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Beyond two criteria for supersingularity:
coefficients of division polynomials

par Christophe DEBRY

Résumé. Soit f(x) un polynôme cubique, unitaire et séparable
avec coefficients dans un corps de caractéristique p ≥ 3, et soit
E la courbe elliptique donnée par l’équation y2 = f(x). Dans cet
article on démontre que le coefficient du monôme x 1

2 p(p−1) dans
le p–ième polynôme de division de E est égal au coefficient du
monôme xp−1 dans f(x) 1

2 (p−1). Lorsque le corps de base est fini, le
premier coefficient est nul si et seulement si E est supersingulière,
ce qui, par un critère classique de Deuring (1941), est équivalent
à la nullité du deuxième coefficient. Donc les zéros des coefficients
sont les mêmes. L’égalité des coefficients qu’on démontre dans cet
article entraîne clairement cette égalité de zéros.

Abstract. Let f(x) be a cubic, monic and separable polynomial
over a field of characteristic p ≥ 3 and let E be the elliptic curve
given by y2 = f(x). In this paper we prove that the coefficient at
x

1
2 p(p−1) in the p–th division polynomial of E equals the coefficient

at xp−1 in f(x) 1
2 (p−1). For elliptic curves over a finite field of

characteristic p, the first coefficient is zero if and only if E is
supersingular, which by a classical criterion of Deuring (1941) is
also equivalent to the vanishing of the second coefficient. So the
zero loci of the coefficients are equal; the main result in this paper
is clearly stronger than this last statement.

Introduction

Let K be a finite field of characteristic p ≥ 3 and let E/K be an elliptic
curve given by the equation y2 = f(x), where f(x) ∈ K[x] is cubic, monic
and separable. Associated to E, one defines division polynomials ψm (for
every positive integer m), whose properties we shall review in Section 1.
One of the properties we need to state the main theorem, is that if m is
odd, then ψm, as a function on E, is a function of x only. These polynomials
can be used to check whether E is supersingular or not:

Division polynomial criterion: E is supersingular if and only if
the coefficient at x

1
2 p(p−1) in ψp is zero.
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For example, let E : y2 = x3 +Ax+B be a model of an elliptic curve over
a finite field of characteristic 5. Then ψ5 is equal to 2Ax10 + 4A2Bx5 +(
4B4 − 2A3B2 +A6). So E is supersingular if and only if A = 0. There is
also a classical criterion, very similar (in wording) to the one above.

Deuring criterion: E is supersingular if and only if the coeffi-
cient at xp−1 in f(x)

1
2 (p−1) is zero.

For a proof of this criterion, one can consult Silverman [8, V.4.1]. We re-
consider the above example: an elliptic curve E : y2 = x3 + Ax + B over
F5k is supersingular if and only if the coefficient at x4 in (x3 +Ax+B)2 is
zero, i.e., if and only if 2A = 0. This is indeed the same criterion as the one
we got using division polynomials. The striking similarity between the cri-
teria actually has a deeper reason: not only do these coefficients at different
monomials in different polynomials have the same zeros, they actually are
equal, as we prove in section 2. More precisely, we show that the following
theorem holds:

Theorem 1. Consider the elliptic curve E : y2 = x3 + ax2 + bx + c over
Q(a, b, c) (where a, b and c are transcendentals). Let p ≥ 3 be prime and let
`p ∈ Z[a, b, c] be the coefficient at x

1
2 p(p−1) in the p–th division polynomial

ψp ∈ Z[x, a, b, c] of E. Let cp ∈ Z[a, b, c] be the coefficient at xp−1 in (x3 +
ax2 + bx+ c)

1
2 (p−1). Then `p ≡ cp (mod p).

Specializing the indeterminates a, b and c, as well as the Z–coefficients
of the polynomials in the theorem immediately implies the following

Corollary 2. Let K be a field of characteristic p ≥ 3 and let f(x) be a
cubic, monic and separable polynomial over K. Let E be the elliptic curve
given by y2 = f(x). Then the coefficient at x

1
2 p(p−1) in the p–th division

polynomial of E is equal to the coefficient at xp−1 in f(x)
1
2 (p−1).

