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Degree of Unirationality for del Pezzo Surfaces
over Finite Fields

par AMANDA KNECHT

RESUME. Nous abordons la question du degré de paramétrisation
unirationnelle de surfaces de del Pezzo de degré quatre et trois.
Plus précisément, nous montrons que les surfaces de del Pezzo de
degré quatre sur les corps finis admettent des paramétrisations
de degré deux, et que les surfaces cubiques minimales admettent
des paramétrisations de degré six. Il reste incertain s’il existe des
paramétrisations de degré trois ou quatre pour ces dernieres sur-
faces.

ABSTRACT. We address the question of the degree of unirational
parameterizations of degree four and degree three del Pezzo sur-
faces. Specifically we show that degree four del Pezzo surfaces over
finite fields admit degree two parameterizations and minimal cu-
bic surfaces admit parameterizations of degree six. It is an open
question whether or not minimal cubic surfaces over finite fields
can admit degree three or four parameterizations.

1. Introduction

It is a classical result that for every cubic surface S3 defined over an
algebraically closed field there exists a degree one rational map P? --» Ss.
We say that such a surface is rational. But over a non-algebraically closed
field there are many examples of non-rational cubic surfaces. A surface S3
is unirational if there exists a finite to one rational map P? --» S3. Such a
map is called a unirational parameterization and the degree of the map is
called the degree of unirationality. In 1943 Segre proved that a smooth cubic
surface defined over Q is unirational if and only if it contains a rational point
[11]. Manin then showed that the same is true for cubic surfaces over finite
fields containing at least 34 elements [8]. More recently Kollar proved that
over an arbitrary field a cubic hypersurface with a rational point is always
unirational [6]. Cubic surfaces over finite fields always have points [2] so are
unirational. The aim of this note is to describe the possible degrees of the
unirational maps to non-rational cubic surfaces over finite fields. Let IF, be
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a finite field of size ¢ = p". We say that a cubic surface is minimal over F,
if it does not contain a line defined over that field.

Theorem 1.1. Let S5 be a non-rational cubic surface defined over a finite
field Fy. If there exists a degree two rational map P? --» S3 and q # 2, then
S3 contains a line defined over F,. If S3 does not contain a line defined
over [Fy, then there exists a degree six unirational parameterization of Ss.

Fix an algebraic closure Fy, let G = Gal (F,,F,), G, = Gal (F,,F,r), and
X be a smooth surface defined over F,. Let N(X) = Pic (X @ F,). In his
book Cubic Forms [8, Thm 29.4, 30.1], Manin proves that there is always
a degree six parameterization of a cubic surface over large enough fields of
characteristic different from two. He suggests that his rough lower bound
of 35 for the size of the field may not be optimal but gives an example over
F4 where his proof falls apart [8, Rmk 30.1.1]. Manin also proves [8, Thm
29.2] that if there exists a rational map of finite degree ¢ : P? --» X over
Fy, then the degree of ¢ is divisible by the least common multiple of the
exponents of the groups H'(G,, N(X)) where 7 ranges over all integers.

By Theorem 1.1, we know that a minimal cubic surface never has a ra-
tional parameterization of degree two but always has one of degree six. The
27 lines on a cubic surface are acted on by the Weyl group of Eg, W (FEg).
There are twenty-five conjugacy classes in this group which Frame denotes
C1,...,Cy5 [3]. For each class Cj, let H; be the cyclic subgroup in W (Eg)
generated by some element of the class. Manin calculates H*(H;, N(S3))
for each class and places them in a table on pages 176-177 of the book Cu-
bic Forms [8]. There are two mistakes in his table. In Corollary 1.17 Urabe
proved that the orders of these groups are all square [14], so
HY(H;,N(S3)) = 0 for i = 4 and i = 20. Noting this correction to the
chart, we find that the only possible nonzero H' groups are Zo x Zo and
Zs3 x Zs. A correct table can be found in a paper by Li [7]. It should be
noted that over a perfect field a cubic surface S5 is minimal if and only the
only curves on S5 fixed by the absolute Galois group G are multiples of the
canonical divisor [8, Thm 28.1].

There are two questions left open concerning the minimal degree of the
parameterization:

Question. If S5 is a minimal cubic surface such that
HY(Gal(F,, K), N(S3)) = Zg x Zs

for some algebraic extension K of F,, does there exist a degree four unira-
tional parameterization of S3?

