recalling the construction of
the generalized jacobian of the semi-stable curve Ŵ . Instead of blowing up
the singularites of Ŵ , we start with the normal curve V̂ . Collapsing pairs of
points and removing other points from V̂ then provides us with the affine
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curves W,V we want to study (and with a description of the one-motive
attached to the affine singular curve W ).

2.1. Affine singular curves. So, let V̂ be a complete smooth geomet-
rically irreducible curve of positive genus g over k, with field of rational
functions F = k(V̂ ), and let Pic0(V̂ /k) be its jacobian variety. This abelian
variety represents the set of equivalence classes {D} of divisors D of degree
0 on V̂ , for the standard (“weak") equivalence relation

{D} = 0⇔ ∃f ∈ F ∗, div(f) = D.

Let further p0, ...., ps be s + 1 points in V̂ (k), let V be the complement
in V̂ of this set of points, and for i = 1, ..., s, let pi, be the class in Pic0(V̂ )
of the degree 0 divisor (pi)− (p0).

Let finally Q = {(q+
j , q

−
j ), j = 1, ..., r} be a set of r pairs of distinct

points of V (k), and let Ŵ be the curve obtained by pinching V̂ at these
pairs. Then Ŵ and the complementW of p0, ...., ps in Ŵ are singular curves,
all of whose r singular points are double points with k-rational tangents,
cf. [17], IV, §1, and V , resp. V̂ , are the normalizations of W , resp. Ŵ . In
particular, the ring R := k[V ] of regular functions on the smooth affine
curve V is the integral closure in F = k(V ) = k(W ) = k(V̂ ) = k(Ŵ ) of the
ring S := k[W ] of regular functions on W , and the arithmetic genus of Ŵ
is equal to g + r.

Let Pic0(Ŵ ) be the generalized jacobian of the complete singular curve
Ŵ . This algebraic group represents the set of equivalence classes [D] of
divisors D of degree 0 on V̂ , with support disjoint from Q, for the “strict"
equivalence relation

[D] = 0⇔ ∃f ∈ F ∗Q,div(f) = D, and ∀j = 1, ..., r,
f(q+

j )
f(q−j )

= 1,

where F ∗Q ⊂ F ∗ is the subgroup of functions f on V̂ whose divisors avoid
Q. We point out that since (q+

j ) − (q−j ) has degree 0, the latter quotients
depend only on div(f).

A moving lemma (see [12], 9.1.1) ensures that the natural map [D] →
{D} induces a surjection Pic0(Ŵ ) → Pic0(V̂ ), which is a morphism of
algebraic groups, whose kernel T consists of the strict classes [div(f)] of
divisors of rational functions in F ∗Q. The map (f ∈ F ∗Q) 7→ (( f(q+

1 )
f(q−1 ) , ...,

f(q+
r )

f(q−r ))
∈ (k∗)r) identifies T with the torus (Gm)r, and

{1} → (Gm)r → Pic0(Ŵ )→ Pic0(V̂ )→ {0}

is a semi-abelian variety, extension of the abelian variety Pic0(V̂ ) by (Gm)r.
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The group of isomorphism classes of extensions of an abelian variety A by
Gm is represented by the abelian variety dual to A : for any rational section
σ of an extension G, the equivalence class of the divisor of σ in Pic0(A)
does not depend on the choice of σ, and represents G. Using the description
of jacobians and generalized jacobians via symmetric products (see [17],
V.9), and the self-duality Pic0(Pic0(V̂ )) ' Pic0(V̂ ), one deduces that up
to signs, the semi-abelian variety Pic0(Ŵ ) is the extension of Pic0(V̂ ) by
(Gm)r represented by the r-tuple of (weak) equivalence classes

qj = {(q+
j )− (q−j )} ∈ Pic0(V̂ ) ; j = 1, ..., r.

For each i = 1, ..., s, let
p̃i = [(pi)− (p0)] ∈ Pic0(Ŵ )

be the strict equivalence class of the divisor (pi) − (p0), which is prime to
Q by construction. The projection

pi = {(pi)− (p0)} ∈ Pic0(V̂ )
of p̃i to Pic0(V̂ ) is the previously introduced point pi. Since we will not need
this notion, we merely mention in passing that the one-motive attached to
the curve W is the complex [Zr → Pic0(Ŵ/k)], sending the i-th basis
element of Zr to p̃i; see [6], 10.3, and more generally, [1].

2.2. Ranks of units. We can now state the well-known
Proposition 1. i) The rank of (k[V ])∗/k∗ is ≤ s, and attains the value s
if and only all the weak divisor classes p1, ..., ps in the jacobian Pic0(V̂ ) are
torsion points.

ii) The rank of (k[W ])∗/k∗ is ≤ s, and attains the value s if and only all
the strict divisor classes p̃1, ..., p̃s in the generalized jacobian Pic0(Ŵ ) are
torsion points.

iii) More generally, these ranks are equal (i.e. the group (k[V ])∗/(k[W ])∗
is finite) if and only for every rational function f ∈ F ∗ with div(f) sup-
ported by the points p0, ..., ps, the numbers f(q+

j )
f(q−j ) , i = 1, ..., r, are all roots of

unity.
iv) Restricting for simplicity to the case s = 1, assume that (k[W ])∗/k∗,

hence (k[V ])∗/k∗, have rank 1, and let nV , resp. nW be the order of the
torsion point p1, resp. p̃1. Then, the index ν := [(k[V ])∗ : (k[W ])∗] is equal
to nW

nV
.

Proof : i, ii) let D0
∞ = {D ∈ ⊕i=0,...,sZ.pi, deg(D) = 0} ⊂ Div0(V̂ ) be the

group of degree 0 divisors supported by the points at infinity of V̂ (hence
disjoint from Q). We then have exact sequences :

{1} → k[W ]∗/k∗ → D0
∞ → Pic0(Ŵ )
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{1} → k[V ]∗/k∗ → D0
∞ → Pic0(V̂ ),

where the second arrows are the restrictions to the units of the maps f 7→
div(f), and the third ones consist in taking the strict and weak equivalence
classes [D], {D}, of the divisor D. Since D0

∞ is a Z-module of rank s, the
first two conclusions immediately follow.

iii) Let

[D0
∞] := Zp̃1+...+Zp̃s ⊂ Pic0(Ŵ ), resp. {D0

∞} := Zp1+...+Zps ⊂ Pic0(V̂ )

be the image of the third upper, resp. lower, maps, and let ∆V/W be the ker-
nel of the restriction to [D0

∞] of the natural surjection Pic0(Ŵ )→ Pic0(V̂ )
(cf. [13], §9). By, say, the snake lemma, the cokernel (k[V ])∗/(k[W ])∗ iden-
tifies with ∆V/W . In particular,

rk((k[V ])∗/(k[W ])∗) = rk((Zp̃1 + ...+ Zp̃s) ∩ (Gm)r).

