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On a system of equations with primes

par Paolo LEONETTI et Salvatore TRINGALI

Résumé. Étant donné un entier n ≥ 3, soient u1, . . . , un des
entiers≥ 2 et premiers entre eux deux à deux, soitD une famille de
sous-ensembles propres et non vides de {1, . . . , n} qui contient un
nombre “suffisant” des éléments, et soit ε une fonction D → {±1}.
Est-ce qu’il existe au moins un nombre premier q tel que q divise
le nombre

∏
i∈I ui − ε(I) pour un certain I ∈ D, mais q ne divise

pas u1 · · ·un ? Nous donnons une réponse positive à cette question
dans le cas où les ui sont des puissances de nombres premiers et
on impose certaines restrictions sur ε et D.

Nous utilisons ce résultat pour prouver que, si ε0 ∈ {±1} et
A est un ensemble de trois ou plusieurs nombres premiers qui
contient les diviseurs premiers de tous les nombres

∏
p∈B p − ε0

pour lesquels B est un sous-ensemble propre, fini et non vide de
A, alors A contient tous les nombres premiers.

Abstract. Given an integer n ≥ 3, let u1, . . . , un be pairwise
coprime integers ≥ 2, D a family of nonempty proper subsets of
{1, . . . , n} with “enough” elements, and ε a function D → {±1}.
Does there exist at least one prime q such that q divides

∏
i∈I ui−

ε(I) for some I ∈ D, but it does not divide u1 · · ·un? We answer
this question in the positive when the ui are prime powers and ε
and D are subjected to certain restrictions.

We use the result to prove that, if ε0 ∈ {±1} and A is a set
of three or more primes that contains all prime divisors of any
number of the form

∏
p∈B p− ε0 for which B is a finite nonempty

proper subset of A, then A contains all the primes.

1. Introduction
Let P := {2, 3, . . .} be the set of all (positive rational) primes. There are

several proofs of the fact that P is infinite: Some are elementary, others
come as a byproduct of deeper results. E.g., six of them, including Euclid’s
classical proof, are given by M. Aigner and G. M. Ziegler in the first chapter
of their lovely Proofs from THE BOOK [1]. Although not really focused
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on the infinity of primes, this paper is inspired by Euclid’s original work
on the subject, concerned as it is with the factorization of numbers of the
form a1 · · · an ± 1, where a1, . . . , an are coprime positive integers, and in
fact prime powers (we do not consider 1 as a prime power). To be more
precise, we first need to fix some notation.

We write Z for the integers, N for the nonnegative integers, and N+

for N \ {0}, each of these sets being endowed with its usual addition +,
multiplication · and total order ≤ (as is customary, ≥ will stand for the
dual order of ≤).

For a set A, we denote by |A| the cardinality of A, and by P?(A) the
family of all finite nonempty proper subsets of A, in such a way that A /∈
P?(A). Furthermore, for an integer n ≥ 1 we set Sn := {1, . . . , n} and let
Pn(A) be the collection of all subsets B of A with |B| = n.

For the notation and terminology used herein without definition, as well
as for material concerning classical topics in number theory, the reader
should refer to [7].

With that said, we can state the basic question addressed by the paper:

Question 1. Given an integer n ≥ 3, pick exponents v1, . . . , vn ∈ N+

and (pairwise) distinct primes p1, . . . , pn ∈ P, and let D be a nonempty
subfamily of P?(Sn) with “enough” elements and ε a map P?(Sn)→ {±1}.
Does there exist at least one prime q ∈ P \ {p1, . . . , pn} such that q divides∏
i∈I p

vi
i − ε(I) for some I ∈ D?

At present, we have no formal definition of what should be meant by the
word “enough” in the previous statement: this is part of the question.

With the notation from above it is rather clear, for instance, that the
answer to Question 1 is no, at least in general, if |D| is “small” with respect
to n, as shown by the following:

Example 1. Given an integer k ≥ 3, distinct primes q1, . . . , qk and positive
integers e1, . . . , ek, let q be the greatest prime dividing at least one of the
numbers of the form

∏
i∈I q

ei
i ± 1 for I ∈ P?(Sk).

Then, we get a negative answer to Question 1 by extending q1, . . . , qk to
a sequence q1, . . . , q` containing all the primes ≤ q (note that ` ≥ k + 1),
by taking a nonempty E ⊆ P?(Sk) and arbitrary ek+1, . . . , e` ∈ N+, and by
setting n := `, pi := qi, vi := ei and D := E .

Thus, to rule out such trivial cases, one shall suppose, e.g., that |D| ≥ nκ
or, in alternative, |D| ≥ nκ for some absolute constant κ > 0.

Specifically, we concentrate here on the case where D contains at least
all subsets of Sn of size 1, n− 2, or n− 1, and the restriction of ε to these
subsets is constant (see Theorem 1.1 below), while collecting a series of
intermediate results that could be useful, in future research, to try to draw
broader conclusions.
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We observe, in this sense, that Question 1 can be “generalized” as follows:

Question 2. For an integer n ≥ 3, let u1, . . . , un be pairwise coprime inte-
gers ≥ 2, D a nonempty subcollection of P?(Sn) for which D has “enough”
elements, and ε a function P?(Sn) → {±1}. Does there exist at least one
prime q such that q divides

∏
i∈I ui− ε(I) for some I ∈ D and q - u1 · · ·un?

Note that Question 2 is not really a generalization of Question 1, as the
former can be stated in terms of the latter by replacing, with the same
notation as above, n with the total number d of the prime divisors of
u1 · · ·un and D with a suitable subfamily of P?(Sd).

Questions 1 and 2 are somewhat reminiscent of cyclic systems of simulta-
neous congruences, studied by several authors, and still in recent years, for
their connection with some long-standing questions in the theory of num-
bers, and especially Znám’s problem and the Agoh-Giuga conjecture (see
[5] and [8], respectively, and references therein).

Our initial motivation has been, however, of a completely different sort,
and in fact related to the following:

Problem 1. Let A be a subset of P, having at least three elements, and
such that for any B ∈ P?(A) all prime divisors of

∏
p∈B p− 1 belong to A.

Then A = P.

This served as a problem in the 4th grade of the 2003 Romanian IMO
Team Selection Test, and it appears (up to minor notational differences) as
Problem 10 in [2, p. 53]. The solution provided in the book (p. 62) consists
of two parts. In the first one, the authors aim to show that A is infinite, but
their argument is seen to be at least incomplete. Specifically, their argument
is as follows (we use the notation from above):

After having proved that 2 is in A, they suppose by contradiction that
A is a finite set of size k (where k ≥ 3) and let p1, . . . , pk be a numbering
of A such that 2 = p1 < · · · < pk.

Then, they derive from the standing assumptions on A that
pα2 + 1 = 2β+1pγ2 + 2

for some α, β, γ ∈ N. But this does not imply 1 ≡ 2 mod p2 (as is stated in
the book) unless γ 6= 0, which is nowhere proved and has no obvious reason
to be true.

The problem per se is not, however, difficult, and it was used also for
the 2004 France IMO Team Selection Test (we are not aware of any official
solution published by the organizers of the competition).

Questions somewhat similar to those above have been considered by other
authors, even though under different assumptions, and mostly focused on
the properties of the prime factorization of particular sequences (of integers)
a0, a1, . . . recursively defined, e.g., by formulas of the form an+1 = 1 +
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a0 · · · an; see [12, §1.1.2] and the references therein for an account (for all
practical purposes, we notice here that one of the questions raised by A. A.
Mullin in [11] and mentioned by W. Narkiewicz on page 2 of his book has
been recently answered in [3]).

Now, we have not been able to work out a complete solution of Question
1, whatever this may be. Instead, as already remarked, we solve it in some
special cases. This is in fact the content of the following theorem, which is
also the main result of the paper:

Theorem 1.1. Given an integer n ≥ 3, pick distinct primes p1, . . . , pn,
exponents v1, . . . , vn ∈ N+ and a subcollection D of P?(Sn) such that D0 ⊆
D, where

D0 := P1(Sn) ∪ Pn−2(Sn) ∪ Pn−1(Sn).
Then, for every function ε : P?(Sn) → {±1} such that the restriction of ε
to D0 is constant, there exists at least one q ∈ P \ {p1, . . . , pn} such that q
divides

∏
i∈I p

vi
i − ε(I) for some I ∈ D.

The proof of Theorem 1.1, as presented in Section 3, requires a number of
preliminary lemmas, which are stated and proved under assumptions much
weaker than those in the above statement.

In particular, we will make use at some point of the following result [13]:

Theorem 1.2 (Zsigmondy’s theorem). Pick a, b ∈ N+ and an integer n ≥ 2
such that (i) a > b and (ii) neither (a, b, n) = (2, 1, 6) nor a+ b is a power
of 2 and n = 2. Then, there exists a prime p such that p | an − bn and
p - ak − bk for each positive integer k < n.

Theorem 1.1 can be used to solve a generalization of Problem 1, for which
we need to introduce some more notation.

Specifically, for B,C ⊆ Z we write B ⊥ C if for every b ∈ B there exists
c ∈ C such that b | c; this simplifies to b ⊥ C when B = {b}. It is clear that
B ⊥ C if and only if b ⊥ C for all b ∈ B.

Based on these premises, we then prove the following:

Theorem 1.3. Pick ε0 ∈ {±1} and let A be a set of prime powers with the
property that |A| ≥ 3 and q ⊥ A whenever q is a prime dividing

∏
a∈B a−ε0

for some B ∈ P?(A). Then, A is infinite. Also, P ⊥ A if ε0 = 1. Finally,
A = P if A ⊆ P.

Theorem 1.3 is proved in Section 4. Incidentally, the result gives a solu-
tion of Problem 1 in the special case where ε0 = 1 and A ⊆ P, while provid-
ing another proof, although overcomplicated, of the infinitude of primes.

The conclusions of Theorem 1.3 leads to the following:

Question 3. Let P be an infinite set of primes. Does there exist a set of
prime powers, say A, such that q ⊥ A for some q ∈ P if and only if q is a
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prime divisor of
∏
a∈B a + 1 for some B ∈ P?(A) and q ∈ P? If not, what

about a “non-trivial” characterization of those P for which this happens?

Another question along the same lines is as follows:

Question 4. Let P be an infinite set of primes and pick ε0 ∈ {±1}. Does
there exist a set A of prime powers such that q ∈ P if and only if q is a
prime divisor of

∏
a∈B a− ε0 for some B ∈ P?(A)? If not, can we provide a

“non-trivial” characterization of those P for which this is true?

Both of these questions are almost completely open to us. Two related
(but easier) questions are answered by Examples 2 and 3 in Section 4.

2. Preparations
Here below, we fix some more notation and prove a few preliminary

lemmas related to Question 1 in its full generality (that is, the analysis is
not restricted to the special cases covered by Theorem 1.1).

For any purpose it may serve, we recall from the introduction that, in
our notation, 0 ∈ N and ∅, A /∈ P?(A) for any set A.

In the remainder of this section, we suppose that there exist an integer
n ≥ 3, a set P = {p1, . . . , pn} of n primes, integral exponents v1, . . . , vn ∈
N+, a nonempty subfamily D of P?(Sn), and a map ε : P?(Sn)→ {±1} such
that p1 < · · · < pn and q ∈ P whenever q ∈ P and q divides

∏
i∈I p

vi
i − εI

for some I ∈ D, where εI := ε(I) for economy of notation.
Accordingly, we show that these assumptions lead to a contradiction if

D contains some distinguished subsets of Sn and the restriction of ε to
the subcollection of these sets, herein denoted by D0, is constant: This is
especially the case when D0 = P1(Sn) ∪ Pn−2(Sn) ∪ Pn−1(Sn).

We let P :=
∏n
i=1 p

vi
i and Dop := {Sn \ I : I ∈ D}, and then for each

I ∈ P?(Sn) we define

PI :=
∏
i∈I

pvi
i , P−I := PSn\I and ε−I := εSn\I

(notice that P = PI · P−I). In particular, given i ∈ Sn we write Pi for P{i}
and P−i for P−{i}, but also εi for ε{i} and ε−i for ε−{i}.

It then follows from our assumptions that there are maps α1, . . . , αn :
P?(Sn)→ N such that

(2.1) P−I = ε−I +
∏
i∈I

p
αi,I

i for every I ∈ Dop,

where αi,I := αi(I). Thus, if there exists i ∈ Sn such that {i} ∈ Dop then

(2.2) P−i = pαi
i + ε−i, with αi := αi,{i} ∈ N+
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(of course, αi ≥ 1 since P−i − ε−i ≥ 2 · 3− 1). This in turn implies that

(2.3) P = PI1 ·

ε−I1 +
∏
i∈I1

p
αi,I1
i

 = PI2 ·

ε−I2 +
∏
i∈I2

p
αi,I2
i

 ,
for all I1, I2 ∈ Dop, which specializes to:

(2.4) P = p
vi1
i1
·
(
p
αi1
i1

+ ε−i1

)
= p

vi2
i2
·
(
p
αi2
i2

+ ε−i2

)
for all i1, i2 ∈ Sn such that {i1}, {i2} ∈ Dop.

