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A cyclotomic generalization of the sequence
gcd(an − 1, bn − 1)

par Joseph COHEN et Jack SONN

Résumé. Les propriétés des suites gcd(an − 1, bn − 1),
n = 1, 2, 3, ..., où a, b sont des éléments fixés (multiplicativement
indépendants) dans Z,C[T ] ou Fq[T ], ont été étudiées depuis des
décennies. Dans le cas de Z, Bugeaud, Corvaja et Zannier ont ob-
tenu une borne supérieure exp(εn) pour tout ε > 0 donné et tout
n grand, et montrent que la borne est optimale en extrayant la
borne inférieure exp(exp(c log n

log log n )), pour une infinité de n (où c
est une constante absolue), d’un article d’Adleman, Pomerance, et
Rumely. Silverman a montré une borne inférieure analogue
deg gcd(an− 1, bn− 1) ≥ cn pour une infinité de n, pour l’anneau
Fq[T ]. Ce travail généralise le théorème de Silverman à
gcd(Φm(an),Φm(bn)) pour tout entier positif m, où Φm(x) est
le mième polynôme cyclotomique, le résultat de Silverman corres-
pondant au cas m = 1. Sur Z, la borne inférieure a été montrée
dans la thèse du premier auteur dans le cas m = 2, i.e. pour la
suite gcd(an +1, bn +1). Ici nous montrons que la borne inférieure
est valide sur Z pour tout m, sous GRH.

Abstract. There has been interest during the last decade in
properties of the sequence gcd(an − 1, bn − 1), n = 1, 2, 3, ...,
where a, b are fixed (multiplicatively independent) elements in
one of Z,C[T ], or Fq[T ]. In the case of Z, Bugeaud, Corvaja
and Zannier have obtained an upper bound exp(εn) for any given
ε > 0 and all large n, and demonstrate its sharpness by extract-
ing from a paper of Adleman, Pomerance, and Rumely a lower
bound exp(exp(c log n

log log n )) for infinitely many n, where c is an ab-
solute constant. Silverman has proved an analogous lower bound
deg gcd(an−1, bn−1) ≥ cn for infinitely many n, over Fq[T ]. This
paper generalizes Silverman’s theorem to gcd(Φm(an),Φm(bn)) for
any positive integer m, where Φm(x) is the mth cyclotomic poly-
nomial, Silverman’s result being the casem = 1. Over Z, the lower
bound has been proved in the first author’s Ph.D. thesis for the
case m = 2, i.e. for gcd(an +1, bn +1). Here we prove a conditional
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result that the lower bound for arbitrary m holds over Z under
GRH (the generalized Riemann Hypothesis).

1. Background
In recent years there has been interest [3],[2],[15] in sequences of the

form
gcd(an − 1, bn − 1), n = 1, 2, 3, ....

where a, b are fixed elements in one of Z,C[T ], or Fq[T ]. Motivated by re-
currence sequences and the Hadamard quotient theorem, Bugeaud, Corvaja
and Zannier [3] bounded the cancellation in the sequence bn−1

an−1 by proving
the following upper bound result:

Theorem 1.1. [3] Let a, b be multiplicatively independent positive integers,
ε > 0. Then

log gcd(an − 1, bn − 1) < εn

for all sufficiently large n.

Moreover, it is conjectured in [2] that if the additional (necessary) con-
dition gcd(a− 1, b− 1) = 1 holds, then gcd(an− 1, bn− 1) = 1 for infinitely
many n.

Returning to [3], in order to show that Theorem 1.1 is close to best
possible, it is remarked in [3] that one can derive from a paper of Adleman,
Pomerance, and Rumely [1] a lower bound result:

Theorem 1.2. [3] For any two positive integers a, b, there exist infinitely
many positive integers n for which

log gcd(an − 1, bn − 1) > exp(c logn
log logn),

where c is an absolute constant.

