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Certain codes related to generalized

paperfolding sequences
par YuicHt KAMIYA et LEo MURATA

RESUME. Soit RBC le code binaire réfléchi, qui est aussi connu
sous le nom de code de Gray, soit Sgpc la somme des chiffres pour
RBC, et soit {Pp,(n)}52; la suite du pliage régulier de papier.
Les auteurs ont montré que la différence premieére de la somme
des chiffres pour RBC, {Srpc(n) — Srpc(n — 1)}52,, coincide
avec {Pp,(n)}52,. Pour toute suite infinie b = {by}32,, avec
b € {—1,1}, on peut construire une suite infinie {Py(n)}32,,
appelée suite de pliage de papier généralisée associée a b. Dans
cet article, supposons que la suite b est periodique, nous propo-
sons un nouveau code (de numération) Cp défini par b, et nous
étudions les propriétés du code Cp, dans le Théoreme 1.2. Nous
montrons que la différence premiere de la somme des chiffres pour
Cb, {Sc, (n) — Se, (n — 1)}, coincide avec la suite de pliage de
papier généralisée { Pp(n)}22; (Théoréme 1.1). Puis nous donnons
une formule exacte pour la moyenne de la somme des chiffres pour
Cp dans le Théoreme 1.3.

ABSTRACT. Let RBC be the reflected binary code, which is
also called the Gray code, Sgpc be the sum of digits function
for RBC, and {Py,(n)}52; be the regular paperfolding sequence.
In their previous work the authors proved that the difference func-
tion of the sum of digits function for RBC, {Srpc(n) — Srpc(n —
1)}22,, coincides with {Pp,(n)}52 ;. From an infinite sequence
b = {bx}2, with by € {—1,1}, one can construct an infinite
sequence {Py(n)}$2, which is called the generalized paperfold-
ing sequence with respect to b. In this paper, when we assume
b is periodic, we propose a new numeration code Cp, and study
some properties of the code Cp in Theorem 1.2. We can prove
that the difference function of the sum of digits function S¢, for
Cb, {Sc, (n) — Se, (n —1)}52,, coincides with the generalized pa-
perfolding sequence {Pyp(n)}>2; (Theorem 1.1). We also give an
exact formula for the average of S¢, in Theorem 1.3.

Manuscrit regu le 17 aott 2012, révisé le 24 février 2013, accepté le 19 mars 2013.
Mots clefs. Paperfolding sequence, Numeration system, Sum of digits function.
Mathematics Subject Classification. 11B85, 11A25.
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1. Introduction

We start from an interesting relation between the reflected binary code
and the paperfolding sequence.

The reflected binary code (RBC) is one of the Gray codes. We show
how to construct RBC in Example 2.1 of Section 2. Here we compare, for
0 <n <7, its binary code (BC) and RBC:

n | BC | RBC
0 0 0
1 1 1
2| 10 11
3] 11 10
4 | 100 110
5 | 101 111
6 | 110 101
71111 100

For the code
{RBC(n)};>, ={0,1,11,10,110,111, 101, 100,
1100,1101,1111,1110,1010, 1011, 1001, 1000, . . .},

we introduce two important functions, the sum of digits function Sgrpc(n)
and its difference function Hrpc(n) = Srpc(n) — Srac(n — 1). The initial
16 values of these functions are

{Srpc(n)}ep ={0,1,2,1,2,3,2,1,2,3,4,3,2,3,2,1,...},

{Hrpc(n)}p>y ={1,1,-1,1,1,-1,-1,1,1,1,-1,-1,1,—-1,—-1,1,...}.

Let us fold a paper repeatedly always in the same way and open the
paper. Then we get a sequence of 2 types of folds, ‘A’ and ‘V’. We assign
1 for A and —1 for V, then we obtain the so-called reqular paperfolding
sequence { Py, (1)} . The initial 16 values are
(1.1)

{Pp,(n)};y =41,1,-1,1,1,-1,-1,1,1,1,—-1,-1,1,—-1,-1,1,...}.

We can easily notice that
(1.2) {Hrpc(n)inzn = {Poe(n) 51,

and this is already proved in [3].

The regular paperfolding sequence is the simplest example of generalized
paperfolding sequences. Then we want to study, for a given generalized
paperfolding sequence { Py, (n)}>2, whether we can find out a new code C,,
which satisfies a relation similar to (1.2), that is, the sequence {Sc, (n) —
Sey, (n — 1)}, coincides with {P,(n)}52;, where S¢, is the sum of digits
function for the code Cp,.

We give an affirmative answer to this question (Theorem 1.1), and this
is the first purpose of this paper.
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Here we introduce generalized paperfolding sequences precisely. Let b =
{br}72o be a sequence with by € {—1,1} and by = 1. By making use of b,
let us define the words w1, wa, ..., wj, ..., inductively; wy = by and w; =
wji—1-bj_1- (—wj_l)R, j > 2, where - means concatenation of words, and
for w = ajas - - - an, (—w)® means (—w)® = (—ay) - (—az)(—ai). When j
tends to infinity, one can get an infinite sequence lim;_,oc w; = {Pp(n)}52,
which is called the paperfolding sequence with respect to b. When we take
the simplest sequence by = {1,1,1,1,...}, then w1 = 1, we = 11-1, w3 =
11-111—1-1, and so on, and get (1.1). As for paperfolding sequences, we
can refer to Allouche and Shallit [1], Section 6.5.