So, the corank of (k[W ])∗ in (k[V ])∗ vanishes if and only if any point [D] ∈
[D0
∞] which projects to a torsion point {D} ∈ Pic0(V̂ ) is itself a torsion

point in Pic0(Ŵ ). This is exactly what conclusion (iii) asserts.

iv) In general, the exponent of the group (k[V ])∗/(k[W ])∗ ' ∆V/W is
the l.c.m. of the orders of the roots of unity appearing in conclusion (iii).
Here, the two unit groups are cyclic modulo k∗, so the index ν is the order
of ∆V/W , which is indeed equal to nW

nV
.

Remark 1 (Heights of fundamental units) : when the hypotheses 1 =
s = rk((k[V ])∗/k∗) = rk((k[W ])∗/k∗) are fulfilled, one can speak of the
fundamental units uV , uW of k[V ], k[W ] (well defined up to a constant
factor, and an inversion). The index ν = [(k[V ])∗ : (k[W ])∗] satisfies uW ∼
(uV )±ν . Since the order nV of the torsion point p1 of Pic0(V/k) is the
smallest positive integer n such that n.(p1) − n(p0) = div(uV ), it is equal
to the degree of uV , viewed as a rational function on V̂ . The index ν is
then the l.c.m. of the orders of the roots of unity uV (q+

j )
uV (q−j ) , and the order

nW = νnV of p̃1 is the degree of the rational function uW . These degrees
are functional heights. In the setting of §1, nVλ is the (polynomial) degree

degt(Xλ
1 ) = d

2 + degt(Y λ
1 ) = 1

2 deg(uVλ + u−1
Vλ

) = deg(uVλ)

of the minimal solution of the Pell equation attached to ∆λ (see [15], Lemma
10.1), and similarly with nWλ

for Dλ = (t − ρ(λ))2∆λ. In the exceptional
cases where the set SD is infinite, the variation in λ ∈ SD of the relative
complexity

ν(λ) := [(k[Vλ])∗ : (k[Wλ])∗]
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will help us measure how special the family of non-separable polynomials
Dλ truly is.

2.3. Isosplit extensions. Proposition 1 shows that the ranks of units
are not affected by the description of the (generalized) jacobian itself as
a (semi-)abelian variety. However, if we know in advance that the points
pi (p̃i) lie in a strict algebraic subgroup (meaning : of positive dimension
and codimension) of the (generalized) jacobian, the condition that they be
torsion becomes easier to fulfill. In the relative situations studied in the
next Section, this observation will lead to the exceptional cases mentioned
in the introduction.

An abelian variety such as A = Pic0(V̂ /k) contains a strict abelian sub-
variety (and is then isogenous to a non trivial product) if and only there is
a surjection $ : V̂ → V̂ ′ to a curve of genus g′ ∈ [1, g − 1]; criteria for the
points pi to lie in torsion translates of $∗(Pic0(V̂ ′/k)) are then known (see
[15], p. 17, for an example). As for the semi-abelian variety G = Pic0(Ŵ/k),
it always contains subgroups of the torus T as strict algebraic subgroups
(and the criterion for p̃i to lie in a torsion translate of T is just that pi
be torsion), while for general values of q1, ..., qr, no further strict algebraic
subgroups appear.

The proposition below describes the extreme case when on the con-
trary, q1, ..., qr are all torsion points, which means that up to an isogeny,
G = Pic0(Ŵ/k) is split as an extension of A = Pic0(V̂ /k) by T , so contains
an abelian variety A′ of dimension g among its strict algebraic subgroups.
Under this condition and recalling the notations of §2.1, we have the fol-
lowing criterion for the points p̃i to all lie in torsion translates of A′.

Proposition 2. let N be a common multiple of the orders of the torsion
points q1, ..., qr, and for j = 1, ..., r, let ϕj be a rational function on V̂ with
divisor N.(q+

j ) − N.(q−j ). Then, the pushout G′ = [N ]∗G of the extension
G = Pic0(Ŵ/k) of A = Pic0(V̂ /k) by T = (Gm)r is isomorphic to T × A,
and

i) for each i = 1, ..., s, the image of the point [N ]∗(p̃i) ∈ G′ under the
corresponding projection G′ → T is given by ( ϕj(pi)ϕj(p0))Nj=1,...,r.

ii) in particular, the points p̃1, ..., p̃s all lie in torsion translates of an
abelian variety contained in Pic0(Ŵ/k) if and only if for any divisor D of
degree 0 supported by the points p0, ..., ps, the numbers ϕj(D), j = 1, ..., r,
are all roots of unity.

Proof. - The standard notation ϕj(D) in (ii) is recalled below. We also
recall that the push-out G′ = [N ]∗G is the quotient G/(µN )r of G by the
kernel (µN )r of the multiplication by N on T . The corresponding extension
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is parametrized by (Nqj = 0, j = 1, ..., r), so is indeed isomorphic to T ×
A. Any abelian variety contained in G (and implicitely assumed to pass
through 0) then maps under [N ]∗ into the factor A of this product, so, (ii)
clearly follows from (i).

The splitting [N ]∗G ' Gm ×A is given by a regular section σ′ : A→ G′

of the natural projection, which we are going to describe explicitely. First,
consider a degree 0 divisor D on V̂ prime to Q, and associate to D the class

σ̃(D) := [D]−(G) ϕ(D) ∈ Pic0(Ŵ );

here, −(G) represents the group law on G, while [D] denotes as before
the class of D for the strict equivalence, ϕ = (ϕ1, ..., ϕr) and ϕ(D) ∈
(k∗)r is defined componentwise for ϕ ∈ k(V̂ )∗ and a degree 0 divisor D =
Σi=1,...,mniri, prime to div(ϕ), by the formula ϕ(D) = Πi=1,...,mϕ(ri)ni .