The result in [1] from which this is derived is an improvement of a result
of Prachar [13]:

Theorem 1.3. [13] Let δ(n) denote the number of divisors of n of the form
p− 1, with p prime. Then there exist infinitely many n such that

δ(n) > exp(c logn/(log logn)2).

The improvement in [1] (with a similar proof) removes the exponent 2
(and the p− 1 are squarefree):

Theorem 1.4. [1] Let δ(n) denote the number of divisors of n of the form
p− 1, with p prime and p− 1 squarefree. Then there exist infinitely many
n such that

δ(n) > exp(c logn/ log logn).
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It is interesting to note that in [13], Prachar was motivated by a paper
of Nöbauer [12] which dealt with the group of invertible polynomial func-
tions on Z/nZ and particularly the subgroup of functions of the form xk,
whereas in [1], Adleman, Pomerance and Rumely were motivated by the
computation of a lower bound on the running time of a primality testing
algorithm.

In [4], the first author tested the robustness of these results and asks what
happens to Theorem 1.2 if gcd(an−1, bn−1) is replaced by gcd(an+1, bn+1)
or by gcd(an + 1, bn − 1), and proceeded to prove the analogous results for
these sequences, using [1]:

Theorem 1.5. [4] For any two positive nonsquare integers a, b, there exist
infinitely many positive integers n for which

log gcd(an + 1, bn + 1) > exp(c logn
log logn)

where c is a constant depending on a and b. The same result holds for
gcd(an + 1, bn − 1).

(The corresponding analogues of Theorem 1.1 follow immediately from
xn ± 1|x2n − 1.)
If one observes that the polynomials x − 1 and x + 1 are the first and

second cyclotomic polynomials Φm(x), m = 1, 2, we ask if Theorems 1.1
and 1.2 also hold for gcd(Φm(an),Φm(bn)) for any positive integer m, or
even for gcd(Φu(an),Φv(bn)) for suitable positive integers u, v. For Theorem
1.1, this is immediate from Φm(x)|xm − 1. In this paper we are interested
in this “cyclotomic polynomial generalization" for Theorems 1.2 (and 1.5).

It should be remarked that Corvaja and Zannier have made far-reaching
generalizations of Theorem 1.1 in several directions, including function
fields [5], [6], [7]. See also Luca [11].

Silverman [15] proved an analogue of Theorem 1.2 for the global function
fields Fq(T ):

Theorem 1.6. Let Fq be a finite field and let a(T ), b(T ) ∈ Fq(T ) be noncon-
stant monic polynomials. Fix any power qk of q and any congruence class
n0 +qkZ ∈ Z/qkZ. Then there is a positive constant c = c(a, b, qk) > 0 such
that

deg(gcd(a(T )n − 1, b(T )n − 1)) ≥ cn
for infinitely many n ≡ n0 (mod qk).

In Section 2 we prove the “cyclotomic polynomial generalization" of Sil-
verman’s theorem for any positive integer m, with an explicit constant c,
using an effective version of the Chebotarev density theorem for function
fields. In Section 3 we give a similar but conditional proof of the cyclotomic
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polynomial generalization of Theorem 1.2 for any positive integer m, using
an effective version of the Chebotarev density theorem for number fields
which is contingent on the Generalized Riemann Hypothesis (GRH).

Acknowledgment. We are grateful to Zeev Rudnick, Ram Murty and Jeff
Lagarias for helpful discussions at various stages of the preparation of this
paper. We also thank Joe Silverman for helpful comments on the initial
draft. Finally, we are grateful to the referee for suggesting that we produce
an explicit constant in Theorem 2.1.

2. The case a = a(T ), b = b(T ) ∈ Fq(T )

In this section we will generalize Silverman’s Theorem 1.6 [15] above.