From now on, throughout this paper, we assume that the sequence b is
periodic.

Definition 1.1. Let b = {b,}2, be a periodic sequence with b, € {—1,1}
and by = 1, and K be the minimal period of b. For 0 < r < 2K — 1, let
us express the rth word of RBC as RBC(r) = sx—1 - - - 25180, where sx_1
may be 0. Then the map 7 : {0,1,2,---,25 — 1} — {~1,0,1}¥ is defined
by

n(r) =(bx-15x-1) - - - (b2s2) - (brs1) - (boso)-
Namely,

word
0000
-+00 0bo
--00 b1bo
000610
<+ 0bab1 0
--0babibo
-+ 0b20bo
--00200

[ e e B en N en B e i en Rl en]

The map 7 is obviously injective.

We denote the set of positive integers by IN. The integer and complex
numbers are denoted by Z and C, respectively.

Here we introduce codes related to generalized paperfolding sequences.

Definition 1.2. Let b = {bk}?’zo be a periodic sequence with b € {—1,1}
and bg = 1, K be the minimal period of b, and ¢ be the permutation
_( 0 1 ~-2K—22K—1)
TNk 1 2K _9 ... 1 0o /)

For n € N U {0}, let m and r be the integers such that n = 2Km + r,
0<r<2K_1.
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Then the code Cy induced by b is defined by
n), ifo<n<2K -1,
Colm) = {1"h oS
Co(m) -n(c™(r)), ifn>2%.
In Section 2, we present a few examples of Cy,.

It should be noted that the code Cy, can be realized in a different way. We
take the basic sequence {0,1,1,0} and repeat this infinitely many times:

Ug = {uo(n)}>, = {0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,...}.

This sequence is the first digits of RBC. We prolong the basic sequence two
times as {0,0,1,1,1,1,0,0}, repeat this infinitely many times, and multiply
by b1. Then we get the sequence

U; ={wi(n)};2o =10,0,b1,b1,b1,01,0,0,0,0,b1,b1,b1,01,0,0, ...},
and similarly Uz = {ua(n)}52,, Us = {ug(n)}>2,, and so on. Then we
have the code word for n, namely,

Co(n) =---uy(n)---uz(n)-ui(n) - up(n).
For the code Cp, we define the sum of digits function S¢, by
Se,, (n) = the sum of digits of Cp(n),
and its difference function He, : N — Z by
(1.3) He, (n) = Se, (n) — Sei (n — 1).
Then we can prove the coincidence.

Theorem 1.1. Let b = {b,}72 be a periodic sequence with by, € {—1,1}
and bg = 1. Let {P,(n)}52, be the paperfolding sequence with respect to b,
and He, be the difference function (1.3). Then we have He, = Py,.

When the sequence b is periodic, it is known that P, is a 2-automatic
sequence (see, e.g., Allouche and Shallit [1], Theorem 6.5.4). Hence He, is
also 2-automatic. This implies that S, is a 2-regular sequence (see, [1],
Theorems 16.1.5 and 16.4.1).

For RBC(n) = s - - - $25180, let Drpc(n) = 231:0
Drpe is a bijection from N U {0} to N U {0}.

Here we consider the similar function D¢, for the code Cy,. Namely, for
Ch(n) = uy-- - uguiug, let D¢, (n) = Z}-]:o u;27. Then we have

sj 27. Then the function

Theorem 1.2. Let b = {by}2, be a periodic sequence with by, € {—1,1}
and by = 1, K be the minimal period of b, and Cy be the code induced by
b. Let K > 2. Then the function De, is a bijection from N U {0} to Z.
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This result shows that Cp, is natural as a numeration system for Z (see
Section 4).

In the previous paper [3], the present authors proved the existence of a
bijective map between arithmetical functions (Theorem 1.1, [3]). We can
generalize it as follows: Let ¢ > 2 be an integer. Let A be the set of all
arithmetical functions g : NU{0} — C with ¢g(0) = 0. For g € A, we define
the map ®,: A — A by

D=3 Y g

k=00<a<-%
q

and for S € A, we define the map ¥, : A — A by

(1.4)

(Wy(S))(n)
0, if n =0,

=< S(n)—Sn—-1)— (S(g) —-S(2 - 1)), ifn>qgand n=0 (mod q),
S(n)—S(n—1), ifn0 (mod q).

Then the map @4 is bijective with the inverse map <I>;1 =W,

We introduced the new code Cy, in the above, and clearly S¢, € A. Then
we can apply the argument in [3] and derive the Delange type result (cf.
Delange [2]) for the average of sum of digits function Sc, .