We now show that [N ]∗ ◦ σ̃ factors through a well defined section of
algebraic groups A = Pic0(V̂ )→ Pic0(Ŵ )/(µN )r = G′, which must be the
searched for section σ′, sinceHom(A, T ) = 0. For this (and appealing in the
end to a moving lemma), it suffices to show that [N ]∗σ̃(D) depends only on
the weak equivalence class {D} of D. So, let D′ ∈ Div0(V̂ ), still prime to
Q, be linearly equivalent to D, and let g be a rational function on V̂ such
that D′ = D + div(g). Then, σ̃(D′) − σ̃(D) = σ̃(div(g)). But as recalled
in §2.1, the strict class [div(g)] ∈ T ⊂ Pic0(Ŵ ) of a principal divisor is
given by the element of (Gm)r(k) with j-th component g(q+

j )/g(q−j ). Now,
appealing to Weil’s law of reciprocity for the last equality, we have :

(g(q+
j )/g(q−j ))N = g(N.(q+

j )−N.(q−j )) = g(div(ϕj)) = ϕj(div(g)).

Therefore, the j-th component of the point [N ]∗(σ̃(div(g)) = σ̃(div(gN )) =
[div(gN )] −(G) ϕ(div(g)) ∈ T/(µN )r ' T , which reads in multiplicative

notations as ( g(q
+
j )

g(q−j ))N × (ϕj(div(g)))−1, is equal to 1Gm , i.e. vanishes. Con-
sequently, [N ]∗(σ̃(D)) = [N ]∗(σ̃(D′)) depends only {D}, and σ′ := [N ]∗ ◦ σ̃
does define a regular section of G′ → A.

Finally, for each i = 1, ..., s, let p̃′i be the image under [N ]∗ of the strict
class p̃i ∈ G of the divisor (pi) − (p0). Both p̃′i and p̃i project to the same
point pi = {(pi) − (p0)} ∈ A, and by definition, σ̃((pi) − (p0)) = p̃i −(G)
ϕ((pi)− (p0)). Therefore, the retraction γ : G′ → T attached to the section
σ′ satisfies

γ(p̃′i) = p̃′i −(G′) σ
′(pi) = [N ]∗

(
p̃i −(G) σ̃((pi)− (p0))

)
=

= [N ]∗
ϕ(pi)
ϕ(p0) = (ϕ(pi)

ϕ(p0))N

(equalities in T (k)), as asserted in (i).
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Remark 2 : assume that in addition to the points q1, ..., qr, all the points
p1, ..., ps too are torsion points, of order dividing M , and for i = 1, ..., s, let
fi be a rational function such that M.(pi) −M.(p0) = div(fi). By Propo-
sition 1.(iii), the points p̃1, ..., p̃s are then all torsion if and only if the rs
numbers fi(q+

j )
fi(q−j ) are roots of unity. But by Proposition 2.(ii), since they

project to the torsion points p1, ..., ps in A, they are all torsion if and only
if the sr numbers ϕj(pi)

ϕj(p0) are roots of unity. That these numerical criteria
are equivalent can be checked directly from another appeal to Weil’s law of
reciprocity. Indeed, for any i = 1, ..., s, j = 1, ..., r,

(
fi(q+

j )
fi(q−j )

)N = fi(div(ϕj)) = ϕj(div(fi)) = (ϕj(pi)
ϕj(p0))M .

More generally, Cartier duality on one-motives explains the resemblance
between Proposition 1.(iii) and Proposition 2.(ii). See [1], Lemma 3.3, for
a more precise statement.

3. Relative Manin-Mumford

From now on, S denotes an affine irreducible curve over the field k = Q,
with generic point η and field of rational functions

K = Q(S) = Q(η).

For any group scheme G/S and any point λ ∈ S(Q), we denote by Gλ the
fiber of G above λ, and by Gtorλ the torsion subgroup of Gλ(Q). If G comes
after a finite base extension from an algebraic group G0 defined over Q, we
will tacitly make this base extension, say that G is isoconstant, and call
constant sections those sections of G/S which come from points of G0(Q).
By a multiple of a section, we mean a multiple by a non-zero integer.

Let p ∈ G(S) be a section of G/S. Among other things (see [14], [18]),
the relative Manin-Mumford conjecture studies the set

Sp := {λ ∈ S(Q), p(λ) ∈ Gtorλ }.

It is not difficult to include in this study points λ ∈ S(C), but we will
leave this aside. One expects that the set Sp will be finite if the relative
dimension dim(G/S) is strictly larger than that of the base dim(S) = 1.
On the other hand, it is an easy, although non trivial, observation that for
dim(G/S) = 1, the set Sp is infinite, and sparse, unless p is a torsion or
a constant section (or if G = Ga/S). We refer to [18], p. 92, for several
proofs of this fact, which will be used repeatedly in what follows under
the denomination “relative dimension 1". We now turn to the two types
of group schemes G/S of relative dimension 2 relevent to our study (for
additive extensions, see [19], Remark 1.7 and §4).
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Remark 3 (about the base S). - i) Our results depend only on the study
of the generic fiber Gη/K of G/S, and of Gη ⊗K K. They can then be
expressed in terms of finite base extensions S′ → S, including restriction to
a non-empty, but unspecified, open subset. In what follow, we allow such
extensions, usually without mentioning it, and still call S the resulting
base. In other words, although we are now a in relative setting, all the
constructions of §2, with K playing the role of k, may be used, at the cost
of modifying S. We refer to [5], §8.1, [12], §8.3 and [9] for finer presentations
of this relative situation.

ii) An affine curve V , resp. W , over Q as in §2 defines a point in the
moduli spaceMg,s+1, resp.Mg,s+1, of complete smooth, resp. stable, curves
of arithmetic genus g with s+1 marked (then deleted) points. Ranks of unit
groups modulo Q∗ are generically 0, but reach the value s on a subset Σ
which is dense for the complex topology. In this perspective, our study can
be described as follows : we consider a curve S insideM2,2 along which the
generic rank is still 0, and we give criteria for the finiteness of S∩Σ. It would
be desirable to extend these results to higher dimensional subvarieties S of
M2,2 as criteria for the non Zariski denseness of S ∩Σ. This is out of reach
of the present techniques. See however [7] for a related result, and [19], §2.2
for the description of an another moduli space relevent to Pell equations.