Theorem 2.1. Let Fq be a finite field, and let m be a positive integer
prime to q, m = `j11 · · · `jss , `1 < `2 < · · · < `s, the factorization of m into
primes. Let a(T ), b(T ) ∈ Fq(T ) be nonconstant monic polynomials which
are not `ith powers in Fq(T ) for i = 1, ..., s. Fix a power qk of q, and any
congruence class n0 + qkZ ∈ Z/qkZ. Then there is an explicit constant
c = c(m, qk) > 0 such that

deg(gcd(Φm(a(T )n),Φm(b(T )n)) ≥ cn

for infinitely many n ≡ n0 (mod qk). The constant c may be taken as

c := 1
2mq

−k ∏
i

(1− 1
`i

)2.

Proof. Assume first that (n0, q) = 1. Choose the smallest positive integer
r such that (r,m) = 1 and rmn0 ≡ −1 (mod qk). Let Q = qt, where t ≥ k

and qt ≡ 1 mod mr (e.g. t = kφ(mr)). Let n = QN−1
mr , where N is a positive

integer. Let π = π(T ) be a monic irreducible polynomial of degree N in
FQ[T ] not dividing a(T )b(T ) (this holds e.g. if deg(π) > deg(a(T )b(T ))).
Then, writing a = a(T ), b = b(T ), π|Φm(an) if and only if an is a primitive
mth root of unity mod π, i.e. anm ≡ 1 mod π and amn/` 6≡ 1 mod π for
every prime `|m. Substituting n = QN−1

mr , this holds ⇔

a
QN−1
r ≡ 1 (mod π)

and

a
QN−1
r` 6≡ 1 (mod π)
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for all primes `|m. The first condition holds⇔ there exists A ∈ FQ[T ] such
that a ≡ Ar (mod π). For such an A, the second condition is equivalent to

A
QN−1
` 6≡ 1 (mod π)

which is equivalent to saying that A is not an `th power mod π, and since
(r, `) = 1, this is equivalent to saying that a is not an `th power mod π. It
follows that the two conditions hold together ⇔ a is an rth power mod π
and a is not an `th power mod π for all ` dividing m. We conclude that
π|Φm(an) if and only if a is an rth power mod π and a is not an `th power
mod π for all ` dividing m. Similarly, π|Φm(bn) if and only if b is an rth
power mod π and b is not an `th power mod π for all ` dividing m.

To count the number of π dividing gcd(Φm(an),Φm(bn)), we will use an
effective version of Chebotarev’s density theorem for global function fields
[8], p. 119, Prop. 6.4.8. For this purpose, let

F := FQN (T )( r
√
a,

r
√
b)

and let
E := FQN (T )( `1

√
a,

`1
√
b, ..., `s

√
a,

`s
√
b).

Since deg π = N , π splits completely in FQN (T ). Therefore a and b are
rth powers mod π if and only if π splits completely in F . Furthermore, a
and b are not `th powers mod π for any ` dividing m if and only if π does
not split completely in FQN (T )(

√̀
a) nor in FQN (T )(

√̀
b) for any ` dividing

m. Accordingly, consider the Galois extension EF/FQ(T ) with Galois group
GN , and let

CN = G(EF/F ) \ {[
⋃
i

G(EF/F ( `i
√
a))]

⋃
[
⋃
i

G(EF/F ( `i
√
b))]}.

(CN is the complement in the first group you see in the display, of the union
of all the other (sub)groups you see in the display.)

It is easily verified that CN is GN -invariant under conjugation, i.e. a
union of conjugacy classes in GN . Then:
π splits completely in F and π does not split completely in FQN (T )(

√̀
a)

nor in FQN (T )(
√̀
b) for any ` dividing m, if and only if the Artin symbol

(π,EF/FQ(T )) ⊆ CN .
In the course of the proof we will make use of the following

Lemma 2.2. |GN | = Nr0
∏
i `
ei
i , where r0 = [F : FQN (T )]|r2, and ei = 1

or 2 (depending on multiplicative dependence of a, b mod `ith powers in
FQN (T )). |CN | =

∏
i(`i − 1)ei .