Theorem 1.3. Let b = {b,}72, be a periodic sequence with by, € {—1,1}
and by = 1, K be the minimal period of b, C, be the code induced by
b, and Sc, be the sum of digits function for Cp. Let f = Wyk(Se,) and
&(x) = X gen<s f(n). Then, for any positive integer N,

1 = log N K1 log N

N Z::O Se,(n) = 2log 2K & Z L ( 2K>
where the function F(x) is defined by either of the following two ways (1) and
(IT), F(x) is periodic with period 1, continuous, and nowhere differentiable:

(D

F(z)=—+2"% Z by, + 25 (l=1= IZ/ £25T) - Z b ) t,

(I) F(z)= Z Dke%m whose Fourier coefficients are given by
keZ
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L'(0, f)
log 2K~

Dy = (% - ]0g12K)L(0’ )+

L(2555. f)

k= X ; ;
2mik( gk + 1)

where L(s, f) is the Dirichlet L-function with coefficients f(n), and L'(s, f)
is its derivative (see Section 5).

k# 0,

In [3] the authors mainly discuss about sum of digits functions for Gray
codes. The code Cy, is usually not a Gray code. However, since Wy (Se,)
satisfies Lemma 5.1 in Section 5 which is corresponding to Theorem 1.2 of
[3], we can obtain a Delange type result for Cy,. This means that Delange
type results hold for rather wide family of codes.

Acknowledgement: This paper is a fruit of discussion between J.-P. Al-
louche and the authors. The authors would like to express their hearty
gratitude to J.-P. Allouche. The authors also would like to express their
sincere gratitude to the referee for his/her valuable comments.

2. Examples of Cy,
In this section we mention a few examples of Cp,.

Example 2.1. (The reflected binary code (RBC))
We take b = {1,1,1,1,...}. Then K =1,

0 1 n(r) | word

o= ; n(0) 0

(Vo) ol
and n |m|r|Co(m) nlc™(r)) Cv | Sey, | Hey, | Dey,
olofo n(0) 0 0 0
11011 n(1) 1 1 1 1
2110 Co(1) n(a*(0) 11 2 1 3
3111 Cu(1)-n(a'(1) 10 1| -1 2
41 2|0| Cu(2) n@®0)]| 110 2 1 6
512 1| Cu(2)-n(e®1)]| 111 3 1 7
6 | 30| Cu(3) - -n(c'(0)]| 101 2] -1 5
713 |1| Cu(3) -ne*(1)) | 100 1| -1 4
8|4 |0 Co(4) n(c®0)]| 1100 2 1| 12
9 4|1 Cu@)- ()| 1101 3 1| 13
105 1]0]| Co(5)-n(c*(0) | 1111 4 1| 15
11| 5 |1 Co(5) -n(e*(1) | 1110 3 1| 14
1216 0| Cu(6) -n(c°(0)) | 1010 20 —1| 10
13| 6 | 1| Cu(6) n(c®(1)) | 1011 3 1] 11
14| 70| Co(7) n(a*(0) | 1001 2| -1 9
150 71| Cu(7)-n(c*(1)) | 1000 1| -1 8

Remark 1. The reflected binary code (RBC) is the code Cp, with the same
b, o, and 7 as in Example 2.1. It is worth to show the relation between the
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base-2 representation n = ry---rorirg and RBC(n) = sj- - s25150. By the
later Lemma 4.1, RBC(n) is expressed as

RBC(TL) =Trj- UTJ(TJ_l) e 0”(7“1) . Url (7’0).
Hence the digits s; of RBC(n) satisfy the relation
sj =0 (ry), 0<j<J,
where 7741 is defined to be 0.

Example 2.2. We take b ={1,—1,1,—1,...}. Then K = 2,

n(r) | word

01 2 3 n(0) | 00

"_(3 2 1 0)’ n(1) | o1

n(2) | —11

n@3)| —10
and n |m|r|Co(m) -n(c™(r)) Cv | Sey, | Hey, | Dey,
olofo n(0) 00 0 0
1011 n(1) 01 1 1 1
2102 n(2) —-11 0| —1] -1
31013 n(3) 10| 1] —1| =2
411 (0] Co(1)-n(a*(0) 01-10 0 1 2
5111 Co(1)-n(e'(1)) 01-11 1 1 3
6 | 1]2| Co(l)-n(c'(2) 01 01 2 1 5
71113 Co(1)-n(c"(3) 01 00 1| -1 4
81 2(0| Cu(®2) - n(c®0) —11 00 0o —-1| —4
91 2|1 Co(2) - n(c°(1) —11 01 1 1| -3
1022 Cu(2) nc®?2) —11-11 0| -1| -5
1] 2 [3] Cu(2) - nc°3)) ~11-10| —-1| —-1| -6
1213 10| Cu(3)-n(c'(0) —-10-10 | —2| —11]—10
133 |1 Cu(3) nla(1)) —-10—11 | —1 1| -9
14|32 C(3) - -n(c'(2) —10 01 0 1| -7
153 [3] Cu(3)-nc'(3) —10 00| —1| —1| -8
16| 40| Co(4)-n(c®0)|01-10 00 0 1 8
17| 4 | 1| Co(4) n(c°(1)) | 01-10 01 1 1 9
18| 4 |2 Co(4) n(c®?2) | 01-10-11 0| —1 7
19| 4 |3 Co(4) n6°@3)]|01-10-10| -1 | -1 6
20 50| Cu(5)-n(c'(0)) | 01-11-10 0 1| 10
21| 5 | 1| Cu(5)-n(c'(1)) | 01-11-11 1 1] 11
22| 5 2| Cu(5)-n(c'(2)) | 01-11 01 2 1] 13
231 5 |3| Cu(5)-n(c'(3)) | 01-11 00 1| 1] 12
24| 6 | 0| Co(6)-n(c(0)) |01 01 00 2 1] 20
25 6 | 1| Cu(6)-n(c®(1)) |01 01 01 3 1| 21
26| 6 | 2| Co(6)-n(c®(2) |01 01-11 2 -1 19
27| 6 | 3| Cw(6)-n(c®(3)) | 01 01-10 1| —-1] 18
28 | 7 10| Co(7)-n(c'(0)) | 01 00-10 0| —1] 14
20| 7 | 1| Co(7)-n(c'(1)) | 01 00-11 1 1] 15
30| 7 (2] Co(?)-n(c*(2)) |01 00 01 2 1| 17
31| 73] Cu(7)-n(c'(3)) |01 00 00 1] —-1| 16