There is only one Frame conjugacy class Cig for which this question
applies. The lines on surfaces of type Cig are permuted by Frobenius in
one group of three and four groups of six. None of the lines are defined
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over a degree two extension, but over a degree three extension, three of the
lines are defined and the other twenty-four are Galois conjugate pairs. For
example the equation X +3Y?3 + Z3 +4W3 —2(X +Y +Z+ W) =0
defines such a surface over Fq;.

Question. If S35 is a minimal cubic surface such that
HY(Gal(F,, K),N(S3)) = Z3 x Z3

for some algebraic extension K of F,, does there exist a degree three uni-
rational parameterization of S37

Again there is only one Frame conjugacy class C1 for which this question
applies. The lines on these surfaces are permuted in nine sets of three, and
all twenty-seven lines are defined over a degree three extension. One such
surface to consider is defined by the equation X3 + Y3 + Z3 4 aW3 = 0
over Fy = Fy(a) where o +a + 1 = 0. We refer the reader to [12] for more
details on the conjugacy classes of cubic surfaces.

It should be noted that if S is a degree d del Pezzo surface defined over a
finite field, then S is rational when d > 5 [8, Thm 29.3] and unirational of
degree two when d = 4 and |k| > 22 [8, Thm 30.1]. In the following section
we extend the result for degree four del Pezzo surfaces to all finite fields.
There has also been recent progress in the study of degree two del Pezzo
surfaces over finite fields. Salgado, Testa, and Varilly-Alvarado prove that
degree two del Pezzo surfaces over finite fields are unirational except for
possibly three exceptional cases [10].

Acknowledgments: I am grateful to Brendan Hassett for the many con-
versations we had about this topic. I would also like to thank the referee
for the thoughtful suggestions made to improve this paper.

2. Degree 2 Maps for degree 4 del Pezzo Surfaces

Over an algebraically closed field, a degree four del Pezzo surface Sy is the
blow up of the projective plane at five points, no three of which are collinear.
Such a surface may also be thought of as the intersection of two quadrics
in P%. Manin showed that a degree four del Pezzo surface is unirational of
degree two over a finite field k¥ when |k| > 22 [8]. His proof needs the field
to contain 22 elements because his rational map uses a k-rational point on
the surface that is not on any exceptional curves. Points on degree four del
Pezzo surfaces can be contained in at most two exceptional curves. If a line
L contained in S4 contains an Fg-rational point p, then all of the Galois
conjugates of L contain p as well. Thus if p is contained in exactly one
exceptional curve L, then L has no conjugates, and therefore is F,-rational.
If p is contained in exactly two exceptional curves of a minimal surface,
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then each of those lines is defined over the quadratic extension F . and
their union is defined over [F,.

Below we give a proof that there is a degree two unirational parameter-
ization for every degree four del Pezzo surface over any finite field.

Theorem 2.1. Suppose Sy is a degree four del Pezzo surface defined over
a finite field k. Then there exists a unirational parameterization of Sy of
degree two defined over k.

Proof. There are three cases to consider.

(i) There exists a point x € S4(k) not contained in an exceptional curve
of 54.
(ii) All the points in Sy(k) are contained in exceptional curves but there
is a point contained in exactly one exceptional curve.
(iii) All k-rational points are the intersection of two exceptional curves.

The first case is proven in Manin’s book [8, Thm 29.4]. Given a degree
four del Pezzo surface Sy defined over k£ and a k-rational point that is not
contained in any exceptional line of S4, Manin constructs a unirational
parameterization of degree two in part (vi) of the proof of the theorem.
He then uses the following rational point count result of Weil to show that
when |k| > 22 such a k-rational point exists [8, Thm 30.1].

Theorem 2.2 ( A.Weil [15] ). Let ¢ = p" and fiz an algebraic closure F,,
let G = Gal (F,,F,) and F € G the Frobenius automorphism sending an
element z to 29. Let S be a del Pezzo surface, N(S) = Pic (S ®F,) and
F*: N(S) — N(S) be the action of Frobenius on the Picard group. Then:

IS(Fy)| = ¢*+q TrF* +1.

In the second case, suppose we have a k-rational point x contained on
exactly one line on the surface. Then this line is defined over k and we can
blow it down to produce a birational map to a degree five del Pezzo surface.
These are known to be rational.

The third case breaks down into two sub-cases. If S4 is not minimal, then
lines on Sy can be blown down to produce a birational map to a higher
degree del Pezzo surface that is known to be rational. The case where Sy
is minimal never actually occurs as we prove in the following lemma. [

Lemma 2.1. Let Sy be a minimal degree four del Pezzo surface defined
over a finite field k. Then there exists a k-rational point on Sy that is not
the intersection of two exceptional curves.