Proof. The first assertion |GN | = Nr0
∏
i `
ei
i is evident, so it suffices to

show |CN | =
∏
i(`i − 1)ei . We can view G(EF/F ) as a direct product of
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e :=
∑
ei cyclic groups of (varying) prime order. The e subgroups in the

union (appearing in the definition of CN ), with respect to a suitable basis
of G(EF/F ), are those obtained by deleting one of the basis elements. The
union consists of all vectors (with respect to this basis) having at least one
zero coordinate, hence the complement consists of all elements with no zero
coordinate, hence of order

∏
(`i − 1)ei . �

We introduce some additional notation:
M := [EF : FQN (T )],
d0 := deg a(T )b(T ),
g := gEF , the genus of EF .
We now apply the Chebotarev density theorem [8], p. 119, Prop. 6.4.8.1

Observing that a conjugacy class can be replaced by any union of conjugacy
classes in that theorem, we get

||{π ∈ FQ[T ], monic irred. deg. N : (π,EF/FQ(T )) ⊆ CN}| −
|CN |
|GN |

QN |

<
2|CN |
|GN |

[(M + g)QN/2 +MQN/4 + g +M ]

(genus of FQ(T ) is 0).
From this,
|{π ∈ FQ[T ] : π monic irreducible of degree N, (π,EF/FQ(T )) ⊆ CN}|

>
|CN |
|GN |

QN − 2|CN |
|GN |

[(M + g)QN/2 +MQN/4 + g +M ].

Using |GN | = MN and enlarging the preceding (negative) term in square
brackets, this last expression exceeds

|CN |
N

[ 1
M
− (4g + 6)Q−N/2]QN .

We now impose the condition that the last term in square brackets exceed
1

2M , i.e.
QN/2 > 8g + 12.

When this condition holds, we deduce the inequality

deg(gcd(Φm(a(T )n),Φm(b(T )n))
≥ N |{π ∈ FQ[T ] : π monic irreducible of degreeN, (π,EF/FQ(T )) ⊆ CN}|

>
|CN |
2M QN > cn

1This is an effective Chebotarev density theorem for global function fields, implied by the
Riemann Hypothesis for curves over finite fields, which is a theorem.
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for all sufficiently large N , with c = |CN |mr
2M , using n = QN−1

mr . To obtain
the form of the constant c appearing in the statement of the theorem, we
apply Lemma 2.2 for the explicit expression for |CN |, M = r0

∏
`i, replace

r with its lower bound 1, and replace r0 with its upper bound qk.
It is desirable to make the condition on N explicit as well, by giving

an explicit upper bound on g. To this end we apply the Riemann-Hurwitz
formula [8], p. 69, to the field extension EF/FQN (T ):

2g − 2 = −2M +
∑
p

∑
P|p

(eP/p − 1) degP

where p runs through primes of FQN (T ). The number of ramified primes
is bounded by d0 = deg a(T )b(T ) so the sum is bounded by d0M . Hence
g ≤ 1+d0M/2 = 1+d0r0

∏
i `
ei
i ≤ 1+d0q

2km2. It follows from what we have
seen that the constant c given in the theorem is valid for all N satisfying

QN/2 > 8(1 + d0q
2km2) + 12,

hence for all

n = QN − 1
mr

> [8(1 + d0q
2km2) + 12]2/m.

This proves Theorem 2.1 when (n0, q) = 1. The case (n0, q) 6= 1 follows
from the case (n0, q) = 1 as in [15]. �

Remarks. It is notable that the constant c is independent of a(T ) and
b(T ). Also, the hypothesis in Theorem 2.1 that a(T ) and b(T ) are not `ith
powers in Fq(T ) is a technical one, used in the proof, but we do not know
if it is necessary.