}. Then K = 3,

SRS S

).

De,,

—-13
—11

-19

—18
—-17
-15

He,

Se,

0
1
2

1

0

0

Cob

00
01
0-11

{1,-1,-1,1,-1,-1,..
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Example 2.3. We take b
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HrA A A A A A A AN A A AN NN MmMMmMMm MmN NN

Co(m) - n(a™(r))

01 234567

76 543210

r

O AN M FID O~ O A ANAMIF LD OO M P O~ A NM<F 10 O -

(

C OO OO0 OO OO A A 4 4 4 4 4 A A A A AAANNNNMMmMMmMMmMNHmMNmNM

O~ N M FIO OM~00DO =N M IO I~ 0D D
S EOE AN FINO~0VD I i i S A ANANNANNNS QN ®

31

and
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3. Proof of Theorem 1.1

Let us denote the sum of digits of the word n(c™(r)) by Sum(n(c™(r))).
Then it follows from Definition 1.2 that

(3.1) Se,, (1) = Sey, (m) 4+ Sum(n(a™(r))).
Lemma 3.1. Forn e N, put n=2Km4+r, 0 <r <25 — 1.
(i) If r #0, then
He, (n) = Sum(n(c™(r))) — Sum(n(c™(r —1))).
(ii) If r =0, then

He, (n) = He, (37 )-

Proof. If 1 # 0, then n — 1 =28m 47— 1 with 0 <7 — 1 < 2K — 1. Hence
(3.1) and (1.3) give (i).

If r =0, then n — 1 =25 (m — 1) + 25X — 1. Hence (3.1) and (1.3) give
He, (n) = Se, (m)—Se,, (m — 1)+Sum((™(0))) — Sum(n(e™ (2% — 1))).
Since 0™ (0) = ™ 1 (2K — 1), we obtain (ii). O

Here we use the notation A*||B, which means that A* divides B and
A*1 does not divide B.

Lemma 3.2. For an integer r with 1 <r < 2K _ 1, we put r = 21 with
27||r and 1 odd. Then

l

Sum(n(r)) — Sum(y(r — 1)) = (—1)7 b;.

Proof. Let r = rg_1---r9rirp be the base-2 representations of r, where
rx—1 may be 0. By the definition of 7 and Remark 1, n(r) is expressed as

n(r) = (bg 17 (rg-1)) - (bg 271 (rg—2)) -+ (b17"2 (r1)) - (o7 (r0)),

1 é)andrK:().

Since 27||r, the base-2 representations of r and r — 1 are

where 7 = (

r:TK—l"‘rj—i-llO""O? 7°_1:74K—1-~‘T'j+101'~"1

Hence

Sum(n(r)) — Sum(n(r — 1))
= b’ (1 )+bj 17H0) + bj—a70(0) + - -+ + bo7°(0)
— b T"+1(0) — ( ) — bj_aT (1) — = 507'1(1)

-1

:ewww=@n7w
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The last equality follows from the base-2 representation of (I — 1)/2,
(l—l)/QZTKfl"-Tj_H. |

Lemma 3.3. For n € N, we put n = (25)7(2Km + r) with (2K)J|n,
(2K)‘]“T1 tn and 1 <r < 2K —1. Moreover, for the above r, we put r = 271
with 27 ||r and | odd. Then

(_1) )
He,(n) = —(=1)'Tb;, ifm is odd and j = K — 1,
l

1

(=1) = bj, ifmisodd and j < K — 2.