Proof. Suppose by way of contradiction that all of the k-rational points on
Sy are the intersections of two exceptional curves. Let x € Sy(k) be a point
contained in two exceptional curves L and Ly. As noted above, since x is k-
rational, the union L, U Lo is defined over a quadratic extension &’ of k and
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the curves Lj and Ly are Galois conjugate. If the surface has |Ss(k)| = n
such points defined over k, then Sy contains at least 2n exceptional curves
defined over k’. A degree four del Pezzo surface over an algebraically closed
field contains exactly 16 exceptional curves, so n < 8. The above result of
Weil applied to the field k = F, yields the inequality ¢? + ¢ TrF* +1 < 8.
The trace of the Frobenius automorphism on Sy is bounded below by —2
[9, Thm 1.1], so ¢ must be 2 or 3.

In order to arrive at our contradiction for surfaces defined over Fy and
F3, we study the Galois action on the sixteen exceptional curves on the
surface. The image below is one way of depicting the exceptional curves
on a degree four del Pezzo surface. The vertices are the exceptional curves
labeled 1,1, ...,8,8. Two curves intersect if their corresponding vertices are
joined by a line. The lines connecting the left and right columns are not
depicted but are constructed as follows. The left (right) vertex of each pair
is joined with the left (right) vertex of the pair in the same row of the other
column and with the other four right (left) vertices in the other column.
For example, curve 4 intersects curves 4,8,7,6 and 5.

4 4 8 8
3 3 7 7
2 2 6 6
1 1 5 5

Manin classified the Galois conjugacy class decompositions of the lines on
minimal degree four del Pezzo surfaces [8, Table 31.2]. He proved that there
are six decompositions that occur over finite fields. Using his numbering
system these are cases I, II, IV, V, X, and XVIII depicted below. Curves
are in the same Galois orbit if they are contained in the same rectangle. For
example, in case I curves 1,1,5 and 5 make up an orbit of four elements
while in case II they break into two orbits of two curves.

[—] [ =]|[ ==
= ==
==

I II v \4 X XVIIT

I
1IN
LT
LT
[ ]

As mentioned above, a point on Sy is the intersection of two exceptional
curves if and only if those two curves are Galois conjugate over a degree
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two extension. In the graphic above such a point corresponds to a rectan-
gle containing exactly two vertices. Thus, the only decompositions whose
surfaces contain [F -rational points as the intersection of two exceptional
curves are II and IV which contain 2 and 8 of these points, respectively.
Over Fy our surface would have 1,3,5, or 7 points, and over F3 the surface
could only have 4 or 7 points. Hence, such an S4 does not exist, and we

have arrived at the desired contradiction.
O

A corollary of Theorem 2.1 is the following fact known to experts.

Corollary 2.1. Suppose S5 is a cubic surface defined over a finite field k.
Suppose further that Ss contains a line defined over k. Then there exists a
unirational parameterization of Ss of degree two defined over k.

Proof. If S5 contains a line defined over k, we can blow the line down to
get a birational map from Ss to a degree four del Pezzo surface. Then we
apply Theorem 2.1. O

3. Degree 2 Maps for Cubic Surfaces

We saw in the previous section that a cubic surface S3 defined over a finite
field k has a degree two unirational parameterization if the surface contains
a line defined over k. In this section we show that having a line defined over
k is actually a necessary condition for being unirational of degree two when
k is of odd characteristic. This result is a direct consequence of the following
theorem of Bayle and Beauville.

Let k& be an algebraically closed field of odd characteristic and S a
smooth, projective, connected rational surface over k. Also let o be a non-
trivial biregular involution of S. We say the pair (S, 0) is minimal if any
birational morphism g : S — S’ such that there exists a biregular involution
o' of §" with g o 0 = ¢’ 0 g is an isomorphism.

Theorem 3.1 (Bayle, Beauville [1]). Let (S,0) be a minimal pair. One of
the following holds:

(i) There erxists a smooth P'-fibration f : S — P! and a non-trivial
involution T of P! such that foo =7o f.

(ii) There exists a fibration f : S — P! such that f oo = f; the smooth
fibers of f are rational curves, on which o induces a non-trivial
involution; any singular fiber is the union of two rational curves
exchanged by o, meeting at one point.