In section 3 we apply the above result to a specific elliptic curve to
deduce, just for the sake of arithmetic fun, that if k is a positive integer and
4k+ 1 is prime, then this prime divides kk−1. Finally, in section 4 we look
at the other coefficients of the p–th division polynomial in characteristic p,
proving that all of them (except for the constant) are divisible by the one
at x

1
2 p(p−1), the leading actor of the above theorem and corollary.
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1. Division polynomials

Let E be an elliptic curve over a field K and choose a Weierstrass model

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for E. We denote the neutral element of the group law on E by O, and
denote the multiplication–by–m isogeny by [m]. The division polynomials
(ψm)m≥1 associated to E are defined recursively:

ψ1 = 1, ψ2 = 2y + a1x+ a3,

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8,

ψ4 = ψ2 ·
(
2x6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2

+(b2b8 − b4b6)x+ (b4b8 − b2
6)
)
,

and
ψ2m+1 = ψm+2ψ

3
m − ψm−1ψ

3
m+1,

ψ2ψ2m = ψ2
m−1ψmψm+2 − ψm−2ψmψ

2
m+1.

Recall that the b–quantities in the definition of ψ3 and ψ4 are polynomials
in the a–quantities: b2 = a2

1 + 4a2, b4 = 2a4 + a1a3, b6 = a2
3 + 4a6 and

b8 = a2
1a6 + 4a2a6− a1a3a4 + a2a

2
3− a2

4. Every ψm ∈ K[x, y] can be written
as a linear polynomial in y over K[x] using the Weierstrass equation. As
such, one can prove that if m is odd, then ψm ∈ K[x], and as a polynomial
in x, ψm has degree at most 1

2(m2−1) and the coefficient at x
1
2 (m2−1) equals

m. Proofs for these claims can be found in various places, e.g., [5, 3.6]. We
also recall the following standard facts:

• The roots of ψm are precisely the nontrivial m–torsion points on E,
i.e., the points P ∈ E(K) \ {O} satisfying [m]P = O.
• The polynomials ψ2

m and φm = xψ2
m − ψm−1ψm+1 are elements

of K[x] using the Weierstrass equation, and as such are relatively
prime.
• Denoting the Weierstrass x–coordinate function on E by x, the
functions x ◦ [m] and φm/ψ

2
m on E are equal.

We deduce the following result about the p–th division polynomial in char-
acteristic p ≥ 3.

Proposition 3. Let E be an ordinary elliptic curve over a finite field K
of characteristic p ≥ 3. Then ψp has degree 1

2p(p− 1) and lies in K[xp].

Proof. Note that [p] is not separable and hence factors through the p–th
power Frobenius

Φ : E → E(p) : [X : Y : Z] 7→ [Xp : Y p : Zp],
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where E(p) is the elliptic curve defined by the Weierstrass equation with
coefficients ap

i . (Cf. [8, II.2.12]) It follows that x◦ [p] is a rational function of
xp and yp. Since finite fields are perfect, this implies that x ◦ [p] is the p–th
power of a rational function in x and y. So the coefficients of the divisor
of x ◦ [p] are all divisible by p. Since x ◦ [p] = φp/ψ

2
p where φp and ψ2

p are
coprime, we find that the coefficients in 2div(ψp) are p–divisible. The zero
set Z of ψp is equal to (ker[p])(K) \ {O}, and ψp has only a pole at O, so

div(ψp) =
∑

P∈Z
nP 〈P 〉 − n〈O〉,

where n =
∑

P∈Z nP and each nP ≥ 1. By the p–divisibility of the coef-
ficients, we get that p divides each 2nP and therefore divides each nP (p
is odd). It follows that nP ≥ p and n ≥ p · ]Z = p(p − 1) because E is
ordinary. The polynomial ψp ∈ K[x] has degree ≤ 1

2(p2 − 1) and hence has
order at least 1 − p2 in O. In other words, −n ≥ 1 − p2, which together
with p | n implies that n ≤ p(p− 1). We find that n = p(p− 1) and hence

div(ψp) =
∑

P∈Z
p〈P 〉 − p(p− 1)〈O〉 = p

(∑
P∈Z
〈P 〉 − (p− 1)〈O〉

)
.

The first implication is that the degree of ψp ∈ K[x] equals −1
2ordO(ψp) =

1
2p(p− 1). One also easily verifies that the sum of the points in Z is equal
to O, so the divisor 1

pdiv(ψp) is principal. Therefore, ψp is the pth power
of a polynomial in K[x], which (working in characteristic p) implies that
ψp ∈ K[xp]. �

Remark. An alternative to prove this proposition is to use the main theo-
rem from [1]. Cheon and Hahn [3] prove the proposition for ordinary elliptic
curves over the prime field Fp.