3.1. Abelian surfaces. The results of this subsection are due to Masser
and Zannier, and are discussed in greater generality in [14], [15], [18], [19],
and in their forthcoming work on elementary integration (cf. [19], §2.1 and
§4). We here restrict to separable sextics (and quartics) over Q.

Theorem 1. ([15]) Let A/S be an abelian scheme of relative dimension 2,
over the curve S/Q, and let p ∈ A(S) be a section. Then the set

Sp := {λ ∈ S(Q), p(λ) ∈ Atorλ }
is infinite if and only if one of the following conditions holds :
a) p is a torsion section;
b) there exists an elliptic subscheme E/S of A/S such that a multiple

of p factors through E, and is not a constant section if E/S is isoconstant.

In view of §2, this translates in terms of unit groups as follows. Let V̂ /S
be a family of genus 2 smooth proper curves, whose generic fiber V̂η/K is
geometrically irreducible (cf. [12], 8.3.6). Deleting finitely many points from
S if necessary (in the spirit of Remark 3.(i)), we will henceforth identify a
section p in V̂ (S) with the horizontal divisor its image p(S) defines in V̂ ,
and with its generic value p(η) ∈ Vη(K). Let then p0, p1 ∈ V̂ (S) be two
disjoint sections, and let V be the complement of their images in V̂ . Set

SV = {λ ∈ S(Q), rk((Q[Vλ])∗/Q∗) = 1},
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and for λ ∈ SV , denote by nV (λ) = nVλ the height of the fundamental unit
of (Q[Vλ])∗ as in Remark 1. Then SV is finite (usual case), unless

(a) (trivial case) there exists a rational function on V̂ whose relative
divisor is supported by p1 ∪ p0, in which case p = {(p1) − (p0)} is a tor-
sion section of the relative jacobian Pic0(V̂ /S); the group of generic units
(K[Vη])∗/K∗ then has rank 1, and for all λ’s in S(Q), (Q[Vλ])∗/Q∗ too has
rank 1, with nV (λ) at most equal to the order of p(η) (and in fact equal,
since by assumption, V̂ /S has good reduction everywhere). So,

SV = S(Q), and nV (λ) is bounded as λ runs through SV .
(b) (exceptional case) there is a surjection $ from V̂ to a genus 1 relative

curve V̂ ′ over S such that a multiple of p factors through$∗ : Pic0(V̂ ′/S)→
Pic0(V̂ /S). Then, we are in fact in a “relative dimension 1" case, so leaving
aside the constant cases, infinitely, but sparsely, many groups (Q[Vλ])∗/Q∗

have rank 1. Now, the orders of the torsion points p(λ), λ ∈ Sp, are un-
bounded, so
SV is infinite but sparse, and nV (λ) is unbounded as λ runs through SV .
The latter case (resp. the usual case) is illustrated in Pellian terms by

Statement (ii) (resp. (i)) below. We have included the easier Statements (iii)
and (iv), as they will be our starting points in the study of §4. Recalling
the notation SD, similar to SV and Sp, from §1, we have :

Corollary 1. ([15], [19]) i) For the sextic family Dλ(t) = t6 + t + λ, the
set SD is finite;

ii) For the sextic family D′λ(t) = t6 + t2 + λ, the set SD′ is infinite, but
sparse;

iii) For the quartic family ∆λ(t) = t4 + t+ λ, the set S∆ is infinite, but
sparse;

iv) For the quartic family ∆′λ(t) = t4 + (2λ + 1)t3 + 3λt2 + λt, the set
S∆′ is infinite, but sparse.

By Theorem 1 and the discussion in §2, with p0(λ) = ∞+(λ), p1(λ) =
∞−(λ), the proof of this corollary reduces to the following observations, for
which we refer to [14], [15], [19] : in all four cases, p = {(∞+) − (∞−)} is
not a torsion section of the relative jacobian Pic0(V̂ /S), and
• in (i), the jacobian of the corresponding curve Vη over K is simple over
K, so we are in the usual case (see [15], §10);
• in (ii), the curve V̂ covers two genus 1 curves V̂ ′, V̂ ′′ over S, with non-
isoconstant (and non-isogeneous) jacobians, and it just occurs that the non
torsion section p factors through one of their jacobians, so we are in the
exceptional Case (b) of Theorem 1 (see [15], p. 17, [19], §3, Obstruction
(b));
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• in (iii), the relative curve V̂ /S has genus one. We are in relative dimension
1, with a non-torsion section p of the jacobian, whose j-invariant is not
constant since its Weierstrass model is given by y2 = x3−4λx+ 1 (see [14],
[15], §1).
• in (iv), we are again in genus 1. As we will check in §4.2, the jacobian is
the isoconstant curve y2 = x3 +λ(1−λ)x, but the section p is not constant,
so leads to the same conclusion.

3.2. Semi-abelian surfaces. We now consider a semi-abelian scheme
G/S of relative dimension 2, and toric rank 1, over the algebraic curve
S/Q. So, G is an an S-extension of an elliptic scheme E/S by Gm, whose
isomorphism class is represented by a section q of (the dual of) E/S. If
p̃ ∈ G(S), we denote by p ∈ E(S) its projection to E. Again, a multiple
of a section means a multiple by a non-zero integer, and we allow for finite
base change of S whenever necessary.

Theorem 2. ([4]) Let S/Q, G/S, q ∈ E(S) be as above, and let p̃ ∈ G(S)
be a section, with projection p ∈ E(S). Then, the set

Sp̃ := {λ ∈ S(Q), p̃(λ) ∈ Gtorλ }
is infinite if and only if one of the following conditions is satisfied :

a) p̃ is a torsion section;
b) there exists an elliptic subscheme E′/S of G/S (equivalently, q is a

torsion section) and a multiple of p̃ which factors through E′, and is not
constant if E′/S (equivalently E/S) is isoconstant.

b’) a multiple of p̃ factors though Gm/S (equivalently, p is torsion), and
is not constant;

c) p̃ is a Ribet section (see below).