The proof of Theorem 2.1 can be generalized to yield the following
Theorem 2.3. Let Fq be a finite field, u, v be positive integers, d=gcd(u, v),
and assume gcd(u/d, d) = gcd(v/d, d) = 1. Let a = a(T ), resp. b =
b(T ) ∈ Fq[T ] be monic nonconstant polynomials which are not `th pow-
ers in Fq[T ] for all `|u, resp. `|v. Fix a power qk of q, and any congruence
class n0 + qkZ ∈ Z/qkZ. Then there is a positive constant c such that

deg(gcd(Φu(a(T )n),Φv(b(T )n)) ≥ cn
for infinitely many n ≡ n0 (mod qk).

The details are omitted.

3. The case a, b ∈ Z

In this section we prove the generalization of Theorem 1.2 for any positive
integer m under the Generalized Riemann Hypothesis (GRH), which enters
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the picture when the generalization of Prachar’s argument in this situation
leads to an application of the effective Chebotarev density theorem to a
tower of Galois extensions Ld/Q. The exceptional zeros of the corresponding
zeta functions of the Ld are required to be bounded away from 1 as d goes
to infinity 2. Since we do not know if the exceptional zeros in our tower are
bounded away from 1, we apply the stronger GRH version of the effective
Chebotarev density theorem in which there are no exceptional zeros. In this
section we make a change of notation, usingN instead ofm for the subscript
of the cyclotomic polynomial, and m is used for a different purpose.
Theorem 3.1 (contingent on GRH). Let N be a positive integer, N =
`s1

1 · · · `srr , `1 < `2 < · · · < `r, the factorization of N into primes. Let a, b be
positive integers, relatively prime to N , which are not `ith powers in Q for
i = 1, ..., r. Then there exist infinitely many positive integers n such that

log gcd(ΦN (an),ΦN (bn)) > exp( c logn
log logn),

where c is a positive constant depending only on a, b,N .

Proof. Suppose p is a prime congruent to 1 mod N such that neither a nor
b is a `ith power mod p for i = 1, ..., r. Suppose also that n is a positive
integer prime to N and divisible by p−1

N . Then p | gcd(ΦN (an),ΦN (bn)).
Indeed, (an)N ≡ 1 (mod p). The orders of a1 := a

p−1
N and of an mod p

are equal and divide N . If a1 has order mod p less than N , then there is
a prime `|N such that aN/`1 ≡ 1 mod p, so a(p−1)/` ≡ 1 mod p, whence a
is an `th power mod p, contrary to hypothesis. Thus a1 and an both have
order N mod p, p|ΦN (an). Similarly p|ΦN (bn).

The idea of the proof of the theorem, a generalization of the proof in
Prachar’s paper, is to use the pigeonhole principle to produce, for large x,
an n ≤ x2 with more than exp(c log x

log log x) divisors of the form p−1
N , p prime,

c an absolute constant. The result then follows.
Fix 0 < δ < 1. Let x be a positive real number and let K = Kδ(x) be

the product of all the primes p ≤ δ log x, p - N . Let A be the set of pairs
(m, p), m a positive integer, p a prime, m ≤ x, p ≤ x, gcd(m,N) = 1, p ≡ 1
(mod N), p 6≡ 1 (mod N`i), i = 1, ..., r, neither a nor b is an `ith power
mod p, i = 1, ..., r, and K|mp−1

N .
Now for each d|K, let Ad be the subset of A consisting of pairs (m, p) ∈ A

such that (m,K) = K/d and d|p−1
N . Let N0 := `1 · · · `r.We first bound |Ad|

from below by bounding the following subset of Ad of the form A′d × A′′d,
where

A′d = {m ≤ x : (m,N0K) = K/d}

2The 2-part of [Ld : Q] is unbounded as d → ∞ so the results of Stark and of Odlyzko and
Skinner do not seem to apply.
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and

A′′d = {p ≤ x : p ≡ 1 mod N, p 6≡ 1 mod N`i, i = 1, ..., r, d | p− 1
N

,

and neither a nor b is an `ith power mod p, i = 1, ..., r}.

To bound |A′d × A′′d| from below, it suffices to bound each of |A′d|, |A′′d|
from below and take the product of the two lower bounds.

First, writing d′ = K/d,

|A′d| = |{m ≤ x : d′|m, (m/d′, N0K/d
′) = 1}|

= |{m/d′ ≤ x/d′ : (m/d′, N0K/d
′) = 1}|

≥ φ(N0K/d
′)[ x/d′

N0K/d′
] = φ(N0d)[x/N0K]

where φ denotes Euler’s φ-function and [−] the integer part.
To bound |A′′d| from below we use the effective form of Chebotarev’s

density theorem due to Lagarias and Odlyzko [10] as formulated by Serre
[14] under the generalized Riemann Hypothesis (GRH).

The condition d | p−1
N is equivalent to p ≡ 1 (mod Nd), which is equiv-

alent to p splits completely in Q(µNd), where µn denotes the group of nth
roots of unity. The condition a is an `th power mod p (` prime) is equiv-
alent to the condition x` − a has a root mod p, which for p ≡ 1 modulo `
is equivalent to the condition x` − a splits into linear factors mod p, which
is equivalent to the condition p splits completely in (the Galois extension)
Q(µ`,

√̀
a) of Q, which for p ≡ 1 (mod Nd) and ` | N is equivalent to p

splits completely in Q(µNd,
√̀
a).

Consider the Galois extension Fd = Q(µNN0d,
N0
√
a, N0

√
b) of Q, with

Galois group Gd = G(Fd/Q), and the subset

Cd = G(Fd/Q(µNd)) \ {[
⋃
i

G(Fd/Q(µNd, `i
√
a))]

⋃
[
⋃
i

G(Fd/Q(µNd,
`i
√
b))]

⋃
[
⋃
i

G(Fd/Q(µNd`i))]}

of Gd.
It follows from the definition of Cd that

A′′d = {p ≤ x : p unramified in Fd, (p, Fd/Q) ⊆ Cd}
where (p, Fd/Q) denotes the Artin symbol. Set

πCd(x) := |A′′d| = |{p ≤ x : p unramified in Fd, (p, Fd/Q) ⊆ Cd}|.
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By the effective Chebotarev density theorem cited above, under GRH
for the Dedekind zeta function of Fd,

Rd(x) := |πCd(x)− |Cd|
|Gd|

Li(x)| ≤ c1
|Cd|
|Gd|

x1/2(logDFd + nFd log x)

where c1 is an absolute constant, DFd is the discriminant of Fd, nFd = [Fd :
Q] is the degree of Fd over Q, and Li(x) is the logarithmic integral

∫ x
2

dt
log t .

We have |Gd| = φ(Nd)
∏
i `
ei
i , where ei = 2 or 3 according to whether or

not a, b are multiplicatively dependent mod `ith powers in Q(µNN0d). The
proof of Lemma 2.2 yields |Cd| =

∏
i(`i − 1)ei . We conclude that

|Cd|
|Gd|

=
∏
i(`i − 1)ei

φ(Nd)
∏
i `
ei
i

.

By [14], Prop. 5, p. 128,

logDFd ≤ (nFd − 1)
∑

p|Nabd
log p+ nFd lognFd |{p : p|Nabd}|.

Now
nFd = φ(Nd)

∏
i

`eii ≤ φ(Nd)N3 = φ(N)N3φ(d),

so
logDFd ≤ (φ(N)N3φ(d)− 1) log2(Nabd)

+φ(N)N3φ(d) log(φ(N)N3φ(d)) log(Nabd)
≤ φ(N)N3φ(d) log2(Nabd)

+φ(N)N3φ(d) log(φ(N)N3φ(d)) log(Nabd)
≤ 2(φ(N)N3ab)3φ(d) log2 d

= f(N, a, b)φ(d) log2 d.

It now follows that
|Ad| ≥ |A′d ×A′′d| = |A′d||A′′d| = |A′d|πCd(x)

≥ φ(N0d)[ x

N0K
]( |Cd|
|Gd|

Li(x)− c1
|Cd|
|Gd|

x1/2(logDFd + nFd log x))

≥ φ(N0d)[ x

N0K
] |Cd|
|Gd|

(Li(x)− c1x
1/2(logDFd + nFd log x))

where c1 is an absolute constant. We now bound
Li(x)− c1x

1/2(logDFd + nFd log x)
from below. First,

logDFd + nFd log x ≤ f(N, a, b)φ(d) log2 d+ φ(N)N3φ(d) log x

≤ g(N, a, b)φ(d) log2 x ≤ g(N, a, b)xδ log x ≤ g(N, a, b)xδ+ε
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(using φ(d) < d < K < xδ and log x < xε for any given ε and sufficiently
large x). From this,

Li(x)− c1x
1/2(logDFd +nFd log x) ≥ x

2 log x − c1x
1
2 +δ+εg(N, a, b) ≥ x

4 log x
(for sufficiently large x, using Li(x) ∼ x

log x). We then have

|A′d|πCd(x) ≥ φ(N0d)[ x

N0K
] x

4 log x
|Cd|
|Gd|

≥ 1
2φ(N0d) x

N0K

x

4 log x
φ(N0)2

φ(N)N2
0
· 1
φ(d)

≥ 1
8

φ(N0)3x2

φ(N)N3
0K log x

= h(N)
K

x2

log x.

It then follows that

|A| =
∑
d|K
|Ad| ≥

h(N)
K

x2

log x
∑
d|K

1 = h(N)
K

x2

log x2ω(K)

≥ h(N)
K

x2

log x2
1
4 δ log x
log log x

where ω(K) denotes the number of primes dividing K. For the last inequal-
ity we use [9], 22.2, p. 341, and 22.10, p. 355:

ω(K) ∼ logK
log logK ⇒ ω(K) ≥ logK

2 log logK ≥
1
4
δ log x

log log x.

Now the number of positive integers n ≤ x2 such that K|n is at most x2

K .
Furthermore, for every pair (m, p) ∈ A, mp−1

N is such an n. Therefore there
exists an n ≤ x2 such that K|n with at least

|A|
x2/K

>
h(N)
log x 2

1
4 δ log x
log log x = h(N) exp(c2δ

log x
log log x−log log x)>exp(c3

log x
log log x)

representations of the form mp−1
N , for x sufficiently large, where c2, c3 are

absolute constants. It follows that GCD(ΦN (an),ΦN (bn)) is a product of
at least exp(c3

log x
log log x) primes, hence is itself at least exp exp(c4

log x
log log x). As

n ≤ x2 and log x
log log x is an increasing function (for x > ee), the last expression

is
≥ exp exp(c5

logn
log logn). �

As with Theorem 2.3 at the end of the preceding section, the proof of
Theorem 3.1 can be generalized to yield the following
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Theorem 3.2 (contingent on GRH). Let M,N be positive integers. Let
D = gcd(M,N) and assume gcd(M/D,D) = gcd(N/D,D) = 1. Let L =
lcm(M,N) = `s1

1 · · · `srr , `1 < `2 < · · · `r, the factorization of L into primes.
Let a, b be positive integers, relatively prime to L, which are not `ith powers
in Q for i = 1, ..., r. Then there exist infinitely many positive integers n
such that

gcd(ΦM (an),ΦN (bn)) > (exp(exp( c logn
log logn))),

where c is a positive constant depending only on a, b,N .

The proof is similar to the proof of Theorem 3.1; we omit the details.
Also here, the case M = 1, N = 2 was proved unconditionally in [4].
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