=1 . .
2 b, if m is even,

=g

Proof. Lemma 3.1 gives
He, (n) = Sum(n(a™(r))) — Sum(n(c™(r —1))).
If m is even, then by Lemma 3.2,
He, (n) = Sum(n(r)) — Sum(y(r — 1)) = (~1) 7 b;.
If m is odd, then
He, (n) = —(Sum(n(2"% —r)) — Sum(n(2X —r —1))).
Here 28 — r = 27(25-7 —[) and 257 — [ is odd. Hence by Lemma 3.2,

_(_1)21{*727171 bj _ {—(—1) 2 bj, ifj=K-—1,

He (n) = z
e () (1), ifj<K -2

g

Lemma 3.4. (e.g.,, Allouche and Shallit [1], Theorem 6.5.2) Let
b = {by}72, be a sequence with by, € {—1,1}. Let {Py(n)}52, be the paper-
folding sequence with respect to b. For n € N, we put n = 2% with 2%||n
and B odd. Then

Po(n) = (—1)F b,.

Now we prove Theorem 1.1. Under the same notation as in Lemma 3.3,
n = (25)7 (28 m +271) = 2K+ (2K=Im +1). Here 25~7m +1 is odd. Hence
by Lemma 3.4 and the periodicity of b,

Py(n)=(=1)" 2 bryrj=(=1)" 2 " bj

which coincides with the expression of He, (n) in Lemma 3.3. This com-
pletes the proof of Theorem 1.1.
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4. Proof of Theorem 1.2

Lemma 4.1. Denote base-2X representation of n € N by
n=ry---roriro, 17 #0, 0<7r; <2K_1, j=0,1,2,...,J.
Then
Co(n) =n(ry)-n(c" (ry-1))---n(c"(r1)) - n(c" (ro))-

Proof. We prove this by induction on J.
When J = 0, the statement is trivial. For n with base-2X representation
N =rjyry - roriro, ie., n = 2K Z}]:o 7i+1(25) + 1o, it follows that

J . J K\j
Cu(n) =Co( Y1 (25Y) 'U(UZj:OTHl(? " (ro))
=0

= (n(rsa1) - (0™ () 00" (1)) ) - (0 (1)),
and this completes the proof. U

Lemma 4.2. Let K be the minimal period of the sequence b = {by}7,-
Let € be the set of concatenations of finitely many elements of {n(r);0 <
r < 2K — 11, where the choice of elements may be multiple and the leading
elements of concatenations are different from n(0). Then the map Cy, : N U
{0} — & is bijective.

Proof. Lemma 4.1 and C,(0) = n(0) show that Cp : NU {0} — £ is a map.
(Injectivity) Denote base-2X representations of n,n’ € N by

n=ry---rorirg, rj#0, n’zrf],'--rlzriré, rf]/#O.
If Cp(n) = Cp(n’), then by Lemma 4.1, we have J = J' and
n(ry) -n(e" (rj-1))---n(e"(r1)) - n(e" (ro))
=n(rly) -n(e" (rl_1)) - nle"2(r})) - (o (1))
By the injectivity of 7, this is equivalent to the system of equations
!
TJ - T‘J,

0" (ry-1) = 0" (),

o™ (ro) = 0" (rp),
and this yields n = n/.

(Surjectivity) Let E € £ and E # n(0). Then there exist a J € N
and integers t;, j = 0,1,2,...,J,t; # 0,0 < t; < 2K _ 1, such that
E = n(ty) -n(tsj_1)---n(t1) - n(tp). We can find an n € N with base-2X
representation n = ryry_q ---riro such that

n(ts) n(ti-1)---nt)-n(te) = n(ry)-ne™ (rj-1))---nlc"(r1))-nc"™ (ro))-
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In fact, by the injectivity of n, this is equivalent to the system of equations

ty=ry,
tyi—1=0"(rj_1),

to = 0" (ro),
and hence ry, ...,y are uniquely determined. Thus E = Cp(n). O

For n € NU{0}, let us express the nth word of Cy, as Cp(n) = uy - - - ugujup.
Then D¢, : NU {0} — Z is the function such that

J
ch (n) = Z Uj2‘7,
7=0

which was already defined in Introduction.
Lemma 4.3. The function D¢, is injective.

Proof. Assume that there exist n,n’ € NU{0}, n # n/, such that D¢, (n) =
De, (n'). Denote Cph(n) = uy---uguiug and Cp(n') = up - - ujujuj. We
may suppose that these words have the same length by supplying enough
0’s on the left of words. Then there exists an L € NU{0} such that uy, # u)
and u; = u; for all j > L + 1. Then D¢, (n) = De, (n') gives

L-1

(up —up)2" =" (uf — uy)2/,
=0

and hence
L—1

lup, —uf|2F < Z |ul; — wi|2.
§=0
If u}; = 0, then u; = 1 or —1, and if u}; = 1 or —1, then u; = 0 (cf. Examples
2.1, 2.2, and 2.3). Hence |u; —u;] = 1, and this gives 2 < 2% — 1, which is
a contradiction. O

For 0 < n < 2K — 1, let us express the nth word of RBC as RBC(n) =
SK—1---S28180, where sx_1 may be 0. Then by Definitions 1.1 and 1.2,

Cb(n) :(bK_lsK_l) e (b232) . (5181) . (boSo).
Thus, for 0 <n < 2K —1,

K-1
(4.1) ch(n) = Z bijQj.
7=0

Now let us define the set D by
D =Dy ={Dc,(n):0<n<2F -1}
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Lemma 4.4. The set D has the following properties:

0,1€D.

)
)
iv)
(v) Ifd,d € D and d # d', then d # d' (mod 2%).
i) | = 2K —1, i.e., the set D has no gap.
)

Proof. (i) — (iv) are obvious.
(v) Assume that Dc_(n) = D¢, (n') (mod 2K). By the same notation
and argument as in the proof of Lemma 4.3, we have
L-1 4
(up —up)2" = M2K =" (uf —u;)2!, MeZ
j=0
with the additional condition 0 < L < K — 1. Taking the absolute values
on both sides, we have
L-1
ol <||M2f =28 < Y 2l =2k — 1,
j=0

which is a contradiction.

(vi) When b = {1,1,1,1,...}, i.e., K = 1, then D, = {0,1} and
maxggep, |[d — d'| = 1. Assume that the statement is true for all b =
{bo,b1,...,bx—1,---}. Let [ and m be the minimum and the maximum of
Dy, respectively. Then m — 1 = 2K — 1.

Let us consider b = {bo,b1,...,br—1,PK, -} with g =1 or —1. From
(4.1) it follows that ch = Brsk2X + D¢, , and hence Dy =DpU (B 25 +
Dp)-

If Bx = 1, then the maximum of Dy, is { + 2% — 1, and the minimum of
ﬁKQK + Dy, is 2K 4+ 1. Hence maxdd/epg ’d — d,| = oK+l _ 1.

If B = —1, then the minimum of Dy, is m — 25 + 1, and the maximum
of B 2K 4+ Dy is —2% + m. Hence Maxq,4'ep~ |d —d'| = 2K+ —1.

(vii) By (i) (iii) (iv) (v), either 2% — 1 or —1 belongs to D. Assume that
2K — 1 belongs to D. Then, by (4.1), there exists an n € N U {0} with
0<n<2X_—1andCyh(n)= (bx_15K_1) - (basa)- (b1s1)- (bgsg) such that

K-1 ] K-1 )
Z 20 = Z bij?J.
7=0 7=0

Since b; = 1 or —1, and s; = 1 or 0, the above equality gives b; = 1 for all
0 <j< K —1. Hence K =1, which is a contradiction. O
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Lemma 4.5. Let K > 2 and 29 € Z. Let us consider the algorithm
20 =dp (mod 2K), 20 = do + 252,
z1 =dp  (mod 2K), 21 = dp + 252,

29 =dy (mod ZK), 29 = dy + 25 23,

where dy, dy, ds, ...are chosen as elements of D. Then the following prop-
erties hold:
(i) 21,29, 23,... are uniquely determined.

(ii) If z0 > 0, then there exists an L € N U {0} such that zg > 2z >
zg > >z, =0.
(iii) If z0 < 0, then there exists an L € N U {0} such that zp < 21 <
2o < - <z =0.
Hence zy = Zlefol di(28) with dp_1 # 0, and this is identified with the
representation zg = dp_1---do - dy - dp.

Proof. (i) By Lemma 4.4 (i) (iii) (v), D is the set of all residue classes
modulo 2% and hence z1, 29, 23, . . . are uniquely determined.

(ii) If zgp > 0 belongs to D, then dj is zog. Hence z; = 0.

If z9 > 0 does not belong to D, then zy is greater than all elements of
D by Lemma 4.4 (ii) (vi). Hence z; = (20 — do)/2% > 0. Moreover, from
Lemma 4.4 (iv) and zp > 2, it follows that

<zo+2K—1 20

21 < oK <5+1§20.

Hence zg > z1 > 0.
Repeating the above argument, we have the result.
(iii) This is similarly proved as (ii). O

To complete the proof of Theorem 1.2, we prove that D¢, is surjective.
By Lemma 4.5 any zg € Z has base-2K representation zg = dy,_1 - - - do-dy-dg
with dj € D, 0<j <L -1, and d—1 # 0. By (4.1) and the definition of
n, each d; has the base-2 representation d; = n(t;), 0 < t; < 2K — 1. Hence
zo has the representation

20 = n(tp-1)---n(t2) -n(t1) -n(to), tr—1#0.

By this representation and Lemma 4.2, there exists an n € N U {0} such
that 29 = ijo u;27, where u; are the digits of Cp(n) = uy- - ugujug.
Thus, De, is surjective.

This completes the proof of Theorem 1.2.

Here we give two examples.
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Example 4.1. We take b= {1,—1,1,—1,...}. Then K = 2,

r - n(r) | De, (r)

o= , 1| n(1)= o1 1
(3 2 1 0) 2| mi2) = —11 1

3| n(3)=-10 -2

and D = {—2,—1,0,1}. We take a positive value 14 and calculate the n
such that D¢, (n) = 14:

14=-2 (mod2%), 14=-2+2%x4,
4=0 (mod 2%, 4=0+22x1,
1=1 (mod2?%), 1=1+2%x0.
Hence
14 =(1) - (0) - (=2) = (01) - (00) - (—10)
=n(1) - n(0) - n(3) = n(rz2) - n(c"(r1)) - n(c" (ro))

for an n with the base-2? representation n = r9r179. Solving the system of
equations

1 = T2,
0= UTQ(Tl),
3=0"(ro),

we have rorirg = 130, ie., n = 28. Hence Cp(28) = 0100—10 and
De, (28) = 14.