Example. Let E : y2 = x3 + Ax+ B be a model of an elliptic curve over
F5k . Then ψ5 is equal to 2Ax10 +4A2Bx5 +

(
4B4 − 2A3B2 +A6). Note that

ψ5 is indeed a function of x5. It also follows from the proposition that if E
is ordinary, then ψ5 must have degree 5 ·4/2 = 10, so A 6= 0 if E is ordinary.

We can now derive the division polynomial criterion for supersingularity.
Let E be an elliptic curve over a finite field of characteristic p ≥ 3. Since the
zeros of ψp are precisely the nontrivial p–torsion points, E is supersingular
if and only if ψp has no zeros, i.e., ψp is a constant polynomial. This is
equivalent to all nonconstant coefficients of ψp being zero. But we know
that if E is ordinary, then ψp has degree 1

2p(p− 1). This implies that E is
supersingular if and only if the coefficient at x

1
2 p(p−1) in ψp is zero, which

is the division polynomial criterion mentioned in the introduction.
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2. Proof of Theorem 1

2.1. Setup of a special case. Let p ≥ 3 be a prime and let A and B
be indeterminates. Consider the p–th division polynomial ψp of the elliptic
curve over Q(A,B) given by the equation y2 = x3 + Ax + B. As p is
odd, one can prove that ψp ∈ Z[x,A,B], so we can consider the coefficient
`p(A,B) ∈ Z[A,B] at x

1
2 p(p−1) in ψp. Let cp(A,B) be the coefficient at xp−1

in (x3 + Ax + B)
1
2 (p−1). For example, `5(A,B) = 62A and cp(A,B) = 2A.

We first prove the following special case of Theorem 1:

Proposition 4. We have cp(A,B) ≡ `p(A,B) (mod p).

The following three subsections will consist of the proof of the above
proposition. To simplify notations, write p = 2q + 1 with q ∈ Z. One can
easily check the proposition for p = 3: both coefficients are zero. So suppose
p ≥ 5 from now on.

2.2. Step 1: cp(A,B) as a sum. First, we compute cp(A,B) by using
the trinomial identity:

(x3 +Ax+B)q =
∑

(i,j,k)∈S

(
q

i, j, k

)
x3i+jAjBk,

where S =
{
(i, j, k) ∈ Z3 | i, j, k ≥ 0, i+ j + k = q

}
and(

q

i, j, k

)
= q!
i!j!k! .

Hence,

cp(A,B) =
∑

(i,j,k)∈S0

(
q

i, j, k

)
AjBk,

where S0 = {(i, j, k) ∈ S | 3i + j = p − 1 = 2q}. Let us determine S0
more explicitly. The triple (i, j, k) is in S0 if and only if i = 1

3(2q − j),
k = q − i− j = 1

3(q − 2j), and i, j, k are non–negative integers. So

S0 =
{(1

3(2q − j), j, 1
3(q − 2j)

)
| j ≡ −q (mod 3), j ∈ Z ∩

[
0, q2

]}
.

We find that

cp(A,B) =
∑
j∈J

(
q

1
3(2q − j), j, 1

3(q − 2j)

)
AjB

1
3 (q−2j),

where J =
{
j ∈ Z | j ≡ −q (mod 3), 0 ≤ j ≤ 1

2q
}
.
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2.3. Step 2: `p(A,B) as a sum. Write

ψp =
∑

t

βt(A,B)xt, with βt(A,B) ∈ Z[A,B].

Giving x degree 1, A degree 2 and B degree 3 makes x3 + Ax + B homo-
geneous of degree 3, so the Weierstrass equation forces us to give y degree
3
2 . One can now prove by induction that ψm(x, y,A,B) is homogeneous of
(weighted) degree 1

2(m2 − 1). It follows that βt(A,B) is a homogeneous
polynomial of weighted degree 1

2(p2 − 1) − t, and hence, it contains only
monomials of the form ArBs with 2r + 3s = 1

2(p2 − 1)− t. Hence write

βt(A,B) =
∑

2r+3s= 1
2 (p2−1)−t

αr,sA
rBs,

with αr,s ∈ Z. Since ψp has leading coefficient p as a polynomial in x, we
have α0,0 = p. Also, αr,s = 0 if r < 0 or s < 0. Let Z(p) be the localization
of Z by Z \ pZ (invert everything in Z \ pZ) and for all integers r and s
we denote by αr,s the image of (4r + 6s + 1)αr,s under the canonical map
Z→ Z(p)/p

2Z(p).

Lemma 5. For all integers r and s, and writing d = 2r + 3s, we have
2dαr,s = −(2d− 2)αr−1,s − (2d− 3)αr,s−1.

Proof. This is a direct consequence of the following formula in [7, Eq. (3)]:

d

(
d+ 1

2

)
αr,s =

(
p2 + 3

2 − d
)(

p2

6 − 1 + d

)
αr−1,s

−
(
p2 + 5

2 − d
)(

p2 + 3
2 − d

)
αr,s−1

+ 3(r + 1)p2αr+1,s−1 −
2
3(s+ 1)p2αr−2,s+1. �

The recursion formula in Lemma 5 enables us to compute αr,s from αr−1,s

and αr,s−1, as long as 2r+3s is not divisible by p (hence invertible in Z(p)).

Proposition 6. If r and s are non–negative integers with 2r+3s < p, then
in Z(p)/p

2Z(p) we have

(r + s)!r!s! · (−4)r+sαr,s = (2r + 2s)! · p.

Proof. We prove this formula by induction on 2r + 3s using Lemma 5.
Since we are using induction, there are some small cases we should handle
first. The fact that αr,−1 = 0 for all r yields that 2rαr,0 = (1 − 2r)αr−1,0.
This implies for all non–negative integers r that (2r)(2r − 2) · · · 2αr,0 =
(1−2r)(3−2r) · · · (−3)(−1)α0,0, which leads to (2r·r!)2·αr,0 = (−1)r·(2r)!·p.
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This is the desired formula for s = 0. Proving the formula for r = 0 is done
in a completely analogous way. So we have proven the formula for r = 0,
for s = 0 and for all 2r + 3s in the set {0, 1, 2, 3}.

So now assume we know the formula to be true for all non–negative r
and s such that 2r + 3s ∈ {0, 1, . . . , D} with 3 ≤ D < p − 1. We want
to prove the formula for all integers r, s ≥ 1 satisfying 2r + 3s = D + 1.
Note that r − 1 and s − 1 are non–negative integers and both 2(r − 1) +
3s = D − 1 and 2r + 3(s − 1) = D − 2 are in {0, 1, . . . , D}, so, writing
C = (r + s − 1)!(r − 1)!(s − 1)! · (−4)r+s−1, the induction hypothesis says
that Crαr−1,s = Csαr,s−1 = (2r + 2s− 2)! · p. Lemma 5 now yields

Crs · 2(2r + 3s)αr,s

= − ((s(4r + 6s− 2) + r(4r + 6s− 3)) · (2r + 2s− 2)! · p
= −(2r + 3s)p · (2r + 2s− 1)!

This implies the formula we want to prove because 2r+3s ∈ {1, 2, . . . , p−1}
is invertible in Z(p)/p

2Z(p). �

Now let r, s ≥ 1 be integers satisfying 2r + 3s = q. Then 2r + 3s < p, so
the above proposition and the fact that 4r+ 6s+ 1 = 2q+ 1 = p imply that

p ·
(
(r + s)!r!s! · (−4)r+sαr,s − (2r + 2s)!

)
∈ p2Z(p) ∩ Z = p2Z.

We deduce that

`p(A,B) = β 1
2 p(p−1)(A,B) =

∑
2r+3s=q

αr,sA
rBs

≡
∑

2r+3s=q

(−1
4

)r+s
(

2r + 2s
r + s, r, s

)
ArBs (mod p).

2.4. Step 3: equality of coefficients in the sums. We have proven
that

cp(A,B) =
∑
j∈J

(
q

1
3(2q − j), j, 1

3(q − 2j)

)
AjB

1
3 (q−2j),

where J =
{
j ∈ Z | j ≡ −q (mod 3), 0 ≤ j ≤ 1

2q
}
, and

`p(A,B) ≡
∑

2r+3s=q

(−1
4

)r+s
(

2r + 2s
r + s, r, s

)
ArBs (mod p).

Note that the indices in this last sum are all couples (r, s) of non–negative
integers such that 2r + 3s = q. This condition is equivalent to r and s =
1
3(q−2r) being non–negative integers, i.e., 0 ≤ r 6 1

2q and r ≡ −q (mod 3).
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(For these r and s we have r + s = 1
3(q + r).) It follows that

`p(A,B) ≡
∑
j∈J

(−1
4

) 1
3 (q+j)

( 2
3(q + j)

1
3(q + j), j, 1

3(q − 2j)

)
AjB

1
3 (q−2j) (mod p).

