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Journal de Théorie des Nombres
de Bordeaux 26 (2014), 813–823

Global minimal models for endomorphisms of
projective space

par Clayton PETSCHE et Brian STOUT

Résumé. Nous démontrons l’existence des modèles minimaux
globaux pour les endomorphismes φ : PN → PN de l’espace pro-
jectif sur le corps des fractions d’un anneau principal.

Abstract. We prove the existence of global minimal models for
endomorphisms φ : PN → PN of projective space defined over the
field of fractions of a principal ideal domain.

1. Definitions and statement of the main results

Let R be a principal ideal domain (PID) with field of fractions K, and
let N be a positive integer. In this paper, our primary objects of study are
nonconstant morphisms φ : PN → PN defined overK. Fixing a choice of ho-
mogeneous coordinates x = (x0, . . . , xN ) on PN , we may write φ explicitly
as
(1.1) φ(x0 : · · · : xN ) = (Φ0(x0, . . . , xN ) : · · · : ΦN (x0, . . . , xN )),
where Φ : AN+1 → AN+1 is a map defined by an (N + 1)-tuple Φ =
(Φ0, . . . ,ΦN ) of forms of some common degree d ≥ 1 in the variables
x0, x1, . . . , xN , with the property that
(1.2) Φ(a) 6= 0 whenever a ∈ AN+1(K̄) \ 0,
where K̄ is the algebraic closure of K, or equivalently that
(1.3) Res(Φ) 6= 0,
where Res(Φ) is the resultant of Φ, a certain homogeneous integral poly-
nomial in the coefficients of the forms Φn; see Proposition 4.1 for a review
of the necessary facts about the resultant. We refer to d as the algebraic
degree of φ, and we refer to the map Φ, which is uniquely determined by φ
up to multiplication by a nonzero scalar in K, as a homogeneous lift for φ.

Conversely, starting with any map Φ : AN+1 → AN+1 defined by an
(N + 1)-tuple Φ = (Φ0, . . . ,ΦN ) of forms of some common degree d ≥ 1,
such that Φ satisfies the nonvanishing condition (1.2), the formula (1.1)
gives rise to a morphism φ : PN → PN of algebraic degree d.
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In the study of the dynamical system obtained from iteration of the
morphism φ, it is generally true that the dynamical properties of φ are
left unchanged when it is replaced with its conjugate f ◦ φ ◦ f−1 by an
element f of the automorphism group PGLN+1(K) of PN over K. Given
a representative A ∈ GLN+1(K) for f under the quotient map GLN+1 →
PGLN+1, and given a homgoeneous lift Φ : AN+1 → AN+1 for φ, observe
that the map Ψ = A ◦ Φ ◦ A−1 : AN+1 → AN+1 is a homogeneous lift for
ψ = f ◦ φ ◦ f−1. It is therefore natural to offer the following loosening of
the notion of a homogeneous lift for φ.
Definition. Let φ : PN → PN be a nonconstant morphism defined over K.
A model for φ over K is a map Ψ : AN+1 → AN+1 given by Ψ = A◦Φ◦A−1

for some homogeneous lift Φ : AN+1 → AN+1 of φ defined over K and some
linear automorphism A ∈ GLN+1(K) of AN+1.

While PGLN+1(K)-conjugation does not affect purely dynamical prop-
erties of morphisms, it does have subtle and unpredictable effects on in-
tegrality and divisibility properties in the ring R. For each nonzero prime
ideal p of R, denote by Kp the completion of K with respect to the p-
adic valuation, and let Rp be the subring of p-integral elements of Kp. Let
Fp = Rp/pRp be the residue field at p, and denote by x 7→ x̃p the surjective
reduction map Rp → Fp.

Given a model Ψ : AN+1 → AN+1 for a nonconstant morphism φ : PN →
PN defined over Kp, we declare that Ψ is integral (or p-integral) if each form
Ψn has coefficients in Rp and at least one coefficient is in R×p . If Ψ is p-
integral, then we may reduce the coefficients modulo p and obtain a nonzero
homogeneous map Ψ̃p : AN+1 → AN+1 defined over the residue field Fp.
Note that any morphism of Pn defined over K has a p-integral model.
Definition. A nonconstant morphism φ : PN → PN defined over Kp has
good reduction if φ has a p-integral model Ψ : AN+1 → AN+1 satisfying
either (and therefore both) of the following two equivalent conditions:

(1) The reduced map Ψ̃p : AN+1 → AN+1 satisfies Ψ̃p(a) 6= 0 whenever
a ∈ AN+1(Fp) \ 0;

(2) Res(Ψ) ∈ R×p .
According to condition (1), this definition has the following fairly intu-

itive interpretation: a nonconstant morphism φ : PN → PN of algebraic
degree d ≥ 1 defined over Kp has good reduction precisely when it is
PGLN+1(K)-conjugate to a morphism ψ : PN → PN for which reduction
modulo p gives rise to a morphism ψ̃p : PN → PN of algebraic degree d
defined over the residue field Fp. The equivalence of conditions (1) and (2)
is a simple consequence of basic properties of the resultant, along with the
fact that the unit group R×p is precisely the set of elements in Rp whose
image is nonzero under the reduction map Rp → Fp.
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If Ψ : AN+1 → AN+1 is an arbitrary p-integral model for φ, then
ordp(Res(Ψ)) ≥ 0 since Res(Ψ) is an integral polynomial in the coefficients
of Ψ; good reduction at p occurs precisely when a p-integral model Ψ can
be found with ordp(Res(Ψ)) = 0. Even in the case of bad reduction, how-
ever, one might still ask for a p-integral model Ψ for φ with ordp(Res(Ψ))
as small as possible.

Definition. Let φ : PN → PN be a nonconstant morphism defined over
Kp. A p-integral model Ψ : AN+1 → AN+1 for φ is minimal (or p-minimal)
if ordp(Res(Ψ)) is minimal among all p-integral models Ψ for φ.

We can now state the main theorem of this paper. Given a nonconstant
morphism φ : PN → PN defined over K, and a nonzero prime ideal p of
R, there always exists a minimal p-integral model Ψ for φ: start with an
arbitrary model defined over Kp, scale by a p-adic uniformizing parameter
to obtain a p-integral model Ψ, and among all such Ψ, select one for which
ordp(Res(Ψ)) is minimal. A priori these minimal p-integral models vary
from prime to prime, but it is natural to ask whether one can find a global
minimal model; that is, a model defined over R which is simultaneously a
minimal p-integral model at all prime ideals p of R.

Theorem 1.1. Let R be a PID with field of fractions K, and let φ :
PN → PN be a nonconstant morphism defined over K. Then φ has a model
Ψ : AN+1 → AN+1, with coefficients in R, and which is p-minimal for all
nonzero prime ideals p of R.

An interesting special case of Theorem 1.1 occurs when the morphism
φ : PN → PN is assumed to have everywhere good reduction; that is,
when φ has good reduction at all nonzero prime ideals p of R. While this
represents an extremal case of Theorem 1.1, it is perhaps not as special as it
may appear: since any nonconstant morphism φ : PN → PN defined over K
has good reduction at all except a finite set S of nonzero prime ideals p of R,
replacing R with the larger PID RS = {r ∈ K | ordp(r) ≥ 0 for all p 6∈ S},
we observe that φ has everywhere good reduction over RS .

Corollary 1.1. Let R be a PID with field of fractions K, let φ : PN →
PN be a nonconstant morphism defined over K, and assume that φ has
good reduction at all nonzero prime ideals p of R. Then φ has a model
Ψ : AN+1 → AN+1, with coefficients in R, such that Res(Ψ) ∈ R×.

In the case N = 1, Theorem 1.1 was proposed by Silverman ([6] pp.
236-237) and proved by Bruin-Molnar [2]; thus our result generalizes this
to arbitrary dimension N ≥ 1. Our proof is not a straightforward gener-
alization the proof by Bruin-Molnar, however. In [2], it is shown that, in
order to produce a global minimal model for a rational map φ : P1 → P1,
one only needs to consider conjugates f ◦ φ ◦ f−1 of φ by f in the group
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Aff2 of automorphisms leaving∞ fixed; i.e. automorphisms taking the form
f(x) = αx + β in an affine coordinate x. We do not know whether, in the
higher dimensional case, a generalization of Aff2 can be used in a similar
fashion leading to a proof of Theorem 1.1.

Our proof of Theorem 1.1 relies on the theory of lattices over a PID, and
in particular on the action of the adelic general linear group GLn(AR) on the
space of all such lattices of rank n. The main technical lemma of this paper
is a factorization of the group GLn(AR) as the product of the subgroup
GLn(K) of principal adeles with a certain naturally occuring subgroup
GL0

n(AR) of GLn(AR). When R is a ring of S-integers in a number field
K, this follows from a more general result of Borel [1] on the finiteness of
the class number of GLn. Since we have not been able to find the required
material worked out over an arbitrary PID, in this paper we give a self-
contained treatment.

Theorem 1.1 and Corollary 1.1 may find arithmetic applications in the
setting of a global field K (a number field or a function field of an algebraic
curve with a finite constant field) and a finite subset S of places of K.
After possibly replacing S with a suitable larger finite set of places, it is
always possible to obtain the situation in which the ring OS of S-integers
is a PID. In [8], the second author uses Theorem 1.1 to prove a finiteness
theorem for twists of rational maps having prescribed good reduction. Other
applications of this idea, in slightly different contexts, can be found in the
proof of Shafarevich’s Theorem for elliptic curves (see [7] §IX.6), as well as
analogues for rational maps due to Szpiro-Tucker [9] and the first author
[5].

The first author’s research was supported in part by grant DMS-0901147
of the National Science Foundation. The second author is supported by
grant DMS-0739346 of the National Science Foundation.

2. Global and local lattices over a PID

Throughout this paper R is a PID with field of fractions K, and R× de-
notes the group of units in R. The set of non-zero prime (and thus maximal)
ideals of R will be denoted by MR. Each prime p ∈ MR defines a discrete
valuation ordp on K, and it is a standard exercise to check the identities

R = {a ∈ K | ordp(a) ≥ 0 for all p ∈MR}
R× = {a ∈ K | ordp(a) = 0 for all p ∈MR}.

(2.1)

For each prime p ∈ MR, | · |p = e−ordp(·) is a non-archimedean absolute
value which defines a topology on K, and we let Kp denote the completion
of K with respect to this topology. The p-adic absolute value on K (and,
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therefore, the discrete valuation) extend to Kp, and we define
Rp = {a ∈ Kp | ordp(a) ≥ 0}
R×p = {a ∈ Kp | ordp(a) = 0},

the subring of p-integral elements of Kp, and its unit group, respectively.
If πp ∈ R is a uniformizer at p (that is, a generator for p as an ideal of R),
then the ideals pk = πkpRp form a base for the neighborhoods of zero in Kp.
By nature of the strong triangle inequality, it follows that closed balls are
also open balls; in particular, Rp is both open and closed.

Let n ≥ 1 be an integer. The affine adelic space AnR overR is the restricted
direct product of the affine spaces Kn

p with respect to the subsets Rnp .
Specifically,

AnR =
{

(ap) ∈
∏

p∈MR

Kn
p

∣∣∣∣ ap ∈ Rnp for almost all p
}
.

Thus an arbitrary element of AnR is a tuple (ap), indexed by the primes
p ∈MR, where each ap ∈ Kn

p , and where ap ∈ Rnp for almost all p.
We give Kn

p the product topology, and the affine adelic space has a
topology whose basis consists of sets of the form ΠpUp, where each Up is
an open subset of Kn

p and where Up = Rnp for almost all p. Naturally, Kn

is a subset of AnR by identifying each a ∈ Kn with the principal adele (ap),
where ap = a for all p.
Proposition 2.1. Kn is dense in AnR.
Proof. Because of the definitions of the topologies on Kp, Kn

p , and AnR, in
order to prove the proposition it suffices to prove the following statement:
given (αp) ∈ A1

R and a collection εp of positive real numbers, indexed by
primes p ∈ MR and with εp = 1 for almost all p, there exists α ∈ K such
that |αp − α|p ≤ εp for all p ∈MR.

Case 1: |αp|p ≤ 1 for all p ∈ MR. In this case the statement follows
from the Chinese remainder theorem, solving a simultaneous system of
congruences in R modulo suitably large powers of the finitely many primes
p ∈MR for which εp < 1.

Case 2: (αp) ∈ A1
R arbitrary. Let γ ∈ R be a product of uniformizing

parameters such that |γαp|p ≤ 1 for all p ∈ MR. Case 1 implies that we
may find β ∈ R for which |γαp−β|p ≤ |γ|pεp for all p ∈MR. Letting α = β

γ ,
we have |αp − α|p ≤ εp for all p ∈MR. �

Proposition 2.2. Let X be an R-submodule of Kn. Then the following
three conditions are equivalent:

(1) X is free and rank(X) = n.
(2) aRn ⊆ X ⊆ bRn for some a, b ∈ K×.
(3) X = ARn for some A ∈ GLn(K).
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Proof. (1) ⇒ (3): If (1) holds, let A be an n × n matrix over K whose
columns form an R-basis forX. ThenX = ARn and A is nonsingular, hence
A ∈ GLn(K). (If A were singular, then there would be a non-trivialK-linear
dependence among the columns of A; multiplying by the product of the
denominators of the coefficients of this linear dependence, we would obtain
a linear dependence with coefficients in R, in violation of the assumption
that the columns of A form an R-basis for X.)

(3) ⇒ (2): If (3) holds, let A ∈ GLn(K) such that X = ARn. Let aij
denote the entries of A and let b be the reciprocal of the product of the
denominators of the aij for 1 ≤ i, j ≤ n. Then b−1X = b−1ARn ⊆ Rn

since b−1A has entries in R, and therefore X ⊆ bRn. Let bij denote the
entries of A−1 and let a be the product of the denominators of the bij for
1 ≤ i, j ≤ n. Then aRn ⊆ aA−1X ⊆ X since aA−1 has entries in R and X
is an R-module.

(2) ⇒ (1): Since x 7→ ax is an isomorphism Rn → aRn, we see that
aRn is a free R-module of rank n; the same is true of bRn. Since R is a
PID, it follows from Theorem 7.1 of [4] that any R-submodule of bRn is
also free of rank less than or equal to n. Since X ⊆ bRn, X is free and
rank(X) ≤ rank(bRn). The inequality rank(aRn) ≤ rank(X) now follows
from the same theorem, as X has been shown to be free. Because aRn and
bRn are both of rank n, it follows that X has rank n. �

Definition. An R-lattice in Kn is a free R-submodule of Kn of rank n.
For each p ∈ MR, the local ring Rp is itself a PID, and thus Proposi-

tion 2.2 applies to Rp-submodules of Kn
p . In particular, an Rp-lattice in Kn

p

is a free Rp-submodule of Kn
p of rank n.

If X is an R-lattice in Kn and p ∈ MR is a nonzero prime ideal of
R, there is a natural way to associate to X an Rp-lattice Xp in Kn

p . By
Proposition 2.2, we may find some A ∈ GLn(K) such that X = ARn, and
we define Xp = ARnp . This definition does not depend on the choice of
matrix A. For if X = BRn, then A−1B is an isomorphism Rn → Rn, and
therefore A−1B ∈ GLn(R) ⊆ GLn(Rp). Then A−1BRnp = Rnp and therefore
BRnp = ARnp . The definition of Xp is equivalent to the Rp-module X ⊗RRp

obtained by extension of scalars.
Lemma 2.1. Let X be an R-lattice in Kn. Then for every p ∈MR, Xp is
an Rp-lattice in Kn

p , and for almost every p ∈MR, Xp = Rnp .
Proof. Let X=ARn for A ∈ GLn(K). For any p ∈ MR, we have that
Xp = ARnp and therefore Xp is an Rp-lattice in Kn

p by Proposition 2.2.
Furthermore, Xp = Rnp for all p ∈ MR except for the finitely many p for
which A 6∈ GLn(Rp). These primes correspond to the irreducible elements
which occur in the denominators of the entries of A or in the numerator of
the determinant of A. �
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Lemma 2.2. Conversely, suppose that (Xp) is a collection of Rp-lattices
in Kn

p for each p ∈MR, such that Xp = Rnp for almost every p. Then

X ′ = {x ∈ Kn|x ∈ Xp for all p}

is an R-lattice in Kn, and X ′p = Xp for each prime p ∈MR.

Proof. X ′ is plainly an R-submodule of Kn because R ⊆ Rp for all p ∈MR

and eachXp is an Rp-submodule ofKn
p . By Proposition 2.2, to show thatX ′

is free of rank n it is sufficient to show that aRn ⊆ X ′ ⊆ bRn for some a, b ∈
K×. As each Xp is an Rp-lattice in Kn

p , we know by Proposition 2.2 that a
similar chain of inclusions apRnp ⊆ Xp ⊆ bpR

n
p holds for each each prime p

where ap, bp ∈ K×p . By the assumption Xp = Rnp for almost every p, we may
assume that ap = bp = 1 for almost every p. Because R is a PID we may
assume that both ap and bp are powers of p-adic uniformizing parameters
in R (recall that a uniformizing parameter for a prime p is a unit in Rq for
all primes q 6= p). Let a = Πpap, b = Πpbp ∈ K× and it follows that aRnp ⊆
Xp ⊆ bRnp . Using (2.1) we have that aRn = {x ∈ Kn|x ∈ aRnp for all p}
and that bRn = {x ∈ Kn|x ∈ bRnp for all p}. Therefore aRn ⊆ X ′ ⊆ bRn

and we conclude X ′ to be an R-lattice.
Lastly, we show that X ′p = Xp for all p ∈ MR. The inclusion X ′p ⊆

Xp follows immediately from the definitions: Proposition 2.2 provides an
element A ∈ GLn(K) such that X ′ = ARn, and X ′p = ARnp . Since X ′ ⊆ Xp,
the column vectors of A are in Xp, whereby X ′p = ARnp ⊆ Xp.

To show equality X ′p = Xp for all p ∈ MR, suppose there exists some
p0 ∈MR with proper inclusion X ′p0 ( Xp0 ; we will derive a contradiction.

Define subsets of AnR by Y ′ = ΠpX
′
p and Y = ΠpXp. Since we have

already shown that X ′p ⊆ Xp for all p ∈ MR, and since we have assumed
thatX ′p0 ( Xp0 for some p0 ∈MR, it follows that Y ′ ( Y . Since an arbitrary
Rp-lattice is both open and closed in Kn

p , it follows from the definition of
the restricted direct product topology that Y and Y ′ are both open and
closed in AnR, and therefore that Y \ Y ′ is a nonempty open subset of AnR.
Since Kn is a dense subset of AnR, there exists x ∈ Kn whose principal adele
(x) is an element of Y \ Y ′. Since (x) ∈ Y = ΠpXp, we have x ∈ Xp for
all p and hence by definition, x ∈ X ′. It follows that x ∈ X ′p for all p and
consequently (x) ∈ ΠpX

′
p = Y ′. This contradiction implies that X ′p = Xp

for all p ∈MR. �

3. The adelic general linear group over a PID

The adelic general linear group GLn(AR) associated to R is the re-
stricted direct product of the groups GLn(Kp) with respect to the subgroups
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GLn(Rp). More specifically,

GLn(AR) =
{

(Ap) ∈
∏

p∈MR

GLn(Kp)
∣∣∣∣ Ap ∈ GLn(Rp) for almost all p

}
.

The main result of this section shows that the group GLn(AR) factors into
a product of two natural subgroups. First, GLn(K) embeds into GLn(AR)
by the identification of each A ∈ GLn(K) with the its principal adele (Ap),
defined by Ap = A for all p ∈MR. The second subgroup of GLn(AR) is

GL0
n(AR) =

∏
p∈MR

GLn(Rp),

the direct product of the Rp-integral subgroups GLn(Rp), over all primes
p ∈MR.

Proposition 3.1. GLn(AR) = GL0
n(AR)GLn(K).

The following lemma contains most of work toward the proof of Propo-
sition 3.1.

Lemma 3.1. Let XR denote the set of R-lattices in Kn. There exists a
transitive group action

GLn(AR)×XR → XR
(A,X) 7→ A ·X,

where A·X is defined to be the R-lattice

A ·X = {x ∈ Kn|x ∈ ApXp for all p}.

Moreover, the stabilizer in GLn(AR) of the trivial lattice Rn is GL0
n(AR).

Proof. Let A,B ∈ GLn(AR) and X ∈ XR. Lemma 2.1 and the definition of
GLn(AR) as a restricted direct product imply that ApXp = Rnp for almost
every p ∈MR. The fact that A ·X is an R-lattice in Kn then follows from
Lemma 2.2.

Let I = (Ip) denote the identity adele: Ip is the identity matrix in
GLn(Kp) for each p ∈ MR. We show that I · X = X, or equivalently,
that

{x ∈ Kn|x ∈ Xp for all p} = X.

First, if X = Rn then the desired identity

{x ∈ Kn|x ∈ Rnp for all p} = Rn

follows immediately from (2.1), and thus I · Rn = Rn. Now let X be ar-
bitrary. By Proposition 2.2, X = ARn for some A ∈ GLn(K), and by
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definition Xp = ARnp . It follows that

I ·X = {x ∈ Kn|x ∈ Xp = ARnp for all p}
= {Ax|x ∈ Kn, x ∈ Rnp for all p}
= ARn = X.

The equality A · (B ·X) = (AB) ·X follows from the identity (B ·X)p =
BpXp, which itself is a trivial consequence of Lemma 2.2. Specifically,

A · (B ·X) = {x ∈ Kn|x ∈ Ap(B ·X)p for all p}
= {x ∈ Kn|x ∈ Ap(BpXp) for all p}
= {x ∈ Kn|x ∈ (AB)pXp for all p}
= (AB) ·X.

The transitivity of the action follows from Proposition 2.2: for any lattice
X there is A ∈ GLn(K) such that X = ARn and considering A as a
principal adele it then follows that X = A · Rn. Therefore every R-lattice
in Kn is in the GLn(AR)-orbit of the trivial lattice.

Finally, we must show that the stabilizer in GLn(AR) of the trivial lattice
Rn is GL0

n(AR). If A = (Ap) ∈ GL0
n(AR), then Ap ∈ GLn(Rp) for all

p ∈MR, which implies that ApR
n
p = Rnp . We conclude using (2.1) that

A ·Rn = {x ∈ Kn|x ∈ ApR
n
p for all p}

= {x ∈ Kn|x ∈ Rnp for all p}
= Rn.

Conversely, suppose A = (Ap) ∈ GLn(AR) such that A ·Rn = Rn, which,
by definition means that

(3.1) {x ∈ Kn|x ∈ ApR
n
p for all p} = Rn.

Let X and Y denote the left-hand side and right-hand side of (3.1), re-
spectively, and fix p ∈MR. Then trivially Yp = Rnp , and Lemma 2.2 shows
that Xp = ApR

n
p . We conclude that ApR

n
p = Rnp , and this implies that

A ∈ GLn(Rp). Hence Ap ∈ GLn(Rp) for every prime p, and so by definition
A ∈ GL0

n(AR). �

Proof of Proposition 3.1. Let A ∈ GLn(AR) be an arbitrary adele. Let
X = A−1 · Rn be the lattice obtained by letting A−1 act on the triv-
ial lattice. By Proposition 2.2, X = BRn for B ∈ GLn(K). Both A−1

and B take Rn bijectively onto X, so AB fixes Rn and therefore lies
in the stabilizer GL0

n(AR), say AB = C for C ∈ GL0
n(AR). Therefore

A = CB−1 ∈ GL0
n(AR)GLn(K). �
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4. The existence of global minimal models

In this section we prove the main results of the paper, Theorem 1.1
and Corollary 1.1. First, however, we give a proposition summarizing the
relevant properties of the resultant associated to a homogeneous map Φ :
AN+1 → AN+1.

Proposition 4.1. Let Φ : AN+1 → AN+1 be a map defined over a field
K by an (N + 1)-tuple Φ = (Φ0, . . . ,ΦN ) of forms of some common degree
d ≥ 1 in the variables x0, x1, . . . , xN , and let Res(Φ) denote the resultant
of Φ.

(1) Res(Φ) = 0 if and only if Φ(a) = 0 for some a ∈ AN+1(K̄) \ 0.
(2) If A ∈ GLN+1(K) is a linear automorphism of AN+1 defined over

K, then Res(A ◦ Φ ◦ A−1) = det(A)C(N,d)Res(Φ) for some integer
C(N, d) depending only on N and d.

Proof. Part (1) is standard, see [10], §82. Part (2) follows from [3], Cor.
5. �

Proof of Theorem 1.1. Let Φ : AN+1 → AN+1 be an arbitrary homoge-
neous lift for φ. For each p ∈ MR, let Φp : AN+1 → AN+1 be a minimal
p-integral model for φ; thus Φp = Ap ◦ Φ ◦ A−1

p for some Ap ∈ GLN+1(K).
If S denotes the finite set of p ∈ MR for which some coefficient of Φ is
not Rp-integral, or for which Res(Φ) is not an Rp-unit, then we may take
Φp = Φ and Ap = I for all p 6∈ S.

By Proposition 3.1, there exists A ∈ GLN+1(K) such that ApA
−1 ∈

GLN+1(Rp) for each p ∈MR. Consider the model Ψ : AN+1 → AN+1 for φ
defined by Ψ = A ◦ Φ ◦A−1. For each p ∈MR, we have
(4.1) Ψ = (AA−1

p ) ◦ Φp ◦ (AA−1
p )−1.

Since AA−1
p = (ApA

−1)−1 ∈ GLN+1(Rp) and Φp has coefficients in Rp, it
follows from (4.1) that Ψ has coefficients in Rp as well; since this holds for
arbitrary p ∈MR, it follows from (2.1) that Ψ has coefficients in R. Finally,
since ordp(det(AA−1

p )) = 0, it follows from (4.1) and Proposition 4.1 that
ordp(Res(Ψ)) = ordp(Res(Φp)),

and so Ψ is p-minimal for each p ∈MR. �

Proof of Corollary 1.1. Since φ has everywhere good reduction, the model
Ψ constructed in Theorem 1.1 satisfies ordp(Res(Ψ)) = 0 for all nonzero
prime ideals p of R, and therefore (2.1) implies that Res(Ψ) ∈ R×. �
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