We mention in this respect that, for any fixed integer b 6= 0 and any
finite subset S of P, the diophantine equation

(2.5) A · (ax1 − ax2) = B · (by1 − by2)

has only finitely many solutions in positive integers a,A,B, x1, x2, y1, y2 for
which a is a prime, gcd(Aa,Bb) = 1, x1 6= x2 and all the prime factors
of AB belong to S; see [6] and the references therein. It follows that our
equation (2.4) has only finitely many possible scenarios for ε taking the
constant value −1 in D.

However, the methods used in [6] are not effective and, as far as we can
tell, a list of all the solutions to equation (2.5) is not known, not even in
the special case when A = B = 1 and b = 2. Furthermore, there does not
seem to be any obvious way to adapt the proof of the main result in [6] to
cover all of the cases resulting from equation (2.4).

With this in mind, and based on (2.1), our main hypothesis can be now
restated as

(2.6) “q | P−I − ε−I for some q ∈ P and I ∈ Dop only if q ∈ P”.

In addition, we can easily derive, using (2.3) and unique factorization, that

(2.7) “q | ε−I +
∏
i∈I p

αi,I

i for some q ∈ P and I ∈ Dop only if q ∈ P”.

Both of (2.6) and (2.7) will be often referred to throughout the article.
Lastly, we say that ε is k-symmetric for a certain k ∈ N+ if both of the
following conditions hold:

(i) I ∈ D ∩ Pk(Sn) only if I ∈ Dop; (ii) εI = ε−I for all I ∈ D ∩ Pk(Sn).

With all this in hand, we are finally ready to prove a few preliminary results
that will be used later, in Section 3, to establish our main theorem.

2.1. Preliminaries. The material is intentionally organized into a list of
lemmas based on “local”, rather than “global”, hypotheses.

This is motivated by the idea of highlighting which is used for which
purpose, in the hope that this can help find an approach to solve Question
1 in a broader generality.
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In particular, the first half of Theorem 1.1, namely the one corresponding
to the case ε0 = 1, will be an immediate corollary of Lemma 2.6 below (the
second part needs more work).

In what follows, given a, b ∈ Z with a2 + b2 6= 0 we use gcd(a, b) for the
greatest common divisor of a and b. Furthermore, for every m ∈ N+ such
that gcd(a,m) = 1 we denote by ordm(a) the smallest k ∈ N+ for which
ak ≡ 1 mod m.

Lemma 2.1. If pi = 3 for some i ∈ Sn and there exists j ∈ Sn \ {i} such
that {j} ∈ Dop, then one, and only one, of the following conditions holds:

1. ε−j = −1 and αj is even.
2. ε−j = −1, αj is odd and pj ≡ 1 mod 6.
3. ε−j = 1, αj is odd and pj ≡ 2 mod 3.

Proof. The hypotheses and equation (2.4) give that 3 | pαj

j + ε−j , which is
possible only if one, and only one, of the desired conditions is satisfied. �

The next lemma, as elementary as it is, provides a sufficient condition
under which 2 ∈ P. (As a rule of thumb, having a way to show that 2 and
3 are in P looks like a key aspect of the problem in its full generality.)

Lemma 2.2. If there exists I ∈ D such that 1 /∈ I then p1 = 2; moreover,
α1 ≥ 4 if, in addition to the other assumptions, I ∈ Pn−1(Sn).

Proof. Clearly, pi is odd for each i ∈ I, which means that PI − εI is even,
and hence p1 = 2 by (2.6) and the assumed ordering of the primes pi. Thus,
it follows from (2.2) that if I ∈ Pn−1 then 2α1 = P−1− ε−1 ≥ 3 · 5− 1, with
the result that α1 ≥ 4. �

The following two lemmas prove that, in the case of a 1-symmetric ε,
mild hypotheses imply that 3 ∈ P.

Lemma 2.3. Suppose that ε is 1-symmetric and pick a prime q /∈ P. Then,
there does not exist any i ∈ Sn such that {i} ∈ D and pi ≡ 1 mod q.

Proof. Assume for the sake of contradiction that there exists i0 ∈ Sn such
that {i0} ∈ D and pi0 ≡ 1 mod q. Then, using that ε is 1-symmetric, we
get from (2.1) and (2.2) that

1− ε0 ≡ p
vi0
i0
− ε0 ≡

∏
i∈I0

p
αi,I0
i mod q

and
PI0 ≡ p

αi0
i0

+ ε0 ≡ 1 + ε0 mod q,
where I0 := Sn \ {i0}. But q /∈ P implies q - pvi0

i0
− ε0 by (2.6), with the

result that ε0 = −1 (from the above), and then q | PI0 .
By unique factorization, this is however in contradiction to the fact that

q is not in P. �
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Lemma 2.4. Let ε be 1-symmetric and suppose there exists J ∈ P?(Sn)
such that |Sn \J | is even, D0 := P1(Sn)∪{Sn \J} ⊆ D, and the restriction
of ε to D0 is constant. Then p2 = 3 and α2 ≥ 1

2(5− ε0).
Proof. Let ε take the constant value ε0 when restricted to D0 and assume
by contradiction that 3 /∈ P.

Then, Lemma 2.3 gives that pi ≡ −1 mod 3 for all i ∈ Sn, while taking
I = Sn \ {i} in (2.1) and working modulo 3 entails by (2.6) that

pvi
i − ε0 ≡

∏
j∈I

p
αj,I

j 6≡ 0 mod 3,

so that vi is odd if ε0 = 1 and even otherwise (here is where we use that
P1(Sn) ∈ D and ε is 1-symmetric, in such a way that Pn−1(Sn) ∈ D too).
Now, since Sn \ J ∈ D, the same kind of reasoning also yields that

1− ε0 ≡ P−J − ε0 ≡
∏
j∈J

p
αj,J

j mod 3,

with the result that if ε0 = 1 then 3 ∈ P by (2.6), as follows from the fact
that Sn \ J has an even number of elements and vi is odd for each i ∈ J
(which was proved before). This is however a contradiction.

So we are left with the case ε0 = −1. Since −1 is not a quadratic residue
modulo a prime p ≡ −1 mod 4, we get from the above and (2.2) that in
this case pi ≡ 1 mod 4 for each i = 2, . . . , n.

Therefore, (2.1) together with Lemma 2.2 gives that P−1 + 1 = 2α1 with
α1 ≥ 2, which is again a contradiction as it means that 2 ≡ 0 mod 4.

All of this proves that p2 = 3, which in turn implies from (2.2) that
3α2 = P−2 − ε−2 ≥ 2 · 5 − ε0 (since ε is 1-symmetric and its restriction to
D0 is constantly equal to ε0, we have ε−2 = ε0), so α2 ≥ 2 if ε0 = 1 and
α2 ≥ 3 if ε0 = −1, i.e., α2 ≥ 1

2(5− ε0) in both cases. �

We now show that, if D contains some distinguished subsets of Sn and
ε is subjected to certain conditions, then pi must be a Fermat prime.
Lemma 2.5. Let P1(Sn \ {1}) ⊆ Dop and assume there exists i ∈ Sn \ {1}
such that {i} ∈ D and ε±i = 1. Then, pi is a Fermat prime.
Proof. It is clear from Lemma 2.2 that p1 = 2. Suppose by contradiction
that there exists an odd prime q such that q | pi−1 (note that pi ≥ 3), and
hence q | pvi

i − εi.
Then, taking I = {i} in (2.6) gives that q = pj for some j ∈ Sn \ {1, i}.

Considering that P1(Sn \ {1}) ⊆ Dop, it follows from (2.4) that
p
vj

j (pαj

j + ε−j) = pvi
i (pαi

i + 1),
where we use that ε−i = 1. This is however a contradiction, because it
implies that 0 ≡ 2 mod pj (with pj ≥ 3). So, pi is a Fermat prime by [7,
Theorem 17]. �
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Lemma 2.6. Let P1(Sn) ⊆ Dop and suppose that pi = 3 for some i ∈ Sn
and there exists j ∈ Sn \ {1, i} such that {j} ∈ D and ε±j = 1. Then i = 2,
p1 = 2, and ε−1 = −1.

Proof. First, we have by Lemma 2.2 that p1 = 2, and hence i = 2. Also,
pj is a Fermat prime by Lemma 2.5 (and clearly pj ≥ 5). So assume for a
contradiction that ε−1 = 1.

Then, Lemma 2.1 and (2.2) imply that pj | P−1 = 2α1 + 1 with α1 odd,
with the result that 2 ≤ ordpj (2) ≤ gcd(2α, pj − 1) = 2. It follows that
5 ≤ pj ≤ 22 − 1, which is obviously impossible. �

The proof of the next lemma depends on Zsigmondy’s theorem. Although
not strictly related to the statement and the assumptions of Theorem 1.1,
it will be of great importance later on.

Lemma 2.7. Pick p, q ∈ P and assume that there exist x, y, z ∈ N for
which x 6= 0, y ≥ 2, p | q + 1 and qx − 1 = py(qz − 1). Then x = 2, z = 1,
p = 2, y ∈ P, and q = 2y − 1.

Proof. Since x 6= 0, it is clear that qx − 1 6= 0, with the result that z 6= 0
and qz − 1 6= 0 too. Therefore, using also that y 6= 0, one has that
(2.8) py = (qx − 1)/(qz − 1) > 1,
which is obviously possible only if
(2.9) x > z ≥ 1.
We claim that x ≤ 2. For suppose to the contrary that x > 2. Then by
Zsigmondy’s theorem, there must exist at least one r ∈ P such that r | qx−1
and

r - qk − 1 for each positive integer k < x.

In particular, (2.8) yields that r = p (by unique factorization), which is a
contradiction since p | q2−1. Thus, we get from (2.9) that x = 2 and z = 1.
Then, py = q + 1, that is py − 1 ∈ P, and this is absurd unless p = 2 and
y ∈ P. The claim follows. �

This completes the preliminaries, and we can now proceed to the proof
of the main result of the paper.

3. Proof of Theorem 1.1
Throughout we use the same notation and assumptions as in Section 2,

but we specialize to the case where
D0 := P1(Sn) ∪ Pn−2(Sn) ∪ Pn−1(Sn) ⊆ D

and ε takes the constant value ε0 when restricted to D0 (as in the statement
of Theorem 1.1).
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Proof of Theorem 1.1. At least one of n− 2 or n− 1 is even, so we have by
Lemmas 2.2 and 2.4 that p1 = 2, p2 = 3 and v2 ≥ 2.

There is, in consequence, no loss of generality in assuming, as we do, that
ε0 = −1, since the other case is impossible by Lemma 2.6.

Thus, pick i0 ∈ Sn such that 3 | pi0 + 1. It follows from (2.3) and our
hypotheses that there exist βi0 , γi0 ∈ N such that

P = 3v2(3α2 − 1) = p
vi0
i0
·
(
p
αi0
i0
− 1

)
= 3v2p

vi0
i0
·
(
3βi0p

γi0
i0
− 1

)
,

with the result that, on the one hand,

(3.1) p
αi0
i0
− 1 = 3v2 ·

(
3βi0p

γi0
i0
− 1

)
,

and on the other hand,

(3.2) 3α2 − 1 = p
vi0
i0
·
(
3βi0p

γi0
i0
− 1

)
.

Then, since v2 ≥ 2 and αi0 6= 0, we see by (3.1) and Lemma 2.7 that
βi0 ≥ 1. It is then found from (3.2) that −1 ≡ (−1)vi0+1 mod 3, i.e., vi0 is
even. To wit, we have proved that
(3.3) ∀i ∈ Sn : pi ≡ −1 mod 3 =⇒ vi is even and pvi

i ≡ 1 mod 3.
But every prime 6= 3 is congruent to ±1 modulo 3. Therefore, we get from
(2.2) and (3.3) that

2 ≡
∏

i∈Sn\{2}
pvi
i + 1 ≡ 3α2 ≡ 0 mod 3,

which is obviously a contradiction and completes the proof. �

4. Proof of Theorem 1.3
In the present section, unless differently specified, we use the same nota-

tion and assumptions of Theorem 1.3, whose proof is split into three lemmas
(one for each aspect of the claim).

Lemma 4.1. A is an infinite set.

Proof. Suppose to a contradiction that A is finite and let n := |A|.
Since A is a set of prime powers, there then exist p1, . . . , pn ∈ P and

v1, . . . , vn ∈ N+ such that p1 ≤ · · · ≤ pn and A = {pv1
1 , . . . , p

vn
n }, and our

assumptions give that
(4.1) “q divides

∏
i∈I p

vi
i − ε0 for some I ∈ P?(Sn) only if q ∈ P”,

where P := {p1, . . . , pn} for brevity’s sake.
This clearly implies that p1 < · · · < pn. In fact, if pi1 = pi2 for distinct

i1, i2 ∈ Sn, then it is found from (4.1) and unique factorization that

pki1 =
∏

i∈Sn\{i1}
pvi
i − ε0
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for a certain k ∈ N+, which is impossible when reduced modulo pi1 .
Thus, using that n ≥ 3, it follows from Theorem 1.1 that there also exists

q ∈ P \ P such that q divides
∏
i∈I p

vi
i − ε0 for some I ∈ P?(Sn). This is,

however, in contradiction to (4.1), and the proof is complete. �

Lemma 4.2. If ε0 = 1, then P ⊥ A. In particular, A = P if A ⊆ P.

Proof. Suppose for the sake of contradiction that there exists p ∈ P such
that p does not divide any element of A.

Since |A| = ∞ (by Lemma 4.1), this together with the pigeonhole prin-
ciple implies that, for a certain r ∈ Sp−1, the set

Ar := {a ∈ A : a ≡ r mod p}

is infinite, and we have that

(4.2) ∀B ∈ P?(Ar) :
∏
a∈B

a ≡
∏
a∈B

r ≡ r|B| mod p.

As it is now possible to choose B0 ∈ P?(Ar) in such a way that |B0| is a
multiple of p − 1, one gets from (4.2) and Fermat’s little theorem that p
divides a number of the form

∏
a∈B a − 1 for some B ∈ P?(A), and hence

p | a0 for some a0 ∈ A (by the assumptions of Theorem 1.3).
This is, however, absurd, because by construction no element of A is

divisible by p. It follows that P ⊥ A, and the rest is trivial. �

In the next lemma, we let an empty sum be equal to 0 and an empty
product be equal to 1, as usual.

Lemma 4.3. If ε0 = −1 and A ⊆ P, then A = P.

Proof. Suppose to a contradiction that there exists p ∈ P such that p /∈ A,
and for each r ∈ Sp−1 let Ar := {a ∈ A : a ≡ r mod p}. Then,

(4.3) A = A1 ∪ · · · ∪Ap−1.

In addition to this, set Γfin := {r ∈ Sp−1 : |Ar| <∞} and Γinf := Sp−1\Γfin,
and take

Afin :=
⋃

r∈Γfin

Ar and Ainf := A \Afin.

It is clear from (4.3) that Ainf is infinite, because Afin is finite, {Afin, Ainf}
is a partition of A, and |A| =∞ by Lemma 4.1. So, we let ξ0 :=

∏
a∈Afin

a.
We claim that there exists a sequence %0, %1, . . . of positive integers such

that %n is, for each n ∈ N, a nonempty product (of a finite number) of
distinct elements of A with the property that

(4.4) ξ0 | %n and 1 + %n ≡
n+1∑
i=0

%i0 mod p.
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Proof of the claim. We construct the sequence %0, %1, . . . in a recursive way.
To start with, pick an arbitrary a0 ∈ Ainf and define %0 := a0ξ0, where the
factor a0 accounts for the possibility that Γfin = ∅.

By construction, %0 is a nonempty product of distinct elements of A, and
(4.4) is satisfied in the base case n = 0.

Now fix n ∈ N and suppose that we have already found %n ∈ N+ such
that %n is a product of distinct elements of A and (4.4) holds true with %0
and %n. By unique factorization, there then exist exponents s1, . . . , sk ∈ N+

and distinct primes p1, . . . , pk ∈ P (k ∈ N+) such that

(4.5) ξ0 | %n and 1 + %n =
k∏
i=1

psi
i .

Therefore, we get from the assumptions on A that pi ⊥ A for each i ∈ Sk,
which in turn implies that pi ∈ A (since A ⊆ P by hypothesis), and actually
pi ∈ Ainf , considering that every element of Afin, if any exists, is a divisor
of ξ0, and ξ0 | %n by (4.5).

Using that Ar is infinite for every r ∈ Γinf and Ainf =
⋃
r∈Γinf

Ar, this
yields that there exist a1, . . . , ah ∈ Ainf such that, on the one hand,
(4.6) %0 < a1 < · · · < ah,

and on the other hand,
(4.7) pi ≡ a1+ti ≡ · · · ≡ asi+ti mod p

for every i ∈ Sk, where we define h :=
∑k
i=1 si and ti :=

∑i−1
j=1 sj . It follows

from (4.5) and (4.7) that

1 + %n ≡
k∏
i=1

psi
i ≡

h∏
i=1

ai mod p.

So, by the assumptions on %n and the above considerations, we see that

1 + %0 ·
h∏
i=1

ai ≡ 1 + %0 · (1 + %n) ≡ 1 + %0 ·
n+1∑
i=0

%i0 ≡
n+2∑
i=0

%i0 mod p.

Our claim is hence proved (by induction) by taking %n+1 := %0 ·
∏h
i=1 ai,

because ξ0 | %0 | %n+1 and %n+1 is, by virtue of (4.6), a nonempty product
of distinct elements of A. �

Thus, letting n = p(p − 1) − 2 in (4.4) and observing that p - %0 (since
p /∈ A and %0 is, by construction, a product of elements of A) give that
1 + %n ≡ 0 mod p, with the result that p ∈ A by the assumed properties of
A. This is, however, a contradiction, and the proof is complete. �

Finally, we have all the ingredients for the following:

Proof of Theorem 1.3. Just put together Lemmas 4.1, 4.2 and 4.3. �
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We conclude the section with a couple of examples, the first of which
provides evidence of a substantial difference between Lemmas 4.2 and 4.3,
and is potentially of interest in relation to Question 3.

Example 2. Given ` ∈ N+ and odd primes q1, . . . , q`, let
k := lcm(q1 − 1, . . . , q` − 1)

and
A := {pnk : p ∈ P \ Q, n ∈ N+},

where Q := {q1, . . . , q`}. We denote by P the set of all primes q for which
there exists B ∈ P?(A) such that q divides

∏
a∈B a+ 1.

It is then easily seen that P ⊆ P\Q, since for every B ∈ P?(A) and each
i = 1, . . . , ` Fermat’s little theorem gives

∏
a∈B a+ 1 ≡ 2 6≡ 0 mod qi.

On the other hand, the very definition of A yields that q ⊥ A, for some
q ∈ P, if and only if q /∈ Q.

The example above shows that, given a finite nonempty Q ⊆ P, there
exists a set A of prime powers such that the set of primes dividing at least
one number of the form

∏
a∈B a + 1 for some B ∈ P?(A) is contained in

P \ Q, and Question 3 asks if this inclusion can be actually made into an
equality for a suitable A.

The next example, on the other hand, may be of interest in relation to
Question 4.

Example 3. For ` ∈ N+ pick distinct primes q1, . . . , q` ≥ 3 and, in view of
[7, Theorem 110], let gi be a primitive root modulo qi.

A standard argument based on the Chinese remainder theorem shows
that there also exists an integer g such that g is a primitive root modulo
qi for each i, and by Dirichlet’s theorem on arithmetic progressions we can
choose g to be prime. Now, fix ε0 ∈ {±1} and define

A :=


⋃`
i=1{g(qi−1)n : n ∈ N+} if ε0 = 1

⋃`
i=1{g

1
2 (qi−1)(2n−1) : n ∈ N+} if ε0 = −1

.

If P is the set of all primes q such that q divides
∏
a∈B a− ε0 for some B ∈

P?(A), then on the one hand, qi ∈ P for each i (essentially by construction),
and on the other hand, no element of A is divided by qi (because g and qi
are coprime).

5. Closing remarks
Many “natural" questions related to the ones already stated in the previ-

ous sections arise, and perhaps it can be interesting to find them an answer.
Here are some examples: Is it possible to prove Theorem 1.1 under the

weaker assumption that D0, as there defined, is P1(Sn)∪Pn−1(Sn) instead
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of P1(Sn) ∪ Pn−2(Sn) ∪ Pn−1(Sn)? This is clearly the case if n = 3, but
what about n ≥ 4? And what if n is sufficiently large and D0 = Pk(Sn) for
some k ∈ Sn? The answer to the latter question is negative for k = 1 (for,
take p1, . . . , pn to be the n smallest primes and let v1 = · · · = vn = ε0 = 1,
then observe that, for each i ∈ Sn, the greatest prime divisor of pvi

i − ε0 is
≤ pi − 1). But what if k ≥ 2?

In addition to the above: To what degree can the results of Section 2
be extended in the direction of Question 2? It seems worth mentioning in
this respect that Question 2 has the following “abstract” formulation (we
refer to [10, Ch. 1] for background on divisibility and related topics in the
general theory of rings):

Question 5. Given an integral domain F and an integer n ≥ 3, pick pair-
wise coprime non-units u1, . . . , un ∈ F (assuming that this is actually possi-
ble), and let D be a nonempty subfamily of P?(Sn) with “enough” elements.
Does there exist at least one irreducible q ∈ F such that q divides

∏
i∈I ui−1

for some I ∈ D and q - u1 · · ·un?

In the above, the condition that u1, . . . , un are non-units is necessary to
ensure that

∏
i∈I ui − 1 6= 0 for each I ∈ D (otherwise the question would

be, in a certain sense, trivial).
In fact, one may want to assume that F is a UFD, in such a way that

an element is irreducible if and only if it is prime [10, Theorems 1.1 and
1.2]. In particular, it seems interesting to try to answer Question 5 in the
special case where F is the ring of integers of a quadratic extension of Q
with the property of unique factorization, and u1, . . . , un are primes in F.
Hopefully, this will be the subject of future work.
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