Consequently, if V̂ /S is a family of smooth proper curves of genus 1,
with four disjoint sections p0, p1, q

+, q− ∈ V̂ (S), and if W/S is the relative
curve obtained by pinching V̂ /S along the images of q+, q−, and removing
those of p0, p1, then the set

SW = {λ ∈ S(Q), rk(Q[Wλ]∗/Q∗) = 1}
is finite (usual case), unless we are in one of the following situations, where
we recall the notation nV (λ) = nVλ , nW (λ) = nWλ

,

ν(λ) = nW (λ)
nV (λ) = [(Q[Vλ])∗ : (Q[Wλ])∗]

of Remark 1 for the heights and relative complexity of the fundamental
units :

(a) (trivial case) there exists a rational function f on V̂ whose relative
divisor is supported by p1∪p0, so p = {(p1)−(p0)} is a torsion section of the
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relative jacobian Pic0(V̂ /S), hence SV = S(Q), and furthermore f(q+)
f(q−) ∈

Gm(S) ⊂ K∗ is a (constant) root of unity, so p̃ = [(p1)− (p0)] ∈ Pic0(Ŵ/S)
too is a torsion section. Then, the group of generic units (K[Wη])∗/K∗ has
rank 1, so

SW = SV = S(Q), and
nW (λ) ∼ ν(λ) are both bounded as λ runs through SW .

(b’) (an exceptional, but easy, case, reducing to G = Gm) : same hy-
pothesis on the existence of f as above, but we assume that f(q+)

f(q−) ∈ K∗

is not constant. In this case, SV = S(Q), nV (λ) is constant, and we are
reduced to a “relative dimension 1" case, so

SV = S(Q), SW is infinite but sparse, and
nW (λ) ∼ ν(λ) are both unbounded as λ runs through SW .

[NB : we take the opportunity of this case to mention that if f(q+)
f(q−) ∈ Q∗

is constant, but not a root of unity, then all the groups (Q[Wλ])∗/Q∗ have
rank 0, i.e. SW = ∅.]

(b) (an exceptional, and more delicate, case, reducing to G = E) : there
exists a rational function ϕ on V̂ whose relative divisor is supported by
q+ ∪ q−, so q = {(q+) − (q−)} is a torsion section, say of order N , of the
relative jacobian E = Pic0(V̂ /S), and furthermore ϕ(p1)

ϕ(p0) ∈ Gm(S) ⊂ K∗

is a root of unity, say of order M . By Proposition 2, p̃′ = NMp̃ is then
contained in an elliptic scheme E′ ⊂ G isogenous to E, and we are reduced
to relative dimension 1. In this case, SV = SW , and for λ in this set, the
torsion points p(λ) and p̃(λ) have the same order, up to a factor dividing
NM . Leaving aside the cases where the section p̃′ is torsion (see Case (a))
or constant (see NB above), we have :

SW = SV is infinite but sparse, and
nW (λ) is unbounded, ν(λ) is bounded as λ runs through SW .

(c) (Ribet sections) : this case can occur only in a very specific situation,
namely when E ' E0×QS is isoconstant, where the elliptic curve E0/Q has
CM, the section p and q are non-constant and related by a totally imaginary
endomorphism, and p̃ is a well chosen lift of p, as described in [2]. Then, p̃
lifts all torsion values p(λ), λ ∈ SV , to torsion points p̃(λ), so SV = SW . By
relative dimension 1, and since p is not constant, SV is infinite but unlike
in Case (b’), sparse. Now, what makes this case differ distinctively from
Case (b) is that the order of p̃(λ) is often much bigger than that of p(λ).
We will illustrate this case by a specific example in §4.2, and here merely
record that if p̃ = [(p1)− (p0)] is a Ribet section of G/S, then

SW = SV is infinite but sparse, and
nW (λ) and ν(λ) are both unbounded as λ runs through SW .
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4. Non separable Pellians : two case studies

4.1. Illustrating the usual case. We now come back to the setting of
§1 and consider sextic discriminants Dλ, λ ∈ S(Q), with one double root
ρ(λ). The “usual case" of §3.2 can then be illustrated as follows. We first
choose, more or less at random in terms of M1,1 (though a priori not in
terms of the 2-dimensional moduli spaceM1,2), the family of affine quartic
curves

(Vλ) : v2 = ∆λ(t), where ∆λ(t) = t4 + t+ λ.

As mentioned after Corollary 1.(iii) of the previous section (cf. [14], [15],
§1), the jacobian of the smooth completion V̂λ of Vλ is the non isoconstant
elliptic curve

(Eλ) : y2 = x3 − 4λx+ 1,
which defines an elliptic scheme E over S = P1 \ {λ3 = 2(3

8)3,∞}. The two
places at infinity p0(λ), p1(λ) of V̂λ are sent under the birational isomor-
phism ((t, v) 7→ (x = 2(t2 + v), y = 4t(t2 + v) + 1) to the points p′0(λ) at in-
finity and p′1(λ) = (0,−1) of Eλ. So, the weak class of the divisor (p1)−(p0)
is the section p = (0,−1) of E/S. Computing 2p(λ) = (4λ2,−8λ3 + 1) and
evaluating at λ = 1

4 , we deduce as in [14] that p is not a torsion section. As
announced in Corollary 1.(iii), this justifies the initial assertion of Corollary
2 below.

Let now ρ ∈ K = Q(S) be an arbitrarily fixed algebraic function, which
is not a root of the generic polynomial ∆η ∈ K[t]. Replacing S by a finite
cover, and withdrawing a finite number of its closed points, we may view ρ
as a regular function on S (cf. Remark 3), and we can assume that ∆λ(ρ(λ))
never vanishes on S(Q). As in [4], Appendix II, let then

(Wλ) : u2 = Dλ(t), where Dλ(t) = (t− ρ(λ))2(t4 + t+ λ),
be the singular curve obtained by pinching Vλ at the points q±(λ) =
(ρ(λ),±δρ(λ)), where δρ(λ) =

√
∆λ(ρ(λ)). Their images in Eλ define sec-

tions q′± =
(
2(ρ2±δρ), 4ρ(ρ2±δρ)+1

)
, of E/S, whose difference q = q′+−(E)

q′− is the weak equivalence class of the horizontal divisor (q+)−(q−). Since
p, hence p̃, is not a torsion section, we deduce from the analysis of §3.2 that
• if the algebraic function ρ is such that q is not a torsion section, then we
are the “usual case", and SW is finite. So, for such ρ ∈ K, we get finiteness
of the set SD of λ ∈ S(Q) such that Dλ is Pellian. The (random) choice
ρ ≡ −1