Example 4.2. We take b = {1,-1,-1,1,—-1,—1,...}. Then K = 3,

T n(r) | Dey (1)

0|n0)= 0 00 0

1| n(1)= 0 o1 1

0123456 7 2| n(2)= 0-11 1
o= , 3| n@3)= 0-10 —2
(7 6 54 3 2 1 o) 4| i) = —1-10 i

5| n(G)=-1-11 -5

6| n6)=—-1 01 -3

7| () =-1 00 —4

and D = {—6,—5,—4,—-3,—2,—1,0,1}. We take a negative value —21 and
calculate the n such that D¢, (n) = —21:

—21=-5 (mod 2%), —21=—5+23x(-2),
—2=-2 (mod2%), —2=-2+23x0.



164 Yuichi KAMIYA, Leo MURATA

Hence
—21 =(-2) - (=5) = (0—10) - (—1-11)
=n(3) -n(5) =n(r1) - n(c" (ro))

for an n with the base-23 representation n = 717¢. Solving the system of

equations
3=r1,
5=0"(rg),

we have rirg = 32, i.e., n = 26. Hence Cp(26) = 0—10—1—11 and
De, (26) = —21.

5. Proof of Theorem 1.3
Firstly, we prepare some lemmas.

Lemma 5.1. Let K be the minimal period of the sequence b = {by}7,-
Let Cy, be the code induced by b, and Sc, be the sum of digits function for
Cb. Let f = Uyk(Se,) (cf (1.4)). Then the following properties hold:

(i) [Periodicity]: f(n + 25+ = f(n).

(i) 5 —n)=—f(n), 1<n<2f-1
(i) [Zero-sum]: 32, +1_1 f(n) =0.

(iv) It follows that

K—1
n

(5.1) fm) =3 brfo(55)-

k=0

where fo(x) : [0,00) — Z is defined as follows: if v =n € Z, then

0, ifn=0 (mod 4),
1, ifn=1 (mod 4),
0, fn=2 (mod4),
-1, ifn=3 (mod4),

which is a Dirichlet character modulo 4, and, if x ¢ Z, then fo(x) =
0.

Proof. (i) If n # 0 (mod 2%), then by Lemma 3.1 (i),
f(n) = Sam(n(e™(r))) — Sum(n(e™(r — 1)),

where n = 2Km + 7. Then n + 25+ = 2K (m + 2) + 7, Lemma 3.1 (i), and
o? =id give f(n + 25+ = f(n).

If n =0 (mod 2%), then Lemma 3.1 (ii) gives f(n + 25+1) = f(n) = 0.
(ii) For 1 <n < 2K — 1, Lemma 3.1 (i) gives that

f(n) = Sum(n(n)) — Sum(n(n — 1))

fo(n) =



Certain codes related to generalized paperfolding sequences 165

and
FER —n) = Sum(y(o(2" —n))) — Sum(n(o (2" —n - 1))).
Since o (2K —n) =n — 1, we have

FF —n) = Sum(n(n - 1)) - Sum(y(n)) = — f(n).
(iii) This is a consequence of (ii).
(iv) When n = 0,25 both sides of (5.1) are 0. For 1 <n < 2% —1, Lemma
3.1 (i) and Lemma 3.2 give

-1

f(n) = Sum(n(n)) — Sum(n(n — 1)) = (1) =" b;,

where 27||n, n = 2/1. On the other hand, for 1 < n < 25 — 1, by the
definition of fy,

-1

K1
> bka(%) =bifo(l) = (-1)2 b;.
k=0

Hence (5.1) holds for 0 < n < 2K For 2K 41 <np < 2B+ _ 1, we have by
(ii) that
o)

and it is easy to verify that fo( ) = —fo(3r). Hence (5.1) holds for
0<n<2K+l _1 and this completes the proof. O

2K+1

fn) = —f8* - Z befo

2K+17n

The following is a consequence of Lemma 5.1.

Lemma 5.2. Under the same notation as in Lemma 5.1, let £ : [0,00) — C
be the function such that §(x) = Y g<,<, f(n). Then the following proper-
ties hold:

(i) &(z + 28+ = £(a).
(ii) €K —a2)=¢(x), 0<z <28+l 2¢7Z
(iii) It follows that

K-1
x
T) = Z bk&)(ﬁ)
where &y : [0,00) — Z is deﬁned as follows: for 0 <z < 4,

0, if0<xz<l,
() =11, ifl1<z<3,
0, if3<z<A4,

and, for x >4, &(x) is defined to be periodic with period 4.