(iii) S is isomorphic to P? with linear involution o.

(iv) S is isomorphic to P! x P! with the involution (z,y) — (y,x).

(v) S is a del Pezzo surface of degree two and o the Geiser involution.

(vi) S is a del Pezzo surface of degree one and o the Bertini involution.
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Suppose Sj3 is a smooth, projective, minimal cubic surface that admits a
degree two unirational parameterization ¢ : P2 --» S3. Then ¢ induces a
birational involution ¢ on P? that exchanges the two pre-images of the points
of S3 and the quotient P2/ < ¢ > is birational to S3. By [1, Lemma 2.1] there
also exists a birational morphism f : S — P? and a biregular involution
o of S such that foo = 1o f and the pair (5,0) is minimal. Again the
quotient "= S/ < o > is birational to S3. We argue by contradiction and
show that the minimal pair (S,0) does not satisfy any of the cases above,
so no such surface S3 exists over a field of odd characteristic.

A minimal cubic surface over a perfect field is never birational to a surface
with a rational bundle structure [8, Thm 37.1], so cases (i) and (ii) above
are ruled out for S. We are left show that cases (iii)-(vi) are also impossible.

Consider the quotient ¢ : S — T and decompose the fixed locus of o as
a union of isolated points p; and disjoint curves By. We call the points p;
the exceptional points of S. Notice that when restricting ourselves to cases
(iii)-(vi) there are no curves of negative self intersection on S and —Kg is
ample. Thus the pullback of the anticanonical bundle of T is the sum of an
ample divisor and nef divisors, ¢*(— K1) = —Kg+ > By. Hence the surface
T is a del Pezzo. Furthermore, since T is birational to S3 and del Pezzo
surfaces of degree at least five are rational over finite fields [8, Thm 29.3],
we can assume 1" is a del Pezzo of degree at most 4. But if T' is a degree
four del Pezzo surface birational to a cubic surface, the birational map from
S3 to T must be the blow-down of an exceptional curve contradicting the
minimality of S3. Thus K% < 3.

We can easily compute

(3.1) 2K} =K% —2Ks-Y B+ Bj.

Since K% < 3 and each —Kg - By is strictly positive, S can only be a
degree two or one del Pezzo surface, as cases (iii) and (iv) have K% = 9 and
8, respectively. Also note that the degree of each curve By as a curve in P3
is —Kg-By. If —Kg- By =1 for some By fixed by o, then T and S35 contain
a line contradicting the minimality of S3. So —Kg - By > 2 for each £. Also,
a quick glance at equation (3.1) shows us that 7' cannot be a degree one
or two del Pezzo when K% =1 or 2. We now rule out cases (v) and (vi) of
Theorem 3.1 using the fact that T is a cubic surface.

(v) Suppose S is a degree two del Pezzo surface. Equation (3.1) becomes

4= B} —2Ks-Y By, Ks-Y Bi>2.

There is only one curve Bj fixed by o, and that curve is a conic
passing through four of the exceptional points of S. But that means
there is a conic on the cubic surfaces T and S3. We arrive at a con-
tradiction to the minimality of S5 since a cubic surface containing
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a conic also contains a line coplanar to that conic.

(vi) Suppose S is a degree one del Pezzo surface. Equation (3.1) becomes

5= B —2Kg-Y By, Ks-» Bi>2.

The only possibility for —Kg - > By is 2, and as before we arrive at
a contradiction. So S is not a degree one del Pezzo, and we have
proven the following theorem.

Theorem 3.2. If S5 is a minimal cubic surface defined over a field of odd
characteristic, then there does not exist a unirational parameterization of
Ss of degree two.

4. Degree 6 Maps for Cubic Surfaces

We start this section by recalling Manin’s theorem on the existence of a
degree six unirational parameterization for cubic surfaces over large enough
finite fields [8, Thm 29.4].

Theorem 4.1 (Y. Manin). Let S3 be a cubic surface defined over a finite
field k and suppose that there is a point p € Ss(k) which is not on an
exceptional curve. Then there exists a rational map ¢ : P2 --» S3 of degree
Si.

Manin goes on to state that a cubic surface defined over a field with
at least 34 elements, will contain a point not on an exceptional curve. A
cubic surface with all 27 lines defined over the base field k is called split.
Hirschfeld [5] classified the split cubic surfaces where all the k-rational
points are contained in the lines. He proved that Fig is the largest field for
which this occurs and the unique surface in this case is the Fermat cubic
surface X3 + Y3 + Z3 + W3 = 0. If Sy is a cubic surface for which at least
two of the lines are not defined over the base field F,, can all the F,-rational
points be contained in the exceptional curves when 16 < ¢ < 34?7 We can
lower the upper bound from 34 to 19 via the following calculations. Over the
field IF;, the number of points on the lines of a cubic surface is no more that
25(q+1) — e where e is the number of points contained in three exceptional
curves. Such points are called Eckardt points. We have the bounds e < 18
when the field is of odd characteristic and e < 45 over Far [5]. The trace of
Frobenius for a cubic surface containing a line is bounded below by -1 [8,
Table 31.1], so the number of points on the surface is at least ¢* — ¢ + 1.
The largest prime for which 25(q + 1) — 18 > ¢?> — ¢+ 1 is 19. The largest
power of 2 for which 25(q + 1) — 45 > ¢> — ¢ + 1 is 16.

Question. Over k = F17,[F19 do there exist non-split cubic surfaces whose
k-rational points are all contained in the exceptional curves of the surface?
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For minimal cubic surfaces, we can lower that bound to five. Swinnerton-
Dyer classified cubic surfaces not containing a line and having only Eckardt
points as rational points [13]. He proved that these surfaces only exist when
g = 2 or 4. It should be noted that Hirschfeld [5] proved the Fermat cubic
is the unique split cubic surface defined over F, with all F4-rational points
Eckardt points.

Theorem 4.2. Let S3 be a minimal cubic surface defined over Fy. FEither
there is a point x € S3(Fy) not contained on an exceptional curve, or ¢ <5
and every x € S3(Fy) is an Eckardt point.

Proof. Let S3 be a minimal cubic surface. Suppose all the points defined
over [, lie on exceptional curves and let z € S3(FF,). If  is contained in
exactly one exceptional curve, then that line is defined over F,. If  is con-
tained in exactly two exceptional curves, they must be Galois conjugates
defined over FF 2. Consider the plane P spanned by the two lines. The in-
tersection of the plane and the surface is three lines. The third line must
be defined over the ground field. In both cases the surfaces in not minimal
and contradicts our hypothesis.

Thus, x must be contained in three exceptional curves. A cubic surface
defined over a field of odd characteristic can have 1, 2, 3, 4, 6, 9, 10 or 18
Eckardt points [4]. Over a field of characteristic two the possibilities are
1, 3,5,9, 13, and 45 [4]. Recall the theorem of Weil, Theorem 2.2, on the
number of F, rational points on a cubic surface;

|S3(Fg)| = ¢° + ¢ TeF* + 1.
If the surface S3 is minimal, then the possibilities for TrF™* are —2,—1,0,1

and 2 [8, Table 31.1]. A simple computation shows that the only fields in
which all points on the surface can be Eckardt points are Fy,F3 and F,. [

Corollary 4.1. Let S3 be a cubic surface defined over a finite field with at
least five elements. Then the minimal degree of a unirational parameteriza-
tion of Ss is at most siz.

Proof. If S3 is minimal, there is a point not contained on the exceptional
curves, and Theorem 4.1 gives a degree six unirational map. If S3 is not
minimal, then Theorem 2.1 gives a degree two unirational map. U

The following surfaces were found by Swinnerton-Dyer [13]. Over the field
5 there is a unique cubic surface with one point. The surface is defined by
the equation,

(41) Y4 Y Z+ 22+ WX+ Y +YZ+ 2%+ XW? + W? =0.
The surface contains only one point [1,0,0,0] over Fy, and that point is

an Eckardt point. The lines on the surface are all defined over the degree
three extension Fg where all 121 points of the surface are contained on the
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lines and thirteen of the points are Eckardt points. Also over the field of
two elements there is a unique cubic surface with three Eckardt points as
its rational points. This surface is given by the equation,

(4.2) XY(X+Y)+ 22+ Z°W + W? = 0.

It is in Frame’s conjugacy class Cos and is a rational surface. The surface
splits over Fg4. Fifteen of the exceptional curves are defined over Fg and
the other twelve over Fgg4.

Swinnerton-Dyer found two inequivalent surfaces over Fy all of whose
F4-points are Eckardt. If we let the elements of F4 be 0,1, and o + 1,
where o + a + 1 = 0, then the equations of the two surfaces are,

(4.3) X34+ Y34+ 2%+ 0W?3 =0 where § = a or v + 1.

These surfaces each have nine rational points over Fy, and they are all
Eckardt points. The exceptional curves on these surfaces are defined over
the degree six extension Fgy.

In order to find a degree six unirational parameterization of these four
surfaces, we consider points over degree two extensions instead of just points
over the ground field. The following theorem is Kollar’s second unirational-
ity construction [6] which yields the desired degree six rational map.

Theorem 4.3 (J. Kollar). Let Ss be a cubic surface defined over a finite
field F,. Fiz a point z € S3(F,) and a line L € P3 containing x. If L is
not contained in the surface and not tangent to the surface, then L N Sy =
{z,s,5'} where s,s" € S3(Fp2) are Galois conjugate points. If there ewists
an x € S3(Fy) such that s and s’ do not lie on the exceptional curves of Ss,
then there exists a dominant rational map ¢ : P? —-» Ss.

We will assume that the surface is minimal, since we have already seen
how to produce a degree two parameterization for non-minimal surfaces.

Suppose there exist an € S3(F,;) and a line L such that L N S3 =
{z, s, s} where s and s" are Galois conjugate points over a quadratic exten-
sion and do not lie on the exceptional curves of S3. Let C be the singular
cubic curve given as the intersection of the surface S3 and the tangent plane
at s, T5S3. We similarly define Cy . Since Cs and Cy are Galois conjugate
rational cubic curves, there exists a birational map 1 : P2 --» C x Cy de-
fined over IF,. We define the third point map 7 : Cs x Cy --+ S3 by making
7(p,p’) the third intersection point on the surface S5 when we draw a line
L,y between p and p'.

We will now show that TS5 # TyS3, which implies that this map is
dominant because Cs and Cy do not lie in the same plane. If we suppose
these planes are the same then we are saying that the intersection of a plane
with our cubic surface is a cubic curve with two nodes at s and s’. This
cubic curve is contained in the minimal surface Ss so is irreducible, since
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if it were reducible the surface S3 would contain a line. It is not possible
for an irreducible cubic curve to have two nodes because a cubic with two
nodes has negative genus. Thus the map 7 is dominant.

Kollar’s second unirationality construction [6] defines the map ¢ as 701 :
P2 -5 S3. We can see that the degree of the third point map is six as follows.

Pick another point z € S3 such that z ¢ Cs U Cy. In order to compute
the degree of ¢, we want to know how many pairs (p,p’) in Cs x Cy satisfy
L,y NSs={zp,p}. Let m, : P2\{z} --» Ty S5 be the projection from z
onto the tangent plane of S3 at s’. Since m,(Cs) is a cubic curve in Ty Ss,
it will intersect Cy in nine points. So it appears at first that there are nine
pairs of points that are mapped to z via 7. Let £ = TS5 N Ty S3. Since L
is defined over F, and S3 is minimal, £ does not lie on S3 and intersects S3
at three points. These three points are also in the intersection of Cs and
Cy . Since the tangent lines to these points lie in different planes, we know
that Cs and Cy intersect transversely here. These three points are in the
indeterminacy locus of the map ¢ since they are on both Cs and Cy, so
we do not count them when counting the degree of . For a general point
z, the other six points of intersection will be distinct points. Any special
points z € S5 that result in points of multiple intersection do not affect the
degree of this map. Thus the degree of ¢ is six, and we have proven the
following proposition.

Proposition 4.1. Let Ss be a minimal cubic surface over a finite field k.
If over a quadratic extension of k, S3 contains two Galois conjugate points
not contained on any of the 27 exceptional curves, then there exists a degree
siz unirational parameterization of Ss.

In order to finish the proof of Theorem 1.1, we must show that the excep-
tional cases defined by equations (4.1) and (4.3) satisfy the assumptions of
Proposition 4.1, recalling that the surface defined by equation (4.2) is ratio-
nal. These surfaces are in the conjugacy class C1; of Frame [3], which means
the 27 lines are permuted as nine triples of coplanar lines and TrF™* = —2.
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They split over a degree three extension and contain no lines over [F, or
Fg2. Over a degree two extension the surfaces are still in the conjugacy class

C11, so they contain ¢* —2¢® + 1 points. The only F 2-rational points lying
on exceptional curves are the original ¢ —2¢+ 1 Eckardt points. Thus there
are q(q + 2)(q — 1)® F2-points on the surface away from the exceptional
locus where ¢ = 2 or ¢ = 4. So the assumptions of the proposition are met,
and there exists a degree six unirational parameterization.
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