2 gives an example of this case (see [4], Appendix II, for a similar
discussion with ρ ≡ 0).
• otherwise, ρ leads to a torsion section q, say of order N (and since x(q) =
−4ρ2 + (4ρ3+1)2

∆η(ρ) , we see that examples of such ρ ∈ K do exist for essentially
any order of torsion N). Letting ϕ denote a rational function in K(Vη) such
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that N.(q+)−N.(q−) = div(ϕ) at the generic fiber Vη⊗KK, we then know
that SD can be infinite only in the exceptional case (b) of §3.2 where

ϕ(p1)
ϕ(p0) ∈ µ∞ ⊂ Q∗ ⊂ K∗

is a root of unity : indeed, Case (b’) cannot occur since p is not a torsion
section, while Case (c) would require E/S isoconstant.

In what follows, we will show that as soon as N is sufficiently large, the
latter condition on ϕ(p1)

ϕ(p0) never happens, and more precisely, that ϕ(p1)
ϕ(p0) /∈ Q∗

is not even constant. Consequently, only finitely many algebraic functions
ρ ∈ K can lead to an infinite set SD. We actually believe that no ρ does
so. In other words :

Corollary 2. Let S∆ be the set of algebraic numbers λ such that
∆λ(t) = t4 + t+ λ ∈ Q[t]

is a Pellian polynomial. Then, S∆ is infinite but sparse, and
i) there are only finitely many points λ’s in S∆ such that the polynomial

(t+ 1
2)2∆λ(t) is Pellian. Moreover,

ii) for any algebraic function ρ outside a finite (and conjecturally empty)
subset of K, there are only finitely many λ’s in S∆ such that the polynomial
(t− ρ(λ))2∆λ(t) is Pellian.

To treat (i), it suffices to show that for ρ ≡ −1
2 , so, δρ(λ) =

√
λ− 7

16 ,
the section q of E/S is not torsion. Now, the sections q+ and q− (over
the quadratic cover of the initial base S defined by δρ) meet at λ = 7

16 ,
so q( 7

16) = 0, while q is not the zero section since it represents a divisor
with only one, simple, pole. But E has good reduction at the place above
λ = 7

16 , so specialization at such a place is injective on torsion subgroups,
and q cannot be a torsion section. This argument of course extends to many
other choices of ρ in K, but by definition, not to those, infinite in numbers,
which yield a torsion section q.

To treat those ρ’s, leading to (ii), we now fix a field of definition K =
Q(S) for V̂η and its points p0(η), p1(η), and we drop the variable η from
the notations. Since theK-rational points p0, p1, resp. theK-rational points
q+, q−, of V̂η := E are interchanged under the involution τ : (t, v) 7→ (t,−v),
we are left with the task of proving the Corollary below of the following
Proposition, whose proof is due to U. Zannier. The elements of K will be
called scalars, those of Q constants.

Proposition 3. Given a function field K = Q(S) with algebraic closure
K, let E/K be an elliptic curve with a non-constant j-invariant, and let
p1, p0 be two non-zero distinct points in E(K). There exists an integer N0



456 Daniel Bertrand

depending only on E and K with the following property. For any positive
integer N and any point u ∈ E(K), of order dividing N , denote by Φu ∈
K(E) a rational function on E/K such that div(Φu) = N.(u) − N.(0).
Then, for any integer N > N0, and any point q ∈ E(K) of precise order N
(with q 6= p1, p0), the scalar Φq(p1)

Φq(p0) ∈ K
∗ does not lie in K∗. In particular,

it is not constant.

[NB : this Proposition still holds if we replace (p1)− (p0) by any non zero
divisorD of degree 0, provided thatD is defined overK and its polar degree
is bounded. The conclusion then reads : Φq(D) /∈ K∗. It suffices to replace
in the proof the expressions pi − v by t∗v(D), where tv denotes translation
by v.]

Corollary. - Let E/K be a curve of genus 1 with a non isoconstant jacobian,
let τ be a K-rational involution on E, and let p1, p0 = τ(p1) ∈ E(K),
q+, q− = τ(q+) ∈ E(K) be four distinct points. There exists an integer
N0 depending only on E ,K, τ , with the following property. Suppose that the
class q of the divisor (q+)−(q−) has finite order N > N0 in Pic0(E/K), and
let ϕq be a rational function in K(E) such that div(ϕq) = N.(q+)−N.(q−).
Then, the scalar ϕq(p1)

ϕq(p0) ∈ K
∗ is not constant (i.e. it does not lie in Q∗).

Proof of Proposition 3 (following U. Zannier) : we claim that there exists
a positive number c0 = c0(E,K) < 1 with the following property. Let
q 6= p1, p0, be a torsion point on E(K), and let N be its order. Assume
that Φq(p1)

Φq(p0) lies in K∗. Then, there exists a non zero torsion point u of order
dividing N such that for there exist at least c0N

2/(logN)2 torsion points
v of order N satisfying pi − v 6= 0, u (i = 0, 1), and

Φu(p1 − v)
Φu(p0 − v) = 1.

So, the rational function Φu(p1 − x) − Φu(p0 − x) ∈ K(E) has at least
c0N

2/(logN)2 zeroes. But its degree, if defined, is twice the order of u,
so ≤ 2N . Consequenty, the function vanishes identically as soon as N >
N0 = (c0/2)−4. This contradicts the hypothesis p1 6= p0, and implies that
Φq(p1)
Φq(p0) /∈ K

∗ for N > N0.

To prove the claim, we consider the Galois group ΓN of the extension
K(E[N ])/K, and denote by c1, ... positive constants depending only on E
and K. Since E/K is not isoconstant, ΓN is a subgroup of SL2(Z/NZ) of
index bounded by c1. Let V be the orbit ΓN .q of the point q of order N .
Since the stabilizer of q in SL2(Z/NZ) has order N , this orbit V has at
least c−1

1 N3−1/4logN elements, all of order exactly N . By the box principle,
there then exists at least one non-zero point u ∈ E[N ] (so, of order dividing
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N) such that for at least c2(N2/logN)2/N2 = c2N
2/(logN)2 couples of

distinct points (v, v′) ∈ V × V, with v, v′ 6= p1, p0, we have u = v′ − v. We
henceforth fix such a point u, and denote by Vu a set of [c2N

2/(logN)2]
points v in the orbit V such that v′ = v+u too lies in V (and v, v′ 6= p1, p0).

