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Newton’s method over global height fields

par Xander FABER et Adam TOWSLEY

Résumé. Pour tout corps K muni d’un ensemble de valeurs ab-
solues satisfaisant la formule du produit, nous décrivons complète-
ment les conditions pour que la méthode de Newton, appliquée à
un polynôme f ∈ K [x] sans facteur carré, parvienne à trouver une
racine dans le complété v-adique pour une infinité de valeurs abso-
lues v de K. De plus, nous montrons que si K est un corps global,
la suite d’approximation de Newton ne converge pas v-adiquement
pour une partie de densité positive de v.

Abstract. For any field K equipped with a set of pairwise in-
equivalent absolute values satisfying a product formula, we com-
pletely describe the conditions under which Newton’s method ap-
plied to a squarefree polynomial f ∈ K [x] will succeed in finding
some root of f in the v-adic topology for infinitely many places v
of K. Furthermore, we show that if K is a finite extension of the
rationals or of the rational function field over a finite field, then
the Newton approximation sequence fails to converge v-adically
for a positive density of places v.

1. Introduction
Newton’s method is one of the most efficient techniques for locating and

approximating zeros of complex analytic or p-adic analytic functions in a
single variable. Recall how it works: if f(x) is an analytic function with a
simple root α, then for any x0 sufficiently close to α we have

0 = f(α) ≈ f(x0) + f ′(x0)(α− x0) =⇒ α ≈ x0 −
f(x0)
f ′(x0) .

Setting Nf (x) = x − f(x)
f ′(x) , one can prove that the orbit (xn) defined by

xn = Nf (xn−1) for n ≥ 1 converges quadratically to the root α.
Now let K be a global height field — that is, a field equipped with a

set MK of pairwise inequivalent absolute values {| · |v : v ∈MK} satisfying
an adelic property and a product formula. The basic examples are number
fields and function fields of transcendence degree 1. (See Section 3.1 for more
details.) Each v induces a different metric structure on K. Fix a univariate
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polynomial f and an initial guess x0, both defined overK. Define a sequence
recursively by xn = Nf (xn−1) for n ≥ 1, where we set

Nf (x) = x− f(x)/f ′(x).

We will say that (xn) is theNewton approximation sequence associated
to f and x0 if it is not eventually periodic. Following an investigation of
the adelic convergence of orbits of more general dynamical systems [10],
Silverman and Voloch asked the following question. (We paraphrase. See
also Remark 1.6 below.)

What can be said about the set of places v of K for
which the Newton approximation sequence (xn) converges
to some root of f?

Silverman and Voloch showed that the complement of the set of places
of convergence is infinite. Later, the first author and Voloch showed that
the set of places of convergence itself is infinite, unless there is a specific
kind of dynamical obstruction. Theorem 1.1 summarizes these conclusions
in the case of squarefree polynomials. Recall that if ϕ ∈ K(z) is a rational
function of degree at least 2, a point α ∈ P1(K) is called an exceptional
fixed point for ϕ if ϕ(α) = α and ϕ is totally ramified at α.

Theorem 1.1 ([7, 10]). Let K be a number field, and let (xn) be the Newton
approximation sequence associated to a squarefree polynomial f ∈ K[x] of
degree at least 2 and an initial point x0 ∈ K.

(i) The sequence (xn) converges v-adically to the root α of f for infin-
itely many places v if and only if α is not an exceptional fixed point
for the dynamical system Nf . In particular, if f is not quadratic,
then (xn) converges v-adically to some root of f for infinitely many
places v.

(ii) The sequence (xn) fails to converge in P1(Kv) for infinitely many
places v.

The first statement says that the arithmetic conclusion about conver-
gence to a root at infinitely many places is equivalent to a geometric con-
clusion about the dynamics of a certain fixed point for the Newton map.
The statement itself requires only the language of global height fields, while
its proof uses a Diophantine approximation technique specific to number
fields. Our first goal in the present paper is to show that Theorem 1.1(i) is
really a statement about global height fields by using a result of the second
author [11], which in turn is a consequence of Runge’s method.

Theorem 1.2. Let K be a global height field, and let (xn) be the New-
ton approximation sequence associated to a point x0 ∈ K and a squarefree
polynomial f ∈ K[x] with deg(f) ≥ 2. Then the sequence (xn) converges
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v-adically to a root α of f for infinitely many places v of K if and only if
α is not an exceptional fixed point for the dynamical system Nf .

Remark 1.3. The condition that f be squarefree implies that f ′ is not
identically zero, and hence that Nf is well defined. Moreover, if K has
characteristic p > 0 and g is a function of xp, say g = h (xp), then Nf ·g =
Nf , which means the Newton map ignores inseparable factors. For purposes
of root finding, it is also reasonable to assume that f is squarefree by
replacing f with f/ gcd(f, f ′) if necessary.

The conclusion in Theorem 1.1(i) that (xn) converges for infinitely many
places v if deg(f) > 2 is a consequence of a classification of polynomials
f that have a dynamically exceptional root α — i.e., a root that is an
exceptional fixed point for Nf . For global height fields of characteristic
zero, this classification carries over verbatim; with some modification of
the argument in positive characteristic, one can still give a classification of
polynomials f for which all of its roots are exceptional fixed points for Nf

(Proposition 2.9). This immediately yields the following corollary.

Corollary 1.4. Let Ka be a fixed algebraic closure of K. With the notation
of Theorem 1.2, the sequence (xn) converges v-adically to some root of f
for infinitely many places v of K unless one of the following is true:

• f is quadratic;
• K has characteristic p > 0 and there exist A,B,C ∈ Ka and an
integer r ≥ 1 such that Af(Bx+ C) = xp

r − x; or
• K has characteristic p > 0 and there exist λ,A,B,C ∈ Ka and an
integer r ≥ 1 such that Af(Bx+ C) = xp

r+1 − (λ+ 1)xpr + λx.

We now discuss quantitative extensions of Theorem 1.1(ii). The first
author and Voloch conjectured that something much stronger should be
true in the case of number fields: the set of places v of K for which (xn)
does not converge v-adically to any root of f has density one when ordered
by norm. They were only able to provide numerical and heuristic evidence
to this effect. A clever technique using the Chebotarev density theorem
was later developed by several authors to address a related question on
collisions of orbits modulo primes [2]. It implies that Newton’s method
fails to converge to some root for a positive density of places of a number
field [2, Thm. 4.6]. (It does not give an effective lower bound on the density.)
We are able to give a unified proof of positive density for any global field.

Theorem 1.5. Let K be a finite extension of the rational field Q or of the
rational function field Fp(T ). Assume the setup of Theorem 1.2. The set of
places v of K for which the Newton approximation sequence (xn) diverges
v-adically has positive lower density when ordered by norm.
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Remark 1.6. Silverman and Voloch proved a preliminary form of the
above theorem for a number field K or an arbitrary function field K/k of
transcendence degree 1. They showed that the set of places v of K for which
the Newton approximation sequence diverges is infinite [10, Remark 10].
Surprisingly, they were able to show that the result continues to hold in
the function field setting even when the map is purely inseparable, and we
model the purely inseparable case of our proof on theirs.

We update the main conjecture of [7] to include function fields:

Conjecture 1.7 (Newton Approximation Fails for 100% of Places). Let
K be a finite extension of the rational field Q or of the rational function
field Fp(T ). Let (xn) be the Newton approximation sequence associated to
a squarefree polynomial f ∈ K[x] of degree at least 2 and a point x0 ∈ K.
Define C(K, f, x0) to be the set of places v of K for which (xn) fails to
converge v-adically to some root of f . Then the set of places C(K, f, x0)
has natural density one when ordered by norm.

For other global height fields K, we expect the set of places of divergence
to be “large,” but there is some issue in clarifying what “large” should mean.
We are able to give a satisfying answer in the case whereK/k is the function
field of a curve Y defined over a global height field k. Here “large” may be
quantified in terms of a height function on Y .

Theorem 1.8. Let k be a global height field, and let K/k be a function field
of transcendence degree one. Fix a nonsingular connected curve Y/k such
that K = k(Y ), and fix a height function hY on Y (ka) associated to an
ample divisor. Let (xn) be the Newton approximation sequence associated
to a squarefree polynomial f ∈ K[x] of degree at least 2 and a point x0 ∈ K.
Then there exists a positive real number M = M(f, x0, hY ) such that (xn)
fails to converge in Ky for all y ∈ Y (ka) satisfying hY (y) ≥M .

More generally, one can place a fundamental cardinality restriction on
the set of places at which Newton approximation may detect a root.

Proposition 1.9. Let K be a global height field, and let (xn) be the Newton
approximation sequence associated to a squarefree polynomial f ∈ K[x] of
degree at least 2 and a point x0 ∈ K. The sequence (xn) converges v-adically
to a root of f for at most a countable number of places v of K.

The proof is trivial. Pass to a finite extension of K if necessary so that
f splits completely. For each of the countably many pairs (n, α) ∈ N ×
Zeros(f), the inequality |xn − α|v < 1 may only be satisfied for finitely
many places v of K.

Morally, the above proposition holds because there is a finitely generated
subfield of K over which f and x0 are defined, and a finitely generated field
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admits only countably many places. Note that, unlike Q or Fp(T ), the
places of an arbitrary finitely generated field do not come with any sort of
canonical ordering with which to measure density. With these observations
in mind, we ask the following:

Question 1.10. Is there a meaningful way to assert that Newton approx-
imation fails for a “large” set of places of an arbitrary finitely generated
global height field?

To close the introduction, we describe the contents of this paper. Sec-
tion 2 describes a number of geometric properties of the correspondence
f 7→ Nf between polynomials and Newton maps. This includes the fol-
lowing dynamical characterization: Up to conjugation, Newton maps are
precisely the rational functions of degree d ≥ 2 that have at least d critical
fixed points. The results in Section 2 are well known in characteristic zero,
so our goal is to compare and contrast the behavior of this correspondence
in characteristic zero with that in positive characteristic. We prove Theo-
rem 1.2 in Section 3, and the proof of Theorems 1.5 and 1.8 will occupy
Section 4.

Acknowledgments. The authors would like to thank Tom Tucker for rec-
ommending that they embark on this collaboration, and for suggesting the
use of Call/Silverman specialization in the proof of Theorem 1.8. They also
thank the anonymous referee for the observation that led to our formula-
tion of Proposition 1.9, and Asher Auel for useful comments on an earlier
draft of the manuscript.

2. Geometry of the Newton map
Throughout this section, we fix a separably closed field L of characteristic

p ≥ 0. We begin by describing separability properties of the Newton map
Nf in terms of the polynomial f . Then we discuss the fixed points of the
Newton map and use them to give a dynamical characterization of rational
functions that are conjugate to a Newton map. In the final subsection we
characterize those squarefree polynomials f for which every root is a totally
ramified fixed point of the Newton map.

2.1. Inseparability.

Definition 2.1. A rational function ϕ ∈ L(x) is inseparable if L has
positive characteristic and ϕ can be written as ϕ (x) = ψ (xp) for some
ψ ∈ L(x); ϕ is said to be separable otherwise. By the Hurwitz formula, ϕ
is inseparable if and only if its formal derivative is identically zero. We say
that ϕ is purely inseparable if ϕ (x) = η

(
xp

r) with r > 0 and η fractional
linear.
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It will be important for our arithmetic questions to know which polyno-
mials f give rise to purely inseparable Newton maps Nf .

Remark 2.2. A nonconstant rational function ϕ ∈ L(x) is separable (resp.
inseparable, purely inseparable) if and only if the field extension L(x)/L(ϕ)
is separable (resp. inseparable, purely inseparable) in the sense of classical
field theory.

Proposition 2.3. Suppose that L has positive characteristic, and let f ∈
L [x] be a squarefree polynomial of degree at least 2.

(i) The Newton Map Nf is inseparable if and only if

f (x) = xg (xp) + h (xp)

for polynomials g, h ∈ L [x].
(ii) The Newton map Nf is purely inseparable if and only if

f (x) = xg
(
xp

r
)

+ h
(
xp

r
)

for polynomials g, h ∈ L [x] of degree at most 1 and a positive
integer r.

Proof. Since f is squarefree, its derivative cannot vanish identically, and
Nf is well defined.

If f (x) = xg (xp) + h (xp), then Nf (x) = −h(xp)
g(xp) , which is inseparable.

Conversely, assume that Nf is inseparable. By definition,
Nf (x) = xf ′(x)−f(x)

f ′(x) , and the numerator and denominator have no fac-
tor in common since f is squarefree. It follows that f ′ (x) = g (xp) for some
g ∈ L [x]. Integration yields that f (x) = xg (xp) + h (xp) for some h. This
completes the proof of (i).

For (ii), an immediate calculation shows that Nf is purely inseparable if
f has the given form. Conversely, if Nf is purely inseparable, then part (i)
shows that f(x) = xg

(
xp

r) + h
(
xp

s) for some polynomials g, h and some
integers r, s > 0. We may assume that r and s are chosen to be maximal.
Then Nf (x) = −h(xps)

g(xpr ) . As Nf is purely inseparable, we must have r = s

and h/g is fractional linear. �

2.2. Degree and fixed points. Typically, a polynomial of degree d will
give rise to a Newton map of degree d. However, in positive characteristic,
the Newton map will have degree d−1 when d ≡ 1 (mod p). This difference
has only a slight effect on the basic properties of the correspondence f 7→
Nf .

Proposition 2.4. Let f ∈ L[x] be a squarefree polynomial of degree d ≥ 2.
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(i) The Newton map has degree

deg(Nf ) =
{
d if d 6= 1 in L
d− 1 if d = 1 in L.

(ii) Let α1, . . . , αd be the roots of f . Then the fixed points of the Newton
map are

Fix(Nf ) =
{
{α1, . . . , αd,∞} if d 6= 1 in L
{α1, . . . , αd} if d = 1 in L.

(iii) Each of the roots αi of f is a critical fixed point for Nf . If d 6= 1
in L, then ∞ has fixed point multiplier d

d−1 . In particular, if d = 0
or 1 in L, then all of the fixed points of Nf are critical.

Proof. The squarefree hypothesis shows there is no common factor shared
between the numerator and denominator of Nf (x) = (xf ′ − f) /f ′.

For part (i), observe that the leading terms of the numerator and denom-
inator of Nf are (d − 1)xd and dxd−1, respectively. We are finished unless
d = 1 in L and Nf = 0. But then we find that f(x) = xg(xp) + h(xp) for
some polynomials g, h (Proposition 2.3). Computing Nf shows that h = 0,
and the squarefree hypothesis on f forces g to be constant. As we assumed
deg(f) ≥ 2, this is a contradiction.

For part (ii), it is clear that the αi are fixed points of Nf . If d 6= 1 in
L, then the previous paragraph shows that the numerator of Nf has larger
degree than the denominator, so infinity is a fixed point. A rational function
of degree δ has δ + 1 fixed points, so we have found them all.

For (iii), we pick a root α of f and write f(x) = (x − α)g(x) for some
polynomial g. Now

Nf (x)− α = (x− α)− f(x)
f ′(x) = (x− α)2 g′(x)

g(x) + (x− α)g′(x) .

Since f is squarefree, we find g(α) 6= 0, and Nf (x) is ramified at α.
If d 6= 1 in L, we can write

Nf (x) = (d− 1)xd + · · ·
dxd−1 + · · · ,

where we are ignoring lower order terms. We compute the fixed point mul-
tiplier at ∞ by a change of coordinate and ignoring higher order terms:

1/Nf (1/x) = dx+ · · ·
(d− 1) + · · · = d

d− 1x+ · · · �

Corollary 2.5. If d = 1 in L, then there is no Newton map of degree d.

The following result gives a dynamical description of Newton maps. It
is certainly well known in the case of fields of characteristic zero; see for
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example [9]. The only difference that arises in positive characteristic is that
it is possible to have rational functions all of whose fixed points are critical.
Such a function is necessarily conjugate to a Newton map.

Proposition 2.6. Fix an integer d ≥ 2, and let ϕ ∈ L(x) be a rational
function of degree d. The following are equivalent:

(i) ϕ is conjugate to a Newton map Nf for some squarefree polynomial
f ∈ L[x];

(ii) ϕ has at least d critical fixed points; and
(iii) If d 6= 0 in L (resp. d = 0 in L), then ϕ has exactly d (resp. exactly

d+ 1) critical fixed points.

Proof. (i) ⇒ (ii). Evident from Proposition 2.4.
(ii) ⇒ (i). Suppose that ϕ has at least d critical fixed points, and write

ϕ = A/B with A and B coprime polynomials. If one of the fixed points of
ϕ is not critical, we may conjugate it to ∞ without loss of generality. Oth-
erwise, let us conjugate any of the critical fixed points to ∞. In particular,
we may assume that deg(B) < deg(A).

Set f(x) = xB(x) − A(x); the roots of f are exactly the finite fixed
points of ϕ. We claim that Nf = ϕ. First, we show that A′ = xB′. The
finite critical points of ϕ are the roots of

BA′ −AB′ = B(A′ − xB′) +B′(xB −A).
Since every finite fixed point is also a critical point, xB −A | B(A′− xB′).
As A and B are coprime, we conclude that xB − A | A′ − xB′. But now
deg(xB−A) = d, while deg(A′−xB′) ≤ d−1. Hence, A′ = xB′, as desired.
This relation implies that f ′ = xB′ −A′ +B = B, and

gcd(f, f ′) = gcd(xB −A,B) = gcd(A,B) = 1.
That is, f is squarefree. A direct computation shows that Nf = A/B, as
desired.

(iii) ⇒ (ii). Evident.
(ii) ⇒ (iii). Write λ0, . . . , λd for the multipliers at the d + 1 (distinct)

fixed points of ϕ, and let us suppose that λ1 = · · · = λd = 0. The fixed
point index formula shows that

1 =
∑ 1

1− λi
= d+ 1

1− λ0
.

We see that d = 0 in L if and only if λ0 = 0. �

2.3. Dynamically exceptional roots.

Definition 2.7. A root α of f will be called dynamically exceptional if
it is exceptional for the Newton map; i.e., its backward orbit {γ ∈ P1(L) :
Nn
f (γ) = α some n ≥ 0} is finite. Equivalently, since roots of f are fixed by

Nf , α is dynamically exceptional if and only if it is totally ramified for Nf .
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It follows from the Hurwitz formula that if Nf is not purely inseparable,
then it has at most two exceptional points.

The following lemma will allow us to move the roots of f and adjust it to
be monic without affecting the dynamical properties of the Newton map.

Lemma 2.8 ([7, Prop. 2.4]). Let f, g ∈ L[x] be polynomials of degree d
related by the formula g(x) = Af(Bx+C), where A,B,C ∈ L and AB 6= 0.
Set σ(x) = Bx+ C. Then Ng = σ−1 ◦Nf ◦ σ.

Proposition 2.9. Let f ∈ L[x] be a squarefree polynomial of degree d ≥ 2.
(i) If d = 2, then every root of f is dynamically exceptional.
(ii) If d > 2 and d 6= 1 in L, then every root of f is dynamically

exceptional if and only if L has positive characteristic and there
exist A,B,C ∈ L and an integer r ≥ 1 such that

Af(Bx+ C) = xp
r − x.

(iii) If d > 2 and d = 1 in L, then every root of f is dynamically
exceptional if and only if L has positive characteristic and there
exist λ,A,B,C ∈ L and an integer r ≥ 1 such that

Af(Bx+ C) = xp
r+1 − (λ+ 1)xpr + λx.

Proof. Suppose first that f is quadratic, and that α, β are the roots of f .
Then both α and β are critical fixed points for Nf . A critical fixed point for
a quadratic map is totally ramified, so that both α and β are dynamically
exceptional for f .

Now assume that d = deg(f) > 2. It was shown in [7, Cor. 1.2] that
when L has characteristic zero, a polynomial has at most one dynamically
exceptional root. For the remainder of the proof, we may therefore assume
that L has characteristic p > 0.

Write D for the degree of Nf . Suppose that α, β are distinct roots of f
that are totally ramified fixed points for Nf . By applying Lemma 2.8, we
may assume without loss that f is monic and that α = 0 and β = 1. By
conjugating β to∞ while fixing 0, we see thatNf is conjugate to ϕ(x) = xD.
At least one other fixed point of Nf is totally ramified, so the same must
be true of ϕ. The fixed points of ϕ are 0,∞, and the (D − 1)st roots of
unity. If ζ is such a root of unity, we find that

ϕ(x)− ζ = xD − ζ = (x− ζ)D

if and only if D = q is a power of the characteristic and ζ ∈ Fq. For
a ∈ Lr {0}, write σ(x) = ax/(x− 1) for a fractional linear transformation
that fixes 0 and moves 1 to ∞. There exists a ∈ L such that

(2.1) Nf (x) = σ−1 ◦ ϕ ◦ σ(x) = aq−1xq

aq−1xq − (x− 1)q = aq−1xq

aq−1xq − xq + 1 .
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If d 6= 1 in L, thenNf fixes infinity, which means aq−1 = 1. ThusNf (x) =
xq. Proposition 2.3 shows that f(x) = xg(xq) + h(xq) for polynomials g, h
that are at most linear; computing Nf directly shows that g = −1 and
h = x. (Recall that we have assumed f is monic.)

If instead d = 1 in L, then Nf does not fix infinity, so that aq−1 6= 1.
Replacing aq−1 with 1 + 1/λ in (2.1) shows that

Nf (x) = (λ+ 1)xq

xq + λ
.

As in the previous case, f(x) = xg(xq) +h(xq) for some linear polynomials
g, h; computing Nf directly shows that g = x+ λ and h = −(λ+ 1)x.

Conversely, if f is of either of the two special forms in the statement,
then Nf is purely inseparable (Proposition 2.3), which implies that all of
its fixed points are totally ramified. �

3. Success of Newton’s method over global height fields
3.1. Global height fields. We follow the conventions in [3, §1].

Definition 3.1. A field K will be called a global height field if it is
equipped with a collection MK of inequivalent nontrivial absolute values
| · |v such that the following two conditions hold for each α ∈ K r {0}:

• (Adelic Property) The set {v ∈MK : |α|v 6= 1} is finite, and
• (Product Formula)

∏
v∈MK

|α|v = 1.

Examples are given by number fields and function fields k(X), where
X is a geometrically irreducible normal projective variety defined over a
field k.1 See also [5] and [8, §2] for further interesting examples. Every finite
extension K ′/K may be endowed with the structure of a global height field
where each absolute value on K ′ restricts to one in MK , up to equivalence.
We writeMK′ for the corresponding set of absolute values onK ′ normalized
as in [3, §1.3.6, 1.3.12]. (The normalization is unimportant for the results
presented here.)

Let K be a global height field with a fixed algebraic closure Ka. The
absolute logarithmic height function h : P1(Ka)→ R≥0 is defined as follows.
Let α = (α0 : α1) ∈ P1(Ka), and let K ′/K be a finite extension containing
the coordinates of α. Then we define

h(α) =
∑

w∈MK′

log max{|α0|w, |α1|w}.

1Fix a nontrivial numerically effective divisor H on X. Each prime divisor Y on X gives
rise to an absolute value | · |Y defined by |f |Y = exp(−nY ordY (f)) for f ∈ k(X), where nY =
Y ·Hdim(X)−1.
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By the product formula, the sum is independent of the choice of homoge-
neous coordinates for α, and the normalizations of the elements of MK′

are arranged so that h(α) is independent of the choice of extension K ′/K
containing α.

3.2. Arithmetically exceptional roots. Throughout this section, K
will denote a fixed global height field.
Definition 3.2. Let (xn) be a Newton approximation sequence associated
to some squarefree polynomial f ∈ K[x] and some x0 ∈ K. (Recall that we
assume (xn) is not eventually periodic.) A root α ∈ Ka of f will be called
arithmetically exceptional for f if the Newton approximation sequence
(xn) converges to α in Kv for only finitely many places v ∈MK .

Definitions 2.7 and 3.2 allow us to restate Theorem 1.2 as an equivalence
between arithmetic and dynamical exceptionality:
Theorem 3.3. Let (xn) be a Newton approximation sequence associated to
some squarefree polynomial f ∈ K[x] and a point x0 ∈ K. Then a root of
f is arithmetically exceptional if and only if it is dynamically exceptional.

The proof is a consequence of the following result of the second author.
Note that although it was originally stated for function fields over a finite
constant field, its proof uses only the properties of a global height field.
Theorem 3.4 ([11, Cor. 3.3]). Let ϕ ∈ K(x) be a rational function of
degree at least 2. Let β, γ ∈ P1(K). Suppose that γ is periodic and not
exceptional for ϕ. If β is not preperiodic, then there exist infinitely many
places v of K such that |ϕn(β)− γ|v < 1 for some n ≥ 0.
Proof of Theorems 1.2 and 3.3. By passing to a finite extension if neces-
sary, we may assume that all of the roots of f lie in K. Let α ∈ K be such
a root. Write f as f (x) = (x− α) g(x) for some polynomial g ∈ K[x] that
does not vanish at α. Define Sα to be the finite set of places v ∈MK such
that at least one of the following is true:

• The leading coefficient of f ′ or g′ has v-adic absolute value different
from 1;
• |α− β|v 6= 1 for some root β of f ′ or g′;
• |β|v ≤ 1 for some root β of f ′; and
• |α|v ≤ 1.

Let v ∈MK rSα, and suppose that n ≥ 0 is such that |xn−α|v < 1. By
definition,

xn+1 − α = Nf (xn)− α = xn − α−
(xn − α) g (xn)

(xn − α) g′ (xn) + g (xn)

= (xn − α)2 · g
′ (xn)
f ′(xn) .
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As v /∈ Sα, the denominator of this last expression has v-adic absolute
value 1. Hence, |xn+1−α|v ≤ |xn−α|2v. By induction, |xn+`−α|v ≤ |xn−α|2

`

v

for every ` ≥ 0. It follows that the Newton approximation sequence (xn)
converges to α in the v-adic topology for v ∈MK rSα if and only if xn lies
in the strict open disk of radius 1 about α for some n ≥ 0.

Now suppose that α is not dynamically exceptional for f . Theorem 3.4
may be applied in our setting with β = x0 and γ = α to show there are
infinitely many places v for which |xn − α|v < 1 for some n. So α is not
arithmetically exceptional by the preceding paragraph.

Finally, suppose that α is dynamically exceptional. Then

Nf (x)− α = c
(x− α)deg(Nf )

f ′(x)
for some nonzero c ∈ K. Setting x = xn, we see that

(3.1) xn+1 − α = c
(xn − α)deg(Nf )

f ′(xn) .

Let S′α be Sα along with the finitely many other v for which |c|v 6= 1. Take
v 6∈ S′α, and suppose that |xn+1 − α|v < 1 for some n ≥ 0. Then either
|f ′(xn)|v > 1 or |xn−α|v < 1. If the former is true, then our hypothesis on
v shows that |xn − β|v > 1 for some root β of f ′, in which case |xn|v > 1.
But (3.1) shows that |xn+1 − α|v = |xn|

deg(Nf )−deg(f ′)
v ≥ 1, a contradiction.

So we are forced to conclude that |xn − α|v < 1 whenever |xn+1 − α|v < 1.
By induction, |xn − α|v < 1 if and only if |x0 − α|v < 1. As (xn) is not
eventually periodic, there are only finitely many places v for which this last
inequality can hold. Hence, α is arithmetically exceptional. �

4. Failure of Newton’s method
4.1. Global fields. Throughout this subsection, we let K be a global field
— that is, a finite extension of the field of rational numbers Q or of the
function field Fp(T ) for some rational prime p. Let Ka be a fixed algebraic
closure of K. We write oK for the integral closure of Z or Fp[T ] inside K. In
the function field setting, this is equivalent to saying that K is the function
field of a smooth connected projective curve C/Fp endowed with a finite
morphism C → P1

Fp
, and oK is the ring of rational functions on C that are

regular away from the points lying above ∞ ∈ P1
Fp
.

Write M0
K for the set of finite places of K; each place v ∈ M0

K may be
canonically identified with a unique prime ideal pv ∈ oK , and conversely.
We will interchange v and pv as needed without further comment. The
norm of v ∈M0

K , denoted Nv, is the order of the residue field associated to
pv: Nv = #oK/pv. The (natural) lower density of a set of places S ⊂ M0

K
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is defined to be

δ(S) = lim inf
X→∞

#{v ∈ S : Nv ≤ X}
#{v ∈M0

K : Nv ≤ X}
.

Remark 4.1. Only finitely many places of K are ignored by focusing on
M0
K , so this omission has no effect on any of the results in this section.

The proof of Theorem 1.5 will follow the general strategy of [7], but
in place of the primitive prime divisor result from [6], we use a result of
Benedetto et al. for number fields [2] and the corresponding result of the
second author for function fields [11]. For the statement, we recall that if K
is a function field of characteristic p and ϕ ∈ K(x) is an inseparable rational
function, then it may be written as ϕ(x) = ψ(xpr ) for some r ≥ 1 and some
separable rational function ψ. The degree of ψ is called the separable
degree of ϕ. Equivalently, the separable degree of ϕ is the number of Ka-
rational solutions to the equation ϕ(x) = β for a generic choice of β. To
say that the separable degree of ϕ is greater than 1 is to say that ϕ does
not induce a bijection on P1(Ka).

Theorem 4.2 ([2, Thm. 1.1], [11, Thm. 4]). Let K be a global field, and let
ϕ ∈ K(x) be a rational function of degree at least 2. If K is a function field,
suppose further that ϕ has separable degree at least 2. Let γ ∈ P1(K) be a
point with infinite ϕ-orbit, and let B ⊂ P1(K) be a finite set of preperiodic
points for ϕ. Then the set of places P ⊂M0

K such that ϕn(γ) 6≡ β (mod p)
for any n ≥ 0, any β ∈ B, and any p ∈ P, has positive lower density.

Proof of Theorem 1.5. We wish to show that the set of places v of the global
field K at which (xn) fails to converge v-adically to a root of f has positive
lower density. Let us suppose first that Nf is not purely inseparable. Let
B denote the set of fixed points of Nf . (See Proposition 2.4.) A continuity
argument shows that if (xn) converges in P1(Kp) for a prime p ∈M0

K , then
it converges to an element of B. Applying Theorem 4.2 with γ = x0 shows
that the sequence (xn) fails to v-adically approach B for a set of places v
of K with positive lower density.

Now we suppose that Nf (x) is purely inseparable; hence, K necessarily
has positive characteristic p. After conjugating if necessary, we may replace
Nf with xq for q some power of p. It suffices to show that (xn) converges
v-adically to an element of P1(Fq) for at most finitely many places v. Let
α ∈ Fq. Write y0 = x0 − α. A suitable induction hypothesis shows that
xn = α+ yq

n

0 . Then for any place v, we see that |xn − α|v = |y0|q
n

v , so that
(xn) converges v-adically to α only for those places v for which |y0|v < 1.
The set of such places v is finite. A similar argument applies in the case
α =∞ if we set y0 = 1/x0. �



360 Xander Faber, Adam Towsley

4.2. Function fields over global height fields. Before beginning the
proof of Theorem 1.8, we recall that if k is a global height field with height
function hk, and if ϕ ∈ k(x) is a rational function of degree at least 2, there
is a canonical height function ĥk,ϕ : P1(ka) → R≥0 characterized by the
following two properties:

• ĥk,ϕ (ϕ(α)) = deg(ϕ) · ĥk,ϕ(α) for any α ∈ P1(ka).
• The difference |ĥk,ϕ(α) − hk(α)| for α ∈ P1(ka) may be bounded
by a constant that does not depend on α.

Recall also that if K/k is a function field as in the statement of The-
orem 1.8, we say that a rational function ϕ ∈ K(x) is isotrivial if there
is σ ∈ PGL2(Ka) such that σ ◦ ϕ ◦ σ−1 ∈ ka(x). That is, up to a coordi-
nate change and a finite extension of K, the function ϕ is defined over the
constant field. We prove the following fact about canonical heights:

Lemma 4.3. Let K/k be a function field over a global height field k, let
ϕ ∈ K (x) be an isotrival rational function, and let x0 ∈ K. Suppose that the
isotriviality of ϕ is witnessed by σ ∈ PGL2 (Ka); that is, σ◦ϕ◦σ−1 ∈ k (x).
The canonical height ĥK,ϕ (x0)→∞ as n→∞ unless x0 is preperiodic or
σ(x0) ∈ P1(ka).

Proof. If x0 is preperiodic, then ĥK,ϕ (x0) = 0, so we assume that x0 is not
preperiodic. Let ψ := σ ◦ ϕ ◦ σ−1 ∈ k (x) and define ξn = σ (xn). Observe
that ξn+1 = ψ(ξn) for every n ≥ 0. If ξ0 ∈ ka, then hK(ξn) = 0 for all n.
This implies ĥK,ψ(ξn) = 0 for all n. Since canonical heights are conjugation
invariant, we conclude that ĥK,ϕ(xn) = 0 for all n.

Finally, we assume that ξ0 is not defined over (an extension of) the con-
stant field. There necessarily exists a place z of K such that |ξ0|z > 1. Write
ψ = g/h for some coprime polynomials g, h ∈ k[x]. The coefficients of g and
h all have z-adic absolute value 1; hence, max{|g(ξ0)|z, |h(ξ0)|z} = |ξ0|dz ,
where d = deg(ψ) = max{deg(g), deg(h)}. Since ξn = g(ξn−1)/h(ξn−1) for
all n ≥ 1, we can proceed by induction to show that

max{|g(ξn−1)|z, |h(ξn−1)|z} = |ξ0|d
n

z .

It follows that
hK(ξn) =

∑
y∈MK

log max{|g(ξn−1)|y, |h(ξn−1)|y} ≥ log |ξ0|d
n

z .

Hence, hK(ξn)→∞ as n→∞. Since the canonical height ĥK,ψ differs from
the usual height hK by a bounded amount, ĥK,ψ(ξn)→∞, and conjugation
invariance of canonical heights shows that ĥK,ϕ(xn)→∞ as well. �

Using this lemma, a theorem of Baker, and the specialization result of
Call and Silverman, we now prove Theorem 1.8.
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Proof of Theorem 1.8. Suppose first that the Newton mapNf is not isotriv-
ial. Since x0 is not preperiodic forNf , we apply Baker’s theorem [1, Cor. 1.8]
to conclude that the canonical height ĥK,Nf

(x0) is positive. Write xn,y for
the specialization of xn at y ∈ Y (ka), and similarly write Nf,y for the in-
duced rational function with coefficients in ka. Write deg(Y ) for the degree
of the ample divisor associated to hY . Then Call/Silverman specialization
[4, Thm. 4.1] shows that

ĥk,Nf,y
(x0,y) ∼ ĥK,Nf

(x0) · hY (y)
deg(Y ) as hY (y)→∞.

If hY (y) is sufficiently large, then ĥk,Nf,y
(x0,y) > 0. It follows that x0,y is

not preperiodic for the specialized map Nf,y, and, in particular, this means
that it cannot ever encounter a fixed point of the map Nf,y. This is sufficient
to prove that (xn) does not converge y-adically to a root of f .

Now suppose that Nf is isotrivial, and choose σ ∈ PGL2 (Ka) such that
ψ := σ ◦ ϕ ◦ σ−1 ∈ ka(x). Set ξn = σ (xn). Note that ξn = ψ(ξn−1) for each
n ≥ 1. If ξ0 /∈ ka then we apply Lemma 4.3 to conclude that ĥK,ψ (ξn) > 0
for all n ≥ n0. If n0 > 0, then replace x0 with xn0 . The strategy in the
previous paