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Discriminants of Chebyshev radical extensions

par T. Alden GASSERT

Résumé. Soit t un nombre entier et ` 6= 2 un nombre pre-
mier. Soit Φ(x) = Tn

` (x) − t la composition n-fois du polynôme
de Tchebychev de degré ` décalée de t. Supposant que ce poly-
nôme est irréductible, soit K = Q(θ), où θ est une racine de Φ.
Nous appliquons un théorème de Dedekind en conjonction avec
des résultats antérieurs de l’auteur afin d’obtenir des conditions
sur t qui assurent que K soit monogène. Pour d’autres valeurs de
t, nous appliquons un théorème de Guàrdia, Montes, et Nart pour
obtenir une formule pour le discriminant de K et calculons une
base intègrale de l’anneau des entiers OK .

Abstract. Let t be any integer and fix an odd prime `. Let
Φ(x) = Tn

` (x)− t denote the n-fold composition of the Chebyshev
polynomial of degree ` shifted by t. If this polynomial is irre-
ducible, let K = Q(θ), where θ is a root of Φ. We use a theorem
of Dedekind in conjunction with previous results of the author to
give conditions on t that ensure K is monogenic. For other values
of t, we apply a result of Guàrdia, Montes, and Nart to obtain a
formula for the discriminant of K and compute an integral basis
for the ring of integers OK .

1. Introduction

Let f ∈ Z[x] be a monic, irreducible polynomial with discriminant Df ,
and K a number field with discriminant ∆K . The computation of discrimi-
nants is a classical problem in number theory, as the discriminant provides,
in some sense, a measure of the arithmetic complexity of the underlying
ring: Z[θ] in the case of Df , and the ring of integers OK in the case of ∆K .
It is well known that if K = Q(θ), where θ is an algebraic integer with
minimal polynomial f , then the discriminants of f and K scale relative to
the square of the index [OK : Z[θ]]:
(1.1) Df = [OK : Z[θ]]2∆K .

In recent years, dynamically generated number fields have received grow-
ing attention, in part because the Galois groups of iterated extensions are
contained in the automorphism group of a rooted tree. Moreover, postcriti-
cally finite functions generate infinite, yet finitely ramified, extensions (see
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Aitken, Hajir, and Maire [1, Theorem 1.1]). Recall that a polynomial f is
postcritically finite if the forward orbit of each of its critical points is finite,
that is,

#{fn(α) : n ≥ 1, f ′(α) = 0} <∞.

These iterated extensions may be constructed as follows. LetK be a num-
ber field and f ∈ OK [x] be a monic polynomial of degree at least 2, and let
t ∈ OK such that fn(x)−t is irreducible over K for each n ≥ 1. Here, fn(x)
denotes the n-fold iterate of f , which is defined by fn(x) = f(fn−1(x)), and
f0(x) = x. Let {t = θ0, θ1, θ2, . . .} be a compatible sequence of preimages
of t satisfying f(θn) = θn−1 (and thus fn(θn)− t = 0). By adjoining these
preimages of t to the base field, we obtain a tower of number fields

K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ,

where Kn = K(θn) and [Kn : K] = (deg f)n.
In this paper, we compute the index of the iterated extensions generated

by Tn` (x)− t, where ` is an odd prime and T` is the Chebyshev polynomial
(of the first kind) of degree `, with mild restrictions on t. Additionally in
the case ` = 2, we provide an alternative proof of [1, Proposition 6.2] for
when the index is equal to 1.

The Chebyshev family of polynomials is closed under composition, lead-
ing to many interesting dynamical properties. For example, the Chebyshev
polynomials are a rich source of permutation polynomials (see Lidl and
Neideritter [16, Chapter 7]). It is also known that the iterated monodromy
group of any Chebyshev polynomial is infinite dihedral [3, Proposition 5.6].
Other results relating to the dynamics of these polynomials can be found
in Silverman [22, Chapter 6], Ih [12], Ih and Tucker [13], and previous work
of the author [7]. Here, we take advantage of the fact that Tn` (x) = T`n(x),
which gives us intimate access to the number fields at every level of our
towers.

Throughout this paper, we maintain the global assumption that
t is a fixed integer for which Tn` (x)− t is irreducible for every n ≥ 1.

It is known that for each ` there are infinitely many integers t that sat-
isfy this irreducibility criterion. As a simple example, when ` is odd and
ν`(t) = 1 (ν` is the standard `-adic valuation), the polynomial Tn` (x) − t
is Eisenstein at `. For a more detailed result regarding irreducibility, see
[7, Theorem 1.2]. We call the number fields that arise from these polyno-
mials Chebyshev radical extensions, after the radical extensions, which are
generated by polynomials of the form xn − t.

Theorem 1.1. Let ` be an odd prime and K = Q(θ), where θ is a root of
Tn` (x) − t, with t 6≡ ±2 (mod `2) and t 6≡ 2 (mod 4). Write t2 − 4 = A2B
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where B is square-free. Then

[OK : Z[θ]] =
{
`EA(`n−1)/2 if t is odd
`E(A/2)(`n−1)/2 if t ≡ 0 (mod 4),

where E =
∑min{n,ν`(Tn

` (t)−t)−1}
i=1 `n−i. Moreover,

∆K =
{
`n`

n−2EB(`n−1)/2 if t is odd
`n`

n−2E(4B)(`n−1)/2 if t ≡ 0 (mod 4).

Our proof relies on the work of Guàrdia, Montes, and Nart [9, 10, 11].
In particular, the computation of the index comes from an analysis of spe-
cialized Newton polygons, which we describe in Section 4. As a result, we
obtain a large family of towers that are interesting in several respects.

The Chebyshev polynomials are postcritically finite, hence in accordance
with [1, Theorem 1.1], the set of primes dividing ∆K does not vary with n.
Moreover, t2 − 4 = A2B is a Pell equation. Thus for any fixed square-free
integer B, the solutions to this Pell equation give infinitely many Chebyshev
radical extensions that are ramified at precisely the primes dividing `B and
possibly 2 depending on the parity of t.

As another consequence of Theorem 1.1, we obtain conditions on t for
which [OK : Z[θ]] = 1, a sufficient condition for monogeneity. Recall that
a number field K is monogenic if OK has a basis consisting of the powers
of a single algebraic integer. The classical examples of monogenic fields are
the cyclotomic extensions; the maximal totally real subfields of the cyclo-
tomic fields are also known to be monogenic (see Liang [15]). In fact, the
splitting field of Tn` (x) − 2 is the maximal real subfield of Q(ζ`n), where
ζ`n is a primitive `n-th root of unity. Hence we have placed this classi-
cal one-parameter family of monogenic towers (parametrized by `) into a
two-parameter family of monogenic towers parametrized by ` and t. The
following is a generalization of [1, Proposition 6.2].

Theorem 1.2. Let ` be a prime and let K = Q(θ), where θ is a root of
Tn` (x)− t. If T`(t)− t 6≡ 0 (mod `2) and both t−2 and t+2 are square-free,
then [OK : Z[θ]] = 1, and in particular K is monogenic.

We note that this condition for monogeneity also does not depend on n.
In the case where ` is odd, we can already see this independence in Theorem
1.1, for if t−2 and t+2 are square-free, then [OK : Z[θ]] is constant. However,
these conditions for monogeneity can be obtained without computing the
index directly, and we give a simpler proof of Theorem 1.2 using Dedekind’s
criterion.

Certain towers of Kummer extensions also exhibit this monogenic behav-
ior. For example the discriminant of the polynomial x2n − 3 is equal to the
discriminant of the number field that it generates for each n ≥ 1. Monogenic
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number fields have been studied by many authors. Ash, Brakenhoff, and
Zarrabi give computational evidence supporting a conjecture of Lenstra [2]
that suggests that monogenic fields are abundant. However, outside of the
towers mentioned previously, the majority of results are known for exten-
sions of small degree (see Gras [8], Nakahara [18], Shah [21], Gaál [6], among
others). A general survey of recent results can be found in Narkiewicz [19,
pp. 79–81].

The structure of the paper is as follows. In Section 2, we outline several
properties of the Chebyshev polynomials that will be useful throughout the
paper. The proof of Theorem 1.2 is presented in Section 3. In section 4, we
describe the Montes algorithm and state a theorem of Guàrdia, Montes,
and Nart, which is the key result for proving Theorem 1.1. The proof of
Theorem 1.1 spans Sections 5 and 6. In Section 7, we determine a basis
for the ring of integers OK for certain values of t. Most of our results are
accompanied by examples.

2. Preliminaries

For the remainder of the paper, set Φ(x) = Tn` (x)− t, for a fixed prime
` and positive integers n and t. For now we allow the case ` = 2, but
following the proof of Theorem 1.2 in Section 3 we will restrict ` to the odd
primes. Let K be a Chebyshev radical extension associated with Φ, that
is, K = Q(θ) where θ is a root of Φ, and we write ind(Φ) to denote the
index [OK : Z[θ]]. We remind the reader of our blanket assumption that t
is chosen so that Tn` (x)− t is irreducible for every n ≥ 1, so K is a number
field of degree `n over Q.

The Chebyshev polynomials are a large and uniquely rich family with
connections to many areas of mathematics. For each d ≥ 1, the Chebyshev
polynomial of the first kind Td ∈ Z[x] is the unique polynomial of degree
d that satisfies Td(z + z−1) = zd + z−d, and the Chebyshev polynomial of
the second Ud ∈ Z[x] is related to the derivative of Td+1 by

Ud(x) = 1
d+ 1T

′
d+1(x).

Rivlin has written a book on the subject [20], and for more on the dynam-
ics and algebraic structure associated with Chebyshev polynomials, see [22,
Chapter 6]. For this paper, the well-known representations of these poly-
nomials will be particularly useful.
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Proposition 2.1.
(1) For each d ≥ 0, the Chebyshev polynomials Td and Ud are given by

Td(x) =
bd/2c∑
k=0

(−1)k d

d− k

(
d− k
k

)
xd−2k,

Ud(x) =
bd/2c∑
k=0

(−1)k
(
d− k
k

)
xd−2k.

(2) The generating function for Ud(x) is(
x+
√
x2 − 4

)d+1
−
(
x−
√
x2 − 4

)d+1

2d+1
√
x2 − 4

if x 6= ±2.

(3) U0(x) = 1, U1(x) = x, and for each d ≥ 2,

Ud(x) = xUd−1(x)− Ud−2(x).

(4) For each d ≥ 0, Ud(−x) = (−1)dUd(x).

The discriminant of Φ will also be of critical import. Indeed, given the
value of the index in Theorem 1.1, knowing DΦ is equivalent to knowing
∆K by Equation (1.1). As mentioned in the introduction, the Chebyshev
polynomials are postcritically finite, so we may apply [1, Proposition 3.2]
to obtain the following discriminant formula.

Proposition 2.2. We have

DΦ =
{

2n2n(2− t)(4− t2)2n−1−1 if ` = 2,
`n`

n(4− t2)(`n−1)/2 otherwise.

Proof. [7, Corollary 3.7]. �

The methods we use to compute ind(Φ) are local computations; in partic-
ular, we need to understand the factorization of Φ into irreducibles modulo
the primes dividing ind(Φ). A priori, we do not know the primes dividing
ind(Φ), but by Equation (1.1), these primes must divide DΦ, and by Propo-
sition 2.2, we see that the only primes that could divide ind(Φ) are ` and
the primes dividing t2 − 4. Factoring Φ modulo ` is straightforward, and
we reproduce the proof for the benefit of the reader.

Lemma 2.3. We have Φ(x) ≡ (x− t)`n (mod `).

Proof. From Proposition 2.1 (1),

T`(x) =
b`/2c∑
k=0

(−1)k (`− k − 1)!
k!(`− 2k)! `x

`−2k.
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Note that

ν`

((`− k − 1)!
k!(`− 2k)! `

)
=
{

0 if k = 0
1 otherwise,

and thus T`(x) ≡ x` (mod `). It follows that Tn` (x)− t ≡ x`n− t ≡ (x− t)`n

(mod `). �

As for the primes dividing t2−4, we have t ≡ ±2 (mod p). Thus it suffices
to consider the factorization of Tn` (x)±2 modulo p, which simplifies matters
significantly. The factorization of Tn` (x)± 2 in Z[x] is well known.
Proposition 2.4.

(1) If d ≥ 0 is even, there exist polynomials f(x), g(x) ∈ Z[x] such that
Td(x)− 2 = (x2 − 4)f(x)2 and Td(x) + 2 = g(x)2.

(2) If d ≥ 1 is odd, there exist polynomials f(x), g(x) ∈ Z[x] such that
Td(x)− 2 = (x− 2)f(x)2 and Td(x) + 2 = (x+ 2)g(x)2.

As mentioned in the introduction, Tn` (x)− 2, as well as Tn` (x) + 2, splits
completely in the cyclotomic field Q(ζ`n). Since the only ramified prime in
this extension is `, the polynomials f and g in Proposition 2.4 factor into
distinct irreducible polynomials modulo p.
Lemma 2.5. Let p be a prime different from ` such that t ≡ ±2 (mod p).
Then

Φ(x) ≡ φ0(x)φ1(x)2φ2(x)2 · · ·φr(x)2 (mod p),
where φ0, . . . , φr are distinct irreducible polynomials in Fp[x]. Moreover,

φ0 =


1 if ` = 2 and t ≡ −2 (mod p),
x2 − 4 if ` = 2 and t ≡ 2 (mod p),
x− t if ` is odd,

where t denotes the reduction of t modulo p.
A general factorization result for arbitrary t and p is stated in [7, Theo-

rem 3.1].

3. Monogenic number fields

In this section we give a proof of Theorem 1.2 based on Dedekind’s
criterion. Dedekind’s result gives local conditions for when a prime di-
vides ind(Φ), and combined with the factorization results from the pre-
vious section, we obtain conditions for when ind(Φ) = 1. We then prove
Proposition 3.3 that will allow us conclude that ind(Φ) = 1 if and only if
ind(T`(x)−t) = 1. Our method gives an alternative proof of [1, Proposition
6.2].
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Denote by the reduction modulo a prime.
Lemma 3.1 (Dedekind’s criterion). Let K = Q(θ), where θ is an algebraic
integer with minimal polynomial Ψ ∈ Z[x]. Let p be a prime. Let

Ψ =
∏

ψ
ei

i

be the factorization of Ψ into monic irreducible polynomials in Fp[x], where
ψi ∈ Z[x] are arbitrary monic lifts of ψi. Set

g =
∏

ψi, h =
∏

ψei−1
i ,

so that h ∈ Z[x] is a monic lift of Ψ/g. Set f = (gh − Ψ)/p ∈ Z[x]. Then
p | [OK : Z[θ]] if and only if gcd(f, g, h) = 1 in Fp[x].
Proof. See, for example, Cohen [4, Theorem 6.1.4]. �

Remark 1. The reductions f , g, and h in Dedekind’s criterion do not depend
on the choice of lifts.

We now prove a weak version of Theorem 1.2.
Theorem 3.2. Let K = Q(θ), where θ is a root of Φ. Then DΦ = ∆K if
and only if Φ(t) 6≡ 0 (mod `2) and both t− 2 and t+ 2 are square-free.
Proof. By Equation (1.1), DΦ = ∆K if and only if ind(Φ) = 1. As men-
tioned in the discussion after Proposition 2.2, we are only concerned with
the prime ` and the primes dividing t2 − 4.

We first address the prime `. By Lemma 2.3, Φ(x) ≡ (x− t)`n (mod `),
so we set

g(x) = x− t, h(x) = (x− t)`n−1, and f(x) = (x− t)`n − Φ(x)
`

.

Hence gcd(f, g, h) = 1 if and only if f(t) 6≡ 0 (mod `), and it follows from
Lemma 3.1 that

` - ind(Φ) if and only if Φ(t) 6≡ 0 (mod `2).

Now let p be a prime dividing t2 − 4. By Lemma 2.5, we have Φ(x) ≡
φ0(x)τ(x)2 (mod p), for some separable polynomial τ ∈ Fp[x]. Set

g(x) = φ0(x)τ(x), h(x) = τ(x), and f(x) = φ0(x)τ(x)2 − Φ(x)
p

.

In this case, gcd(f, g, h) = 1 if and only if the roots of τ are not roots of f
modulo p. Let α be a root of τ modulo p. Then

f(α) 6≡ 0 (mod p) if and only if Φ(α) 6≡ 0 (mod p2).

Recall from Proposition 2.4 that Tn` (x)−t = r(x)s(x)2, where r(x) ≡ φ0(x)
(mod p) and s(x) ≡ τ(x) (mod p). Thus

Φ(α) = Tn` (α)− t+ t− t = r(α)s(α)2 + t− t ≡ t− t (mod p2),
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since s(α) ≡ 0 (mod p). It now follows from Lemma 3.1 that
p - ind(Φ) if and only if t 6≡ ±2 (mod p2),

completing the proof. �

In order to prove Theorem 1.2, we are left to show that the condition
Φ(t) 6≡ 0 (mod `2) in Theorem 3.2 is equivalent to the condition T`(t)− t 6≡
0 (mod `2). The following result will allow us to bridge this gap.

Proposition 3.3. For any integers a and b,
T`(a) ≡ T`(b) (mod `2) if and only if a ≡ b (mod `).

Proof. Suppose that T`(a) ≡ T`(b) (mod `2). By Proposition 2.1 (1),
T`(x) = x` + `g(x),

where g(x) is a polynomial of degree `− 2. Hence
T`(a) ≡ T`(b) (mod `2)⇒ a` + ` g(a) ≡ b` + ` g(b) (mod `2)

⇒ a` ≡ b` (mod `)
⇒ a ≡ b (mod `).

For the converse statement, let a ∈ Z and write a = q` + r such that
0 ≤ r < `. It suffices to show that T`(a) ≡ T`(r) (mod `2). We have

T`(a) = T`(q`+ r) =
b`/2c∑
k=0

(−1)k (`− k − 1)!
k!(`− 2k)! `(q`+ r)`−2k

=
b`/2c∑
k=0

(−1)k (`− k − 1)!
k!(`− 2k)!

`−2k∑
i=0

(
`− 2k
i

)
qi`i+1r`−2k−i

≡
b`/2c∑
k=0

(−1)k (`− k − 1)!
k!(`− 2k)! `r

`−2k

≡ T`(r) (mod `2).
�

Proof of Theorem 1.2. By Lemma 2.3, we have Tn−1
` (t) ≡ t (mod `),

so by Proposition 3.3,
Tn` (t) = T`(Tn−1

` (t)) ≡ T`(t) (mod `2).
Thus

Tn` (t) ≡ t (mod `2) if and only if T`(t) ≡ t (mod `2).
The result is now an immediate consequence of Theorem 3.2. �

We conclude this section by identifying the equivalence classes for which
T`(t) ≡ t (mod `2).
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Corollary 3.4. T`(t) ≡ t (mod `2) if and only if T`(a) ≡ t (mod `2) for
some a ∈ {0, 1, . . . , `− 1}.

Proof. Suppose that T`(a) ≡ t (mod `2) for some a ∈ {0, . . . , `− 1}. Then
T`(a) ≡ t (mod `), and by Lemma 2.3, a ≡ t (mod `). Now by Proposition
3.3, T`(a) ≡ T`(t) (mod `2). The converse statement is satisfied by setting
a to be the representative of t modulo ` in {0, . . . , ` − 1}, then applying
Proposition 3.3. �

In other words, ` | ind(Φ) if and only if t is equivalent to an element in
{T`(0), T`(1), . . . , T`(`− 1)} modulo `2.

4. Theorem of the index

The value of ind(Φ) given in Theorem 1.1, together with the value of
ind(Φ) with the discriminant of Φ given in Proposition 2.2, gives us a
discriminant formula for many of the Chebyshev radical extensions. We
compute ind(Φ) using a relatively recent algorithm derived by Guàrdia,
Montez, and Nart [9, 10, 11]. Their method employs a more refined varia-
tion of the Newton polygon, called the φ-Newton polygon, which captures
arithmetic data attached to each irreducible factor φ of Φ. In this section
we outline their methods and terminology following the presentation of El
Fadil, Montes, and Nart [5].

Notation 1. We fix the following notation. Let p be a prime and let φ(x) ∈
Z[x] be a monic polynomial whose reduction modulo p is irreducible. We
denote by Fφ the finite field Z[x]/(p, φ), and by

: Z[x]→ Fp[x], red: Z[x]→ Fφ
the respective homomorphisms of reduction modulo p and modulo (p, φ(x)).
We extend the usual p-adic valuation to polynomials by

νp(c0 + · · ·+ crx
r) := min

0≤i≤r
{νp(ci)}, and νp(0) :=∞.

Any f(x) ∈ Z[x] admits a unique φ-adic development:

f(x) = a0(x) + a1(x)φ(x) + · · ·+ ar(x)φ(x)r,

with ai(x) ∈ Z[x] and deg(ai) < deg(φ). To each coefficient ai(x) we attach
the p-adic value

ui = νp(ai(x)) ∈ Z+ ∪ {∞}

and the point of the plane (i, ui), if ui <∞.

Definition 4.1. The φ-Newton polygon of f(x) is the lower convex envelope
of the set of points (i, ui), ui <∞, in the Euclidean plane. We denote this
open polygon by Nφ(f).
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1 2 3 4

Nφ N−φ

Figure 4.1. A φ-Newton polygon (left) and its principal
part (right).

The φ-Newton polygon is the union of different adjacent sides S1, . . . , Sg
with increasing slopes λ1 < · · · < λg. We shall write Nφ(f) = S1 + · · ·+Sg.
The end points of the sides are called the vertices of the polygon.

Definition 4.2. The polygon determined by the sides of negative slope
of Nφ(f) is called the principal φ-polygon of f(x) and will be denoted by
N−φ (f). See Figure 4.1. The length of N−φ (f), denoted len(N−φ (f)), is the
length of its projection onto the horizontal x-axis.

Notation 2. From now on, any reference to the φ-Newton polygon of f(x)
will be taken to mean the principal φ-polygon, and for simplicity, we will
write Nφ(f) := N−φ (f).

We attach to any abscissa 0 ≤ i ≤ len(Nφ) the following residual coeffi-
cient ci ∈ Fp[x]/(φ).

ci =
{

0 if (i, ui) lies strictly above Nφ or ui =∞,
red(ai(x)/pui) if (i, ui) lies on Nφ.

Note that ci is always nonzero in the latter case, because deg(ai(x)) <
deg(φ).

Let S be one of the sides of Nφ, with slope λ = −h/e, where e and h are
relatively prime, positive integers. The length of S, denoted len(S), is the
length of the projection of S to the horizontal axis.

Definition 4.3. The degree of S is len(S)/e. To put it another way, the
integral lattice divides each side into some number of segments. The degree
of S is the number of these segments.

Definition 4.4. Let s be the initial abscissa of S, and let d be the degree
of S. We define the residual polynomial attached to S (or to λ) to be the
polynomial

Rλ(f)(y) := cs + cs+ey + · · ·+ cs+(d−1)ey
d−1 + cs+dey

d ∈ Fφ[y].
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Example 4.5. Consider the irreducible polynomial f(x) = x4 + 23x3 +
12x2 + 11x+ 7, which factors over F3[x] into f(x) ≡ (x+ 2)4 (mod 3). Set
φ(x) = x+ 2, then the φ-development of f is

f(x) = −135 + 207(x+ 2)− 102(x+ 2)2 + 15(x+ 2)3 + (x+ 2)4.

The φ-Newton polygon is two-sided: one side of slope −1 and degree 2, the
other side of slope −1/2 and degree 1. The residual coefficients are c0 = 1,
c1 = −1, c2 = −1, c3 = 0, and c4 = 1. The residual polynomials attached
to the sides S1 and S2 are R−1(f)(y) = −y2 + 1 and R−1/2(f)(y) = y − 1,
respectively. See Figure 4.2.

1

2

3

1 2 3 4

S1

S2

+

Figure 4.2. The φ-polygon for f(x) = x4 + 23x3 + 12x2 +
11x+ 7 and φ(x) = x+ 2.

Definition 4.6. Let φ(x) ∈ Z[x] be a monic polynomial, irreducible mod-
ulo p. We say that f(x) is φ-regular if for every side Nφ(f), the residual
polynomial attached to that side is separable.

Choose monic polynomials φ1(x), . . . , φr(x) ∈ Z[x] whose reduction mod-
ulo p are the different irreducible factors of f(x) ∈ Fp[x]. We say that f(x) is
p-regular with respect to this choice if f(x) is φi-regular for each 1 ≤ i ≤ r.
Definition 4.7. The φ-index of f(x) is deg φ times the number of points
with integral coordinates that lie below or on the polygon Nφ(f), strictly
above the horizontal axis, and strictly to the right of the vertical axis. We
denote this number by indφ(f).
Notation 3. Let θ be an algebraic integer with minimal polynomial f(x) ∈
Z[x], and let ind(f) = [OQ(θ) : Z[θ]]. We denote by indp(f) the p-adic valu-
ation of [OQ(θ) : Z[θ]]:

indp(f) := νp(ind(f)).
Theorem 4.8. Theorem of the index:

indp(f) ≥ indφ1(f) + · · ·+ indφr (f),
and equality holds if f(x) is p-regular.
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Proof. See [11, Section 4.4]. �

Example 4.4 (continued). Returning to the previous example with f(x) =
x4 +23x3 +12x2 +11x+7, both of the residual polynomials R−1 and R−1/2
are separable over F3[y]. Hence f is 3-regular, and by Theorem 4.8, we
have ind3(f) = indφ(f) = 3, since deg φ = 1 and there are three points
with integral coordinates on or below the polygon. This result is verified
by PARI.

5. Computation of ind`(Φ)

For the remainder of the paper, we assume that ` is an odd prime and
t 6≡ ±2 (mod `2). We address the proof of Theorem 1.1 in two parts. In
this section we compute ind`(Φ), the `-adic valuation of ind(Φ), and in the
following section we compute indp(Φ) for the primes dividing t2 − 4. We
remind the reader of our notation that Φ(x) = Tn` (x) − t, and ind(Φ) =
[OK : Z[θ]], where θ is a root of Φ,K = Q(θ), and t is chosen so that Tn` (x)−
t is irreducible for each n ≥ 1. From Theorem 3.2, we know that Φ(t) ≡ 0
(mod `2) is the necessary and sufficient condition for which ind`(Φ) > 1.
We recover this condition using the method of Guàrdia, Montes, Nart.

We tackle the computation of ind`(Φ) in two cases: first in the special
case for t ≡ 0 (mod `), and then in the general case where t 6≡ ±2 (mod `2).
Recall from Lemma 2.3 that Φ(x) ≡ (x− t)`n (mod `), so we only have one
factor, φ(x) = x − t, to consider in our analysis. The case where t ≡ 0
(mod `) is simpler since we may take φ(x) = x, and hence the φ-Newton
polygon is the standard Newton polygon of Φ. In this case, we obtain the
φ-Newton polygon using Lemma 5.2, a classic result of Kummer [14]. When
t 6≡ ±2 (mod `2), we must derive the φ-development of Φ, then use a series
of lemmas, including a result of Lucas [17], in order to determine the `-adic
valuations of the coefficients in the φ-development. Once we construct the
φ-Newton polygon, we apply Theorem 4.8 to give a formula for ind`(Φ).

Definition 5.1. For any prime p and any integer a, the p-adic expansion
of a is

a = a0p
0 + a1p

1 + a2p
2 + · · ·+ arp

r

with 0 ≤ ai < p. We define the function

σp(a) =
∞∑
i=0

ai.(5.1)

Lemma 5.2 (Kummer). Let p be a prime, and let σp be the function defined
in Equation (5.1).
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(1) Let a and b be integers written in base p. The number of “carries"
performed when summing a+ b in base p is

#carries = σp(a) + σp(b)− σp(a+ b)
p− 1 .

(2) νp(a) = 1 + σp(a− 1)− σp(a)
p− 1 .

(3) νp(a!) = n− σp(a)
p− 1 .

(4) νp

(
a+ b

b

)
= #carries in a+ b summed in base p.

Though these are well-known, for the convenience of the reader, we pro-
vide proofs, as they are short.

Proof. (1) Write a and b in their base p expansions: a =
∑
aip

i and b =∑
bip

i. If ever ci := ai + bi ≥ p, then perform a “carry": subtract p from
ci and add 1 to ci+1, repeating until all ci are less than p. These ci are the
coefficients for the base p expansion of a + b: a + b =

∑
cip

i. Each carry
reduces the sum σp(a) + σp(b) by p− 1, and the result follows.

(2) This follows immediately from part (1). If k is the smallest integer
for which a− 1 ≡ −1 (mod pk), then the sum (a− 1) + 1 requires k carries
in base p.

(3) By part (2), we have the telescoping sum

νp(a!) =
a∑
i=1

νp(i) =
a∑
i=1

1 + σp(i− 1)− σp(i)
p− 1 = a− σp(a)

p− 1 .

(4) By part (3)

νp

(
a+ b

b

)
= νp

((a+ b)!
a!b!

)
= νp((a+ b)!)− νp(a!)− ν(b!)

= a+ b− σp(a+ b)
p− 1 + a− σp(a)

p− 1 − b− σp(b)
p− 1

= σp(a) + σp(b)− σp(a+ b)
p− 1 .

The result follows from part (1). �

We consider the case where t ≡ 0 (mod `) and proceed by computing
the Newton polygon of Tn` (x). By Proposition 2.1 (1), we have

Tn` (x) =
b`n/2c∑
k=0

cix
`n−2k, where ci = 2`n

`n + i

(
(`n + i)/2
(`n − i)/2

)
.
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Proposition 5.3. For any integer 0 < i ≤ `m ≤ `n, ν`(ci) ≥ n −m with
equality only if i = `m.

Proof. When i = `m,

ν`(c`m) = n+ ν`

(
(`n + `m)/2
(`n − `m)/2

)
− ν`(`n + `m).

Note that(
(`n + `m)/2
(`n − `m)/2

)
=
(

(`n + `m)/2
(`n + `m)/2− (`n − `m)/2

)
=
(

(`n + `m)/2
`m

)
.

The `-adic valuation of this number can be determined using Lemma 5.2
by considering a sum in base `. Writing

`n + `m

2 − `m = `− 1
2 · `m + `− 1

2 · `m+1 + · · ·+ `− 1
2 · `n,

it is easy to see that(
`n + `m

2 − `m
)

+ `m = `+ 1
2 · `m + `− 1

2 · `m+1 + · · ·+ `− 1
2 · `n

requires no carries when summed in base `. Thus by Lemma 5.2

ν`

(
(`n + `m)/2
(`n − `m)/2

)
= 0.

Furthermore,

ν`(`n + `m) = ν`
(
`m(`n−m + 1)

)
= m,

proving that ν`(c`m) = n−m.
If 0 < i < `m, then ν`(`n + i) = ν`(i) < m. Hence

ν`(ci) = n+ ν`

(
(`n + i)/2
(`n − i)/2

)
− ν`(`n + i) > n−m,

concluding the proof. �

Corollary 5.4. The Newton polygon of Tn` (x) at ` is
∑n
m=1 Sm where Sm

is the edge with endpoints (`m−1, n−m+ 1) and (`m, n−m).

Proof. By Proposition 5.3, the polygon
∑n
m=1 Sm is a tight lower bound

for the points {(i, ν`(ci)}. It is easily verified that this polygon is convex by
considering the slope of Sm. �

Now that we have the Newton polygon for Tn` , we must only consider
the `-adic valuation of t to obtain the Newton polygon for Φ.
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Corollary 5.5. Suppose t ≡ 0 (mod `), and let v = ν`(t). Let Sm be the
edge defined in Corollary 5.4. Define S′ to be the edge with endpoints (0, v)
and (`n−v+1, v − 1). Then

Nφ(Φ) = S′ + Sn−v+2 + Sn−v+3 + · · ·+ Sn.

Proof. Let λm be the slope of Sm and λ′ be the slope of S′. It suffices to
show that λn−v+1 < λ′ < λn−v+2. This is easily verified:

λn−v = −1
`n−v(`− 1) < λ′ = −1

`n−v+1 < λn−v+2 = −1
`n−v+1(`− 1) .

�

We give a brief example to illustrate these results.

Example 5.6. Consider the polynomial T 3
3 (x) − t. By Corollary 5.4, the

Newton polygon of T 3
3 (x) is dictated by the points whose abscissa are pow-

ers of 3. From here, the Newton polygon of T 3
3 (x)− t is easily obtained. See

Figure 5.1.

1 3 9 27

1

2

3

4

5

0 1 3 9 27

1

2

3

4

5

0

Figure 5.1. Left: The Newton polygon of T 3
3 (x). Right: the

Newton polygon of T 3
3 (x) − 24 at 3. The 3-adic valuations

of the other coefficients are marked in gray.

Now that we have determined the Newton polygon in the case where
t ≡ 0 (mod `), we move on to the case where t 6≡ ±2 (mod `2). We begin
by establishing the φ-development of Φ, where φ(x) = x−t. Writing Φ(x) =
Φ(φ(x) + t) and using the expression for Td in Proposition 2.1 (1), we have

Tn` (φ+ t)− t = −t+
b`n/2c∑
k=0

(−1)k
(
`n − k
k

)
`n

`n − k
(φ+ t)`n−2k

= −t+
b`n/2c∑
k=0

(−1)k
(
`n − k
k

)
`n

`n − k

`n−2k∑
i=0

(
`n − 2k

i

)
t`

n−2k−iφi
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= −t+
`n∑
i=0

b(`n−i)/2c∑
k=0

(−1)k
(
`n − k
k

)(
`n − 2k

i

)
`n

`n − k
t`

n−2k−iφi

= −t+
b`n/2c∑
k=0

(−1)k
(
`n − k
k

)
`n

`n − k
t`

n−2k

+
`n∑
i=1

b(`n−i)/2c∑
k=0

(−1)k
(
`n − k
k

)(
`n − 2k

i

)
`n

`n − k
t`

n−2k−iφi

= Tn` (t)− t

+
`n∑
i=1

b(`n−i)/2c∑
k=0

(−1)k
(
`n − k
k

)(
`n − 2k

i

)
`n

`n − k
t`

n−2k−iφi

= Φ(t) +
`n∑
i=1

b(`n−i)/2c∑
k=0

(−1)k
(
`n − k
k

)(
`n − 2k

i

)
`n

`n − k
t`

n−2k−iφi.(5.2)

For ease, we will let

bi := `n
b `n−i

2 c∑
k=0

(−1)k
(
`n − k
k

)(
`n − 2k

i

)
t`

n−2k−i

`n − k

denote the coefficient of φi for 1 ≤ i ≤ `n.

Lemma 5.7. For positive integers a, b, and c satisfying 0 ≤ b ≤ a−c
2 , the

binomial coefficients satisfy the following relationship:(
a− b
b

)(
a− 2b
c

)
=
(
a− b− c

b

)(
a− b
c

)
.

Proof. (
a− b
b

)(
a− 2b
c

)
= (a− b)!
b!(a− 2b!) ·

(a− 2b)!
c!(a− 2b− c)!

= (a− b)!
c!(a− b− c)! ·

(a− b− c)!
b!(a− 2b− c)!

=
(
a− b− c

b

)(
a− b
c

)
.

�

We use this lemma to rewrite bi in the following way.

bi =
b `n−i

2 c∑
k=0

(−1)k `n

`n − k

(
`n − k
k

)(
`n − 2k

i

)
t`

n−2k−i
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= `n

i

b `n−i
2 c∑

k=0
(−1)k

(
`n − i− k

k

)(
`n − k − 1
i− 1

)
t`

n−2k−i.

This new expression simplifies the `-adic expansions of the numbers in
the binomial coefficients, which set us up nicely to apply the following result
of Lucas.
Lemma 5.8. Let p be a prime, and let 0 ≤ m ≤ n with n =

∑r
j=0 njp

j

and m =
∑r
j=0mjp

j. Then(
n

m

)
≡

r∏
j=0

(
nj
mj

)
(mod p).

Proof. See [17, Section 3]. �

The following result will also be useful in computing ν`(bi).
Lemma 5.9. Let ` be an odd prime. If x 6= ±2 mod `, then U`−1(x) =
±1 mod `.

Proof. Let x ∈ F` and x 6= ±2. Set α = x+
√
x2−4
2 ∈ F`2 and β = x−

√
x2−4
2 ∈

F`2 . From Proposition 2.1 (2), we have

Ud(x) =

(
x+
√
x2 − 4

)d+1
−
(
x−
√
x2 − 4

)d+1

2d+1
√
x2 − 4

.

Recall that the Frobenius map on F`2 fixes F` and acts by conjugation away
from F`. Hence, if

√
x2 − 4 ∈ F`, then α` = α, β` = β, and

U`−1(x) = α− β√
x2 − 4

= 1 mod `.

Otherwise, if
√
x2 − 4 6∈ F`, then α` = β, β` = α, and

U`−1(x) = β − α√
x2 − 4

= −1 mod `.

�

We are now prepared to compute the `-adic valuations of the coefficients
in the φ-development of Φ.
Theorem 5.10. Suppose that t 6≡ ±2 (mod `2), Φ(t) ≡ 0 (mod `2), and let
i be an integer satisfying `m ≤ i < `m+1 where m < n. Then ν`(bi) ≥ n−m
with equality if i = `m.
Proof. Assume first that i = `m + ε for some integer 0 < ε < (`− 1)`m. We
show that ν`(bi) ≥ n−m. Note that(
`n − k − 1
`m + ε− 1

)
= (`n − k − 1)!

(`m + ε)!(`n − `m − k − ε)!
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= (`n − k − 1)!
`m(`m − 1)!(`n − `m − k)!

`m!ε!
(`m + ε)!

(`n − `m − k)!
ε!(`n − `m − k − ε)!

=
(`n−k−1
`m−1

)(`n−`m−k
ε

)(`m+ε
`m
) .

Hence,

bi = `n

`m + ε

b `n−i
2 c∑

k=0
(−1)k

(
`n − i− k

k

)(
`n − k − 1
`m + ε− 1

)
t`

n−2k−i

= `n−m(`m+ε
`m
) b

`n−i
2 c∑

k=0
(−1)k

(
`n − i− k

k

)(
`n − k − 1
`m − 1

)(
`n − `m − k

ε

)
t`

n−2k−i.

By Lemma 5.2, ν`
(`m+ε
`m
)

= 0 since `m + ε requires no carries in base `.
Furthermore, the summation evaluates to an integer, so its valuation is
non-negative. Thus ν`(bi) ≥ n−m.

Assume now that i = `m, and consider

b`m = `n−m

`n−`m

2∑
k=0

(−1)k
(
`n − `m − k

k

)(
`n − k − 1
`m − 1

)
t`

n−`m−2k.(5.3)

To show that ν`(b`m) = n−m, we show that `m−nb`m is relatively prime to
`. It suffices to sum over the terms that are relatively prime to ` and show
that the sum of these terms is not divisible by `. We write the following
numbers in their base-` expansions.

k =
n−1∑
j=0

kj`
j ; `m − 1 =

m−1∑
j=0

(`− 1)`j ; `n − k − 1 =
n−1∑
j=0

(`− kj − 1)`j .

By Lemma 5.8, the second binomial coefficient in Equation (5.3) satisfies(
`n − k − 1
`m − 1

)
≡

m−1∏
j=0

(
`− kj − 1
`− 1

)
n−1∏
j=m

(
`− km − 1

0

)
(mod `)

≡
{

1 (mod `) if k0 = · · · = km−1 = 0
0 (mod `) otherwise.

That is,
(`n−k−1
`m−1

)
is relatively prime to ` if and only if `m | k. Since we are

only interested in the terms that are relatively prime to `, we continue with
the additional assumption that `m divides k. Now, the base-` expansion of
`n − `m − k is

`n − `m − k =
n−1∑
j=m

(`− kj − 1)`j .
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Applying Lemma 5.8 to the first binomial coefficient in Equation (5.3), we
see that(

`n − `m − k
k

)
≡
(
`− km − 1

km

)
· · ·
(
`− kn−1 − 1

kn−1

)
(mod `),

which is nonzero if and only if 0 ≤ kj ≤ (` − 1)/2 for each j = m,m +
1, . . . , n− 1. We have the following:

`m−nb`m =
`n−`m

2∑
k=0

(−1)k
(
`n − `m − k

k

)(
`n − k − 1
`m − 1

)
t`

n−`m−2k

≡
`n−`m

2∑
k=0

(−1)k
(
`− km − 1

km

)
· · ·
(
`− kn−1 − 1

kn−1

)
t`

n−`m−2k

≡
n−1∏
j=m

`−1
2∑

kj=0
(−1)kj

(
`− kj − 1

kj

)
t`−2kj−1

≡ (U`−1(t))n−m ≡ ±1 (mod `).

The second to last step takes advantage of the fact that t`n−`m ≡ t`−1 ≡ 1
(mod `), and the final step follows from Proposition 2.1 (1) and Lemma
5.9. This concludes the proof. �

Remark 2. It may appear that the condition required to apply Lemma 5.9
is stronger than the assumptions in the statement of Theorem 5.10, however
we argue that the conditions are equivalent.

Lemma 5.11. Suppose that Φ(t) ≡ 0 (mod `2), then t ≡ ±2 (mod `2) if
and only if t ≡ ±2 (mod `).

Proof. The first implication (⇒) is clear. For the reverse direction, if t ≡ ±2
(mod `), then

Tn` (t) ≡ Tn` (±2) (mod `2)
by Proposition 3.3. The left side is congruent to t by assumption, and the
right side is congruent to ±2 by Proposition 2.4. �

Remark 3. We note that in this case, an alternative method for obtaining
the φ-development is given by the Taylor expansion formula:

Φ(x) = Φ(t) + Φ′(t)φ(x) + 1
2Φ′′(t)φ(x)2 + · · ·+ 1

`n!Φ
(`n)(t)φ(x)`n .

In fact, Theorem 5.10 subsumes Proposition 5.3 as it includes the case
t ≡ 0 (mod `), and we see that, except for the constant term, the `-adic
valuations of the coefficients of Tn` (x) are invariant under the shift Tn` (x) 7→
Tn` (x − t) whenever Φ(t) ≡ 0 (mod `2) and t 6≡ ±2 (mod `2). Similar to
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Corollary 5.5, we only need to consider the `-adic valuation of Φ(t) (see
Equation (5.2)) to obtain the φ-Newton polygon of Φ.

Corollary 5.12. Suppose t 6≡ ±2 (mod `2). Let v = ν`(Φ(t)), and let Sm
denote the edge from (`m−1, n−m+ 1) to (`m, n−m) and S′ to be the edge
from (0, v) to (`n−v+1, v − 1). Then the φ-Newton polygon of Φ is

Nφ(Φ) = S′ + Sn−v+2 + · · ·+ Sn.

Proof. The proof is the same as in Corollary 5.5. �

Theorem 5.13. Suppose t 6≡ ±2 (mod `2), and set v = ν`(Φ(t)). Then

ind`(Φ) =
min{v−1,n}∑

i=1
`n−i.

Proof. It is easy to verify that each side of the φ-Newton polygon given in
Corollary 5.12 has degree 1. Hence every residual polynomial attached to
the polygon has degree 1, and it follows that Φ is `-regular. By Theorem
4.8, the `-adic valuation of the index is equal to the number of points with
integral coordinates under the polygon. The lattice points are arranged
into rows whose lengths are decreasing powers of `, giving the formula for
ind`(Φ). �

Remark 4. We note that ν`(Φ(t)) ≥ 1 since Φ(t) is the constant term in
the φ-development of Φ, and Φ(x) ≡ (x − t)`n ≡ φ(x)`n (mod `). Hence
if Φ(t) 6≡ 0 (mod `2), then ν`(Φ(t)) = 1, and the φ-Newton polygon of
Φ is one-sided with vertices (0, 1) and (`n, 0). There are no lattice points
on or under this side, so by Theorem 4.8, we have ind`(Φ) = 0. We have
thus recovered the condition in Theorem 3.2 that ` | ind(Φ) if and only if
Φ(t) ≡ 0 (mod `2).

We illustrate Theorem 5.13 with an example.
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Figure 5.2. Left: the φ-Newton polygon for T 3
3 (x)−24. We

have ind3(T 3
3 (x)−24) = 9. Right: the φ-Newton polygon for

T 3
3 (x)− 81. It follows that ind3(T 3

3 (x)− 81) = 13.
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Example 5.14. Consider the polynomial T 3
3 (x)− t. From Corollary 5.12,

we see that the degree of each side of the polygon is 1, meaning that each
side does not intersect any integral lattice points other than its endpoints.
The points with integral coordinates on or under the polygon are arranged
into rows whose lengths are decreasing powers of 3. See Figure 5.2.

6. Computation of indp(Φ)

As in the previous section, we maintain the assumption that ` is an
odd prime and t 6≡ ±2 (mod `2). Moreover, we assume that p is an odd
prime different from ` for which t ≡ ±2 (mod p2). By Theorem 3.2, the
condition t ≡ ±2 (mod p2) is the necessary and sufficient condition for
which p | ind(Φ). In this section, we compute indp(Φ), again using Theorem
4.8, completing the proof of Theorem 1.1. In the previous section, we found
that the `-regularity of Φ comes immediately from the shape of the φ-
Newton polygon. In this case, there is no guarantee that Φ is p-regular.
However by taking appropriate lifts of the irreducible factors of Φ, we find
that the lower bound given by Theorem 4.8 meets the upper bound provided
by the p-adic valuation of DΦ, giving the result. Consider the following
example.

Nφ3,1

1

1

2 Nφ3,2

1 2

1

2

Nφ11,1

1

1

2

3

4 Nφ11,2

1 2

1

2

3

4 Nφ11,3

1 2

1

2

3

4

Figure 6.1. φ-Newton polygons associated to T5(x)− t0 in
Example 6.1.

Example 6.1. Let t0 = 29284, and consider the polynomial T5(x)− t0. We
have chosen the constant term so that t0− 2 and t0 + 2 are not square-free:

t0 − 2 = 2 · 32 · 1627 and t0 + 2 = 2 · 114,
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By Theorem 3.2, the primes 3 and 11 divide ind(T5(x) − t0), and 5 does
not. We have

T5(x)− t0 ≡ (x+ 2)(x2 − x− 1)2 (mod 3), and
T5(x)− t0 ≡ (x− 2)(x− 3)2(x+ 4)2 (mod 11).

Take

φ3,1(x) = x+ 2, φ3,2(x) = x2 − x− 1,
φ11,1(x) = x− 2, φ11,2(x) = x− 4029, φ11,3(x) = x+ 4030,

as lifts of the irreducible factors of T5(x) − t0 modulo 3 and 11. Each lift
φ is chosen so as to “maximize" the valuation of the constant term in the
φ-development. The φ-developments of T5(x)− t0 are

T5(x)− t0 =− 29286 + 25φ3,1(x)− 50φ3,1(x)2 + 35φ3,1(x)3

− 10φ3,1(x)4 + φ5,1(x)5,

T5(x)− t0 =− 29286 + (x+ 2)φ3,2(x)2,

T5(x)− t0 =− 29282 + 25φ11,1(x) + 50φ11,1(x)2 + 35φ11,1(x)3

+ 10φ11,1(x)4 + φ11,1(x)5,

T5(x)− t0 = 1061661829395540065 + 1317525391163795φ11,2(x)
+ 654021103455φ11,2(x)2 + 162328405φ11,2(x)3

+ 20145φ11,2(x)4 + φ11,2(x)5,

T5(x)− t0 =− 1062980008970214434 + 1318833920436505φ11,3(x)
− 654508209550φ11,3(x)2 + 162408995φ11,3(x)3

− 20150φ11,3(x)4 + φ11,3(x)5.

From the φ-Newton polygons (Figure 6.1), we see that the factors φ3,1 and
φ11,1 do not contribute to the index since there are no lattice points on or
under their polygons. Let Rφ denote the residual polynomial attached to
φ. The residual polynomials attached to the other factors are

Rφ3,2(y) = (θ3,2 − 1)y2 + 1, where θ3,2 is a root of φ3,2,

Rφ11,2(y) = 5y2 + 5y − 2, and Rφ11,3(y) = 3y2 − 3y − 2.

The residual polynomials Rφ3,2 and Rφ11,2 are separable, but Rφ11,3 is not.
Hence T5(x)− t0 is 3-regular, but not 11-regular. In fact, it is not possible
to find a lift of x − 4 for which T5(x) − t0 is 11-regular. By Theorem 4.8,
we have

ind3(T5(x)− t0) = 2 and ind11(T5(x)− t0) ≥ 4.
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But, by Proposition 2.2, we also have

ind11(T5(x)− t0) ≤ 1
2ν11(DT5(x)−t0) = ν11(t20 − 4) = 4.

Thus ind(T5(x)− t0) = 32 · 114. This result is verified by PARI.

In this example, we see that there is a certain uniformity to the φ-Newton
polygons provided that we pick suitable lifts for each of the irreducible
factors. Following Lemma 2.5, we write

Φ(x) ≡ (x± 2)φ1(x)2 · · ·φr(x)2 (mod p),(6.1)
where φi(x) are irreducible factors modulo p. We prove the following.

Proposition 6.2. Let p 6= ` be an odd prime such that t ≡ ±2 (mod p2).
Then for each irreducible factor φi in Equation (6.1), there exists a monic
lift φ̂i of φi such that φ̂i ≡ φi (mod p), and the φ̂i-polynomial is one-sided
with vertices (0, νp(t2 − 4)) and (2, 0). Hence

indφ̂i
(Φ) =

⌊
νp(t2 − 4)

2

⌋
deg(φ̂i).

Moreover, ind(x±2)(Φ) = 0.

Consequently, if νp(t2−4) is odd, then the residual polynomial associated
with the φ̂i-polygon is degree 1. Hence Φ is p-regular, and by Theorem 4.8,

indp(Φ) =
r∑
i=1

⌊
νp(t2 − 4)

2

⌋
deg(φ̂i) =

⌊
νp(t2 − 4)

2

⌋
`n − 1

2 .

If νp(t2− 4) is even, regularity is not guaranteed since the residual polyno-
mial is degree 2, so at best, we have from Theorem 4.8 that

indp(Φ) ≥
r∑
i=1

⌊
νp(t2 − 4)

2

⌋
deg(φ̂i) = νp(t2 − 4)

2
`n − 1

2 .

On the other hand, the valuation of the index is bounded by the p-adic
valuation of DΦ. Namely by Proposition 2.2,

indp(Φ) ≤ 1
2νp

(
(t2 − 4)(`n−1)/2

)
= νp(t2 − 4)

2
`n − 1

2 .

Thus we have derived the following result.

Corollary 6.3. If p 6= ` is an odd prime and t ≡ ±2 (mod p2), then

indp(Φ) =
⌊
νp(t2 − 4)

2

⌋
`n − 1

2 .

Proof of Theorem 1.1. The multiplicity of each odd prime divisor of
ind(Φ) are given by Theorem 5.13 and Corollary 6.3. The formula for ∆K

follows from Equation (1.1). �
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We conclude this section with the proof of Proposition 6.2.

Proof. (Proposition 6.2) From Lemma 2.5, Tn` (x)± 2 = (x± 2)τ(x)2 where
τ(x) ≡ φ1(x) · · ·φr(x) (mod p).

Since τ has no repeated roots modulo p, Hensel lifting ensures that there
exist lifts φ̂1, . . . , φ̂r such that

τ(x) ≡ φ̂1(x) · · · φ̂r(x) (mod pe)

for e arbitrarily large. Take e > νp(t2−4) (although e > νp(t2−4)/2 would
be sufficient) and fix a lift φ = φ̂i. Then the φ-development of Tn` (x)± 2 is

Tn` (x)± 2 = A0(x) +A1(x)φ(x) +A2(x)φ(x)2 + · · · .

Note that Tn` (x) ± 2 = (x ± 2)τ(x)2 ≡ (x ± 2)φ̂1(x)2 · · · φ̂r(x)2 (mod pe),
hence νp(A2) = 0 and

A0(x) +A1(x)φ(x) ≡ 0 (mod pe).

In particular, since φ is monic, νp(A0) ≥ νp(A1) ≥ e > νp(t2− 4). Thus the
φ-development of Φ is

Φ(x) = Tn` (x)− t = Tn` (x)− t+ t− t
= t− t+A0(x) +A1(x)φ(x) +A2(x)φ(x)2 + · · · ,

where νp(t − t + A0) = νp(t − t) = νp(t2 − 4), νp(A1) > νp(t2 − 4), and
νp(A2) = 0, and therefore φ̂1, . . . , φ̂r provide desired lifts.

We now show that ind(x±2)(Φ) = 0. The (x± 2)-development is given by
Taylor’s expansion centered at ±2:

Φ(x) = Φ(±2) + Φ′(±2)(x± 2) + · · ·
= Φ(±2) + `nU`n−1(±2)(x± 2) + · · · ,

where Ud denotes the degree-d Chebyshev polynomial of the second kind.
By the recursion formula in Proposition 2.1 (3), it is a straightforward
induction to show that Ud(2) = d + 1. Moreover, since U`n−1 is an even
function (Proposition 2.1 (4)), it follows that νp(`nU`n−1(±2)) = νp(`2n) =
0, and thus the (x ± 2)-polygon is one-sided with vertices (0, νp(Φ(±2)))
and (1, 0). We conclude that ind(x±2)(Φ) = 0. �

7. Integral basis

The Montes algorithm also provides an efficient method for determining
an integral basis for the ring of integers OK . In this section we summarize
their procedure as it pertains to our situation.

For this discussion we assume that Φ is regular with respect to every
prime. Fix a prime p for which Z[θ] is not maximal. Let φ̂i be a lift of an
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irreducible factor of Φ for which Φ is φ̂i-regular. We define the quotients
attached to the φ̂i-development of Φ to be the polynomials

Φ(x) = φ̂i(x)qi,1(x) + ai,0(x)

qi,1(x) = φ̂i(x)qi,2(x) + ai,1(x)
...

qi,r−1(x) = φ̂i(x)qi,r(x) + ai,r−1(x)
qi,r(x) = ai,r(x).

Additionally, for 1 ≤ j ≤ r, we identify the points (j, yi,j) on the polygon
Nφ̂i

(Φ).

Proposition 7.1. The collection {qi,j(θ)/pbyi,jc} contains a p-integral basis
for OK .

Proof. This is a specialization of [5, Theorem 2.6]. �

In Corollary 5.12, we determined the φ-polygon for Φ for certain values
of t. Under these same conditions, we determine a basis for the ring OK .

Proposition 7.2. Suppose that t − 2 and t + 2 are square-free, Φ(t) ≡ 0
(mod `2). Let v = min{ν`(Φ(t))− 1, n}. Then a basis for OK is{

θ,
q`n−1(θ)

`
,
q`n−2(θ)
`2

, . . . ,
q`n−v (θ)
`v

}
.

Proof. Recall that Φ(x) = Tn` (x)−t ≡ (x−t)`n (mod `), so let φ(x) = x−t.
In Corollary 5.12 we determined Nφ(Φ) and showed that Φ is `-regular. For
each 1 ≤ j ≤ `n, the quotient qj(x) is a monic polynomial of degree `n − j,
and these quotients satisfy the recursion qj(x) = φ(x)qj+1(x) + aj where
q`n(x) = 1. By definition, ν`(aj) ≥ byjc. Hence if byj+1c = byjc, then
qj+1(θ)/`byj+1c ∈ OK implies that qj(θ)/`byjc ∈ OK . It follows that

OK = Z
[
q`n(θ)
`by`nc , . . . ,

q1(θ)
`by1c

]
= Z

[
θ,
q`n−1(θ)

`
,
q`n−2(θ)
`2

, . . . ,
q`n−v (θ)
`v

]
.

�
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