Denoting by x a general element of E, we now appeal to the functional
identity :

Φv′−v(x− v) = cv,v′
Φv′(x)
Φv(x) ,

where cv,v′ ∈ K
∗ is a normalizing scalar, and which is readily checked,

in fact for any points v, v′ in E(K), by comparing the divisors of these
functions. Evaluating at x = p1, p0, we deduce that for v′ − v = u,

Φu(p1 − v)
Φu(p0 − v) = Φv′(p1)

Φv′(p0) ×
Φv(p0)
Φv(p1) .

We finally come back to our choice of u ∈ E[N ] and let v run through
Vu ⊂ ΓN .q, with v′ = v + u also in ΓN .q . Denote by σ, σ′ elements of ΓN
such that σ(q) = v, σ′(q) = v′, and let ΓN act on K(E) by conjugating the
coefficients. In particular, the rational functions σ(Φq) and Φσ(q) = Φv have
same divisor N.(σ(q))−N.(0), so are equal up to a scalar factor cσ ∈ K

∗.
Similarly, σ′(Φq) = cσ′Φv′ . Since p1, p0 are defined over the fixed field K of
ΓN , we deduce :

σ
(Φq(p1)
Φq(p0)

)
= Φv(p1)

Φv(p0) , σ
′(Φq(p1)

Φq(p0)
)

= Φv′(p1)
Φv′(p0) .

Assuming now that Φq(p1)
Φq(p0) lies in K∗, we also have σ

(Φq(p1)
Φq(p0)

)
= Φq(p1)

Φq(p0) =
σ′
(Φq(p1)

Φq(p0)
)
. So, the right-hand side of the last but one formula is

Φv′(p1)
Φv′(p0) ×

Φv(p0)
Φv(p1) = Φq(p1)

Φq(p0) ×
Φq(p0)
Φq(p1) = 1,

and the desired equality Φu(p1−v)
Φu(p0−v) = 1 does hold for at least the specified

[c2N
2/(logN)2] points v of Vu. This proves the claim, with c0 = c2/2.

Proof of the Corollary : we may assume that the 4 fixed points of τ are
defined over K, and choose one as an origin 0, allowing to identify E with
its jacobian E. The involution τ is then represented on E by the stan-
dard symmetry, and reading on E, we have p0 = −p1, q

− = −q+. So,
q = {(q+) − (q−)} = [2]Eq+ = [−2]Eq− ∈ E has order N if and only if
q+ ∈ E(K) has order N or N/2. In particular, recalling the notation Φu

of the Proposition, we see that the rational function ϕq of the corollary
satisfies : div(ϕq) = N.(q+)−N.(q−) = N.((q+)− (0))−N.((q−)− (0)) =
div(Φq+/Φq−). Furthermore, up to scalar factors, Φq−(x) = Φq+(−x) since
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[−1]E interchanges the divisors (q+) − (0), (q−) − (0), hence ϕq(x) =
Φq+ (x)

Φq+ (−x) . Finally, since p0 = −p1:

ϕq(p1)
ϕq(p0) =

Φq+(p1)
Φq+(−p1) ×

Φq+(−p0)
Φq+(p0) =

(Φq+(p1)
Φq+(p0)

)2
.

On choosing N0 = N0 (which now depends on E ,K and τ), the proposition
implies that for N > N0, this algebraic scalar cannot be constant.

4.2. Illustrating Ribet sections. This will be done through the follow-
ing example, where neither ∆′ nor ρ ≡ −1

2 are chosen at random. Here, the
base curve is S = P1 \ {0, 1,∞}, and we still write K = Q(S) = Q(η).

Corollary 3. Let S∆′ be the set of algebraic numbers λ 6= 0, 1 such that

∆′λ(t) = t4 + (2λ+ 1)t3 + 3λt2 + λt ∈ Q[t]

is a Pellian polynomial. For each such λ, let (Xλ
1 , Y

λ
1 ) be a fundamental

solution of the corresponding Pell equation, and for any positive integer n,
set (Xλ

1 +
√

∆′λY λ
1 )n = Xλ

n +
√

∆′λY λ
n . Then, S∆′ is infinite but sparse, and

i) for all λ’s in S∆′, the polynomial (t+ 1
2)2∆′λ(t) too is Pellian. We can

therefore define ν(λ) as the smallest integer n ≥ 1 such that Y λ
n (−1

2) = 0;
ii) for every prime number ` ≥ 3, there exists an element λ` in S∆′ such

that degt(X
λ`
1 ) = ` and ν(λ`) = ` or 2`.

Proof. - A first issue is that the jacobian Eη/K of the normalisation V̂η of
the quartic curve (Vη) : v2 = ∆′η(t) is isomorphic over K to the CM elliptic
curve (E0/Q) : y2 = x3 +x. Let us check this, and then, reinterpet in terms
of E0 the two points p1(λ), p0(λ) at infinity of the quartic Vλ, and the points
q±(λ) with abscissa t = −1

2 , whose pinching gives the singular curve Wλ

with equation u2 = (t + 1
2)2∆′λ(t) := D′λ(t). The main issue will then be

that the degree zero divisors these points define lead to Ribet sections.

Consider the birational isomorphism (t, v) 7→ (X = λ
t , Y = λ v

t2 ). Multi-
plying the quartic equation by λ2

t4 , we see that its image is the curve with
equation :

Y 2 = X3 + 3λX2 + (2λ+ 1)λX + λ2.