Therefore, cp(A,B) ≡ `p(A,B) (mod p) is equivalent to proving(
q

1
3(2q − j), j, 1

3(q − 2j)

)
≡
(−1

4

) 1
3 (q+j)

( 2
3(q + j)

1
3(q + j), j, 1

3(q − 2j)

)
(mod p)

for all j ∈ J . To prove this, put j + q = 3k with k ∈ Z (then 1
3q ≤ k ≤

1
2q)

and rewrite the congruence as(
q

q − k, j, q − 2k

)
≡
(−1

4

)k
(

2k
k, j, q − 2k

)
(mod p).

This is equivalent to
q!

(q − k)! ≡
(−1

4

)k (2k)!
k! (mod p).

We rewrite the left hand side as follows:
q!

(q − k)! = q(q − 1) · · · (q − k + 1) =
(
p− 1

2

)(
p− 3

2

)
· · ·
(
p+ 1− 2k

2

)
≡ 2−k · (−1)(−3) · · · (−2k + 1) = (−2)−k1 · 3 · · · (2k − 1)

= (−2)−k (2k)!
2 · 4 · · · (2k) = (−2)−k (2k)!

2k · k! (mod p),

the desired congruence. This completes the proof of Proposition 4.

2.5. Proof of Theorem 1. Let K = Q(a, b, c) be the rational function
field in three variables over Q and consider the polynomial f(X) = X3 +
aX2 +bX+c over K. Let E and E′ be the elliptic curves given by the equa-
tions y2 = f(x) and z2 = f(t− a

3 ) respectively. Let (ψm)m≥1 and (ϕm)m≥1
be the division polynomials of E and E′ respectively. Recall that ψ2

m ∈ K[x]
and ϕ2

m ∈ K[t] and that the representations as univariate polynomials are
unique (because x ∈ K(E) and t ∈ K(E′) are transcendental over K). So
we consider the polynomials ψ2

m(X), ϕ2
m(X) ∈ K[X] in a formal variable

X. As such, the fact that E(K)→ E′(K) : (x, y) 7→ (t, z) = (x+ a
3 , y) is a

group isomorphism, and that K has characteristic zero, implies that

ψ2
m

(
X − a

3

)
= m2 ∏

P∈Em

(
X − a

3 − x(P )
)

= m2 ∏
P∈E′m

(X−t(P )) = ϕ2
m(X),

where Em = E[m](K) \ {OE} and E′m = E′[m](K) \ {OE′}. An alternative
way to prove that ψ2

m(X − a
3 ) = ϕ2

m(X) is explicitly comparing the first
four division polynomials of E and E′ and then using induction.
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The theorem 1 is clearly true for p = 3 (the coefficients are 4a and a
respectively), so now assume that p ≥ 5. Since p is odd, we can consider
ψp(X), ϕp(X) ∈ K[X]. The equality ψ2

p(X − a
3 ) = ϕ2

p(X) and the fact that
ψp and ϕp have leading coefficient p imply that ψp(X − a

3 ) = ϕp(X). Now
consider the following polynomials in a, b and c:

(1) The coefficient at X
1
2 p(p−1) in ψp(X).

(2) The coefficient at X
1
2 p(p−1) in ϕp(X).

(3) The coefficient at Xp−1 in f
(
X − a

3
) 1

2 (p−1).
(4) The coefficient at Xp−1 in f(X)

1
2 (p−1).

Since ψp(X − a
3 ) = ϕp(X), we know that (1) equals the coefficient at

X
1
2 p(p−1) in ϕp(X + a

3 ). Since E′ is given in short Weierstrass form, we
know by Proposition 6 that ϕp(X) is congruent mod p to a polynomial in
X of degree at most 1

2p(p− 1). This implies that (1) and (2) are congruent
mod p. Proposition 4 shows that (2) and (3) are congruent mod p. More-
over, (3) and (4) are also congruent mod p because of the following more
general elementary result. (Consider f(X) as an element of Fp(a, b, c)[X])

Lemma 7. Let F be a field of positive characteristic p and take f(X) ∈
F [X] of degree at most 2(p − 1). Then for any x0 ∈ F , the coefficient at
Xp−1 in f(X + x0)− f(X) is equal to zero.

Proof. By the binomial theorem it suffices to show that
( i

p−1
)
is zero in F ,

for every p−1 < i ≤ 2(p−1). This is true because p divides i! (by p−1 < i)
but not (p− 1)! or (i− p+ 1)! (by i− p+ 1 ≤ p− 1). �

This proves Theorem 1.

3. A special curve

Let p be a prime congruent to 1 modulo 4 and consider the elliptic curve
y2 = x3 + x over the finite field Fp. Write p = 4k + 1 with k ∈ N. Then
cp(1, 0) is the coefficient at xp−1 = x4k in (x3 +x)2k = x2k

(
x2 + 1

)2k, which
is clearly

(2k
k

)
. On the other hand,

`p(1, 0) ≡
∑

2r+3s=2k

(−1
4

)r+s
(

2r + 2s
r + s, r, s

)
1r0s (mod p),

which reduces to `p(1, 0) ≡
(
−1
4

)k ( 2k
k,k,0

)
≡ (−4)−k

(2k
k

)
(mod p). Theorem

1 states that cp(1, 0) ≡ `p(1, 0) (mod p), which in this case implies that
(−4)−k ≡ 1 (mod p). Using (−4)−1 ≡ k (mod p) we get

Proposition 8. Let k be a positive integer. If 4k + 1 is prime, then it
divides kk − 1.
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Alternative proof. Let p = 4k + 1 be prime. Then 2 is a quadratic residue
mod p if and only if k is even, so (2/p) = 1 if k is even and (2/p) = −1 if
k is odd. It follows that

(−1)k =
(2
p

)
≡ 2

p−1
2 ≡ 22k ≡ 4k (mod p),

so kk ≡ (−4k)k ≡ (1− p)k ≡ 1 (mod p), as desired. �

4. The other coefficients of ψp
Consider the elliptic curve given by y2 = x3 +Ax+B over Q(A,B) and

let p ≥ 5 be a prime number. Recall that we can write ψp =
∑

t βt(A,B)xt,
where βt(A,B) ∈ Z[A,B] is homogeneous if A and B are given degree 2
and 3 respectively. We will denote by βt the image of βt under the canonical
map Z[A,B]→ Fp[A,B].

Proposition 9. For any t ≥ 1, the polynomial βt is divisible by β p(p−1)
2

.

Proof. Let J be the set of all supersingular j–invariants over Fp. As in [2,
Lemma 8], Theorem V.4.1 in [8] implies that in Fp[A,B] we have

β p(p−1)
2

= cAεABεB
∏

j∈J\{0,1728}
(B2 − f(j)A3),

where f(j) = 4(1728 − j)/(27j), c is a nonzero constant, εA = 1 if 0 ∈ J
and εA = 0 otherwise, and similary, εB is 1 or 0 depending on whether
1728 ∈ J or not.

Fix a positive integer t. We want to prove that β p(p−1)
2

divides βt, so we
may assume that βt 6= 0. Since all of the factors in the expression for β p(p−1)

2

are coprime, it suffices to prove that A divides βt if 0 ∈ J , that B divides βt

if 1728 ∈ J and that βt is divisible by B2−f(j)A3 for every j ∈ J\{0, 1728}.
Recall that the p–th division polynomial of a supersingular elliptic curve
over Fp is a constant because it has no roots. So βt(A0, B0) = 0 for all
A0, B0 ∈ Fp for which

j(A0, B0) := 1728 · 4A3
0

4A3
0 + 27B2

0
∈ J.

Since βt 6= 0 is homogeneous if we assign A and B degrees 2 and 3 respec-
tively, it can be written as a product γAdABdB (B2−x1A

3) · · · (B2−xkA
3),

for some γ, x1, . . . , xk ∈ F×p . (Indeed, up to powers of A and B, βt is a
univariate polynomial in the variable B2A−3.)

If A does not divide βt, then dA = 0, so βt = γBdB (B2−x1A
3) · · · (B2−

xkA
3). Hence βt(0, 1) = γ 6= 0 and therefore 0 = j(0, 1) 6∈ J . This shows

that A divides βt if 0 ∈ J and a similar argument proves that B divides βt
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if 1728 ∈ J . Now let j ∈ J \ {0, 1728} be arbitrary and take a Weierstrass
model y2 = x3 + A0x + B0 of a supersingular elliptic curve over Fp with
j–invariant j. Since j(A0, B0) = j ∈ J , we have βt(A0, B0) = 0 and B2

0 =
f(j)A3

0. Since j 6∈ {0, 1728}, we have A0 6= 0 6= B0 and hence βt(A0, B0) = 0
implies that B2

0 = xiA
3
0 for some i and hence xi = f(j) for that i. It follows

that B2 − f(j)A3 = B2 − xiA
3 divides βt, as desired. �
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