Let g € A, and p > 2 be an integer. We assume two properties on g:
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[Periodicity]: g is a periodic function with period p,
[Zero-sum]: Y-P_¢ g(n) = 0.
From [Periodicity] and [Zero-sum]| the Dirichlet series

g) = ng;l), s > 1
n=1

can be analytically extended to the whole complex s-plane, and this exten-
sion is also denoted by L(s, g). For the average of S = ®,(g), we can prove
the following by the same argument as in Section 7 of [3].

Lemma 5.3. Let p,q > 2 be integers with q|p. Assume that g € A satisfies
[Periodicity] and [Zero-sum]. Let S = ®4(g). Let £ : [0,00) — C be the
function such that {(x) = Y g<,<, 9(n). Then

1 [p
52) L0.g) = [ &)
pJo
and for any posz’tive integer N,
logN log N 1
— L F - —G(N
Z S L0+ F((0) = G G)

with the followmg F and G.
The function F : [0,00) — C is defined by either of the following two
ways (1) and (IT), and F(x) is periodic with pem’od 1 and continuous:

() Fla)= 1+ lz) —2)L(0,g) + ¢/ Iz/ L(0, ))dt,

(I) F(z)= Z Dye?™ k% whose Fourier coefficients are given by

keZ
1 1 L'(0,9)
Dy=(=— L
L(lm 7g)
Dy = ——2i—— k #0.
2mik(gg, +1)

The function G : N — C is defined by

Mq/w L(0, g))dz,

and G(N) is periodic with period p/q, i.e., G(N +p/q) = G(N).

Now we prove Theorem 1.3. By Lemma 5.1, f = W,k (S, ) satisfies the
assumptions [Periodicity] and [Zero sum| with p = 25+ and ¢ = 2%. Hence
we have the expression of + Z o Se,, () (cf. Theorem 1.3) corresponding
to that of Lemma 5.3. We need to calculate L(0, f) and prove G(IN) = 0.
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Lemma 5.4. Under the same notation as in Theorem 1.3,
1 K-1
L(07f) =3 Z bk‘7
2 k=0

and G(N) =0 for any N € N.
Proof. By (5.2) with f = W,k (Se,) and p = 25+ Lemma 5.2 (iii), and
the definition of &g,

1 K—1 2K+1—k

L(0, f) =57 kz bk2k/0 o(x)da

=0

1 K-l i oK+1—k 1 1 g2k
=5RTT kgo bi.2 (/0 (fo(x) - Q)dx + 5/0 dm)
- K_lb ghok—k _ 1 K_lb
g 2 2= 0 be

This gives

K—
(5.3) /0 (¢(a) - % Zl by)dz = 0.
k=0

By (5.3) and Lemma 5.2 (ii),

2K+1

oK 1 K-1
(5.4) /0 (&) - 5 ];) by ) dz = 0.
If M =2M’', M’ € N, then by (5.3) and Lemma 5.2 (i),
2K (2M") 1 K=
(5.5) /0 (g(g;) -3 g::o bk>dx — 0.

If M =2M'+ 1, then by (5.5), Lemma 5.2 (i), and (5.4),

2K+1M/+2K

K(@M'+1) = Y
/02 2M'+1 (g(x) B % ]g bk)dx _ /2K+1M/ (ﬁ(m) - % ’;) bk)dx

oK 1K—l
:/0 (¢@ -5 kz:% b ) dax = 0.

Hence for any M € N,

/ o (¢() - ;Kf b )de =0,
k=0

and this gives G(IV) = 0. O
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We now have

= Nlog N log N
(5.6) ZScb(n):m%xB+NxF<b§7),

n=0
where B = % 25;01 by, and F(x) is the periodic function with period 1. We
can prove L(lggg}{ . f) < (14 |k|)Y? by the same argument as in the proof
of Lemma 7.4 of [3]. Hence the Fourier series in Theorem 1.3 is absolutely
and uniformly convergent, and this yields that F(z) is continuous.

To complete the proof of Theorem 1.3, we prove that F'(z) is nowhere dif-
ferentiable. The proof is similar to that of Tenenbaum [4] (see also Allouche
and Shallit [1], Theorem 3.5.3 (ii)).

Let \,7 € N, and = € (0,1). Let 0 < &5, < 25 — 1 be the integer such
that

(25)7 = 3 ep(2) .
h=0

and N; be the positive integer such that
i

N; = Ni(Ar) = 5P S en(25) 0 41

h=0

Let

log N; . log(N; +1) .

; = —i—A = ———" — 0=\
i log 2K LA log 2K !

These give

log N;

12§2fé —i—A=z+o0(l), i— o0,

Ti,Yi = T, & — 00,

and

1 1
= g (1 0().

Assume that F'(x) is differentiable. Then by (5.6) and the same argument

as in [4], we have

((z+i+Nlog2X +1)B N F'(x)
log 2K log 2K

Sey, (N;) = + F(z)+o0(1), i— oo.

Applying the above asymptotic formula to the cases that N; = N;(1,r),
Ni(1,r —1) with 1 <r <25 — 1, we get
(5.7) He, (Ni(1,7)) =0(1), i — oo.

On the other hand, by Lemma 3.3, Hc, (IV;(1,7)) takes only the values
1 and —1, and hence (5.7) does not hold. This is a contradiction.
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