Consider now the birational isomorphism (X,Y ) 7→ (x = X + λ, y = Y ).
Developing the powers of x− λ, we see that its image is the elliptic curve

(Eλ) : y2 = x3 + λ(1− λ)x,

which, on choosing its point at infinity as origin, can therefore be identified
to the jacobian of V̂λ, and defines an elliptic scheme E over S = P1 \
{0, 1,∞}.
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Let us now follow how the points are mapped under these isomorphisms.
The first one sends the places at infinity p1(λ), p0(λ) of the quartic (Vλ)
to the points (0,±λ) of the first cubic, since v/t2 ∼ ±1, and the points
q±(λ) to its two points with abscissa X = −2λ. The second isomorphism
sends the former points to the points p′1(λ), p′0(λ) = (λ,±λ) of (Eλ), and
the latter points to the points with abscissa x = −λ, i.e. to the points
q′±(λ) = (−λ,±iλ) of (Eλ). Transporting divisors and pinching from the
quartic curve to Eλ, we deduce that ∆′λ (resp. D′λ) is Pellian if and only if
the value at λ of the weak, (resp. strict) equivalence class p = {(p′1)− (p′0)}
(resp. p̃ = [(p′1)−(p′0)]) of the divisor (p′1)−(p′0) is torsion on Pic0(Eλ) = Eλ,
resp. on the fiber Gλ of the generalized jacobian G/S of the singular curve,
with equation y2 = (x+η)2(x3+η(1−η)x), obtained by pinching E/S along
the sections q′±. The latter is the S-extension of E by Gm parametrized by
the weak equivalence class q = {(q′+)− (q′−)} ∈ Pic0(E/S) = E/S.

As was pointed out, E/S is isoconstant (see E0 above). Now, on the one
hand, the points p′1(λ) = (λ, λ), p′0(λ) = (λ,−λ) = [−1]p′1(λ) of Eλ are such
that the weak equivalence class p = {(p′1)−(p′0)}= p′1−(E)p

′
0 = [2]p′1 ∈ E(S)

is not a constant section : indeed, on the constant model E0, the abscissa of
p′1(λ) reads λ√

λ(1−λ)
=
(

λ
1−λ

) 1
2 . So, by “relative dimension 1", S∆′ is infinite

and sparse (as announced in Corollary 1.iv); in fact, the Möbius transform
in the formula above directly shows that p′1(S) meets any torsion section of
E/S of order 6= 2. On the other hand, E0 admits complex multiplications
by Z[i], and the points q′+(λ) = (−λ, iλ) = [i]p′1(λ), q′−(λ) = (−λ,−iλ) =
[i]p′0(λ) lead to q = q′+ −(E) q

′− = [i]p ∈ E(S). According to [2], §3 (see
also [3]), the strict equivalence class p̃ = [(p′1)− (p′0)] = [(i−1q′+)− (i−1q′−)]
is then a Ribet section of the extension G/S of E/S by Gm parametrized
by q.

For the convenience of the reader, we recall below how to check that
for any λ such that p(λ) is a torsion point on Eλ, say of order n(λ), then
the value p̃(λ) of the Ribet section is a torsion point on Gλ of order ñ(λ)
dividing 2n2(λ). Hence, SD′ = S∆′ , and this concludes the proof of (i).
Moreover, this proof implies that for any prime number ` ≥ 3, there exists
λ` ∈ S∆′ such that n(λ`) = `, while ñ(λ`) equals `2 or 2`2. So, the index

ν(λ) := ñ(λ)
n(λ)

grows as fast as ` or 2` = 2n(λ) = 2 degt(Xλ
1 ) as λ runs through the infinite

sequence {λ`} of S∆′ , and this concludes the proof of (ii).

Finally, following B. Edixhoven’s argument in [2], §3, here is the promised
proof that p̃ lifts torsion values p(λ), λ ∈ S∆′ , of p to torsion points p̃(λ) of
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Gλ, in the quantitative way announced above. First, notice that the four
points p′0,1(λ), q′±(λ) are distinct as soon as 2p′1(λ) 6= 0 and (1±i)p′1(λ) 6= 0
on Eλ, so p′1(λ) /∈ Eλ[2]. And this condition holds for any λ ∈ S(Q), since
back to E0, it means that λ

1−λ 6= 0,−1 on S. Let now n = n(λ) be the order
of p(λ), so, dropping the dashes and some of the λ’s in the notation, there
exists a rational function f1 = f on Eλ such that n.(p1)− n.(p0) = div(f).
By the description of §2.1, the point np̃ of Gλ, which lies in Gm(Q), is given
by

np̃ = f(q+)
f(q−) .

Furthermore, q = ip too has order n, so there is a rational function ϕ
on Eλ such that n.(q+) − n.(q−) = div(ϕ). In fact ϕ = f ◦ [i]−1 since
q+ = ip1, q

− = ip0.
Recall now that for two points p, q ∈ Eλ[n] of order dividing n, the Weil

pairing en(p, q) ∈ µn can be computed as follows : if Dp,∆q are disjoint
divisors in the (weak) equivalence classes p, q, and if nDp = div(f), n∆q =
div(ϕ), then

en(q, p) = f(∆q)
ϕ(Dp)

,

which by yet another appeal to Weil’s law of reciprocity, is indeed a n-th
root of unity. By our previous observations, we may here choose the disjoint
divisors Dp = (p1) − (p0),∆q = (q+) − (q−), and recalling that p0 = −p1,
compute :

2np̃ =
(f(q+)
f(q−)

)2 = f(q+)
f(q−) ×

f(i−1p0)
f(i−1p1) = f(q+)

f(q−) ×
ϕ(p0)
ϕ(p1) = en(q, p),

Therefore, p̃(λ) is a torsion point of Gλ, of order ñ(λ) dividing 2n2(λ).
To check that up to the factor 2, this upper bound is reached infinitely

often, we fix any odd prime `, and consider the Weil pairing e0
` on the

constant curve E0. Since [i] induces an automorphism of E0[`] which is not a
homothety, e0

` ([i]ξ, η) is a perfect symmetric pairing on E0[`], and any point
ξ` of E0[`] outside of its isotropy cone gives a root of unity ζ` = e0

` ([i]ξ`, ξ`)
of precise order `. From the explicit formula quoted above for x(p′1(λ)), we
deduce that there exists an element λ` ∈ S(Q) such that the point p(λ`) is
represented by ξ` in the constant model E0. Then, n(λ`) = ` by definition,
and since

2`p̃(λ`) = e`(q(λ`), p(λ`)) = e0
` ([i]ξ`, ξ`) = ζ`,

ñ(λ`) is indeed equal to `2 or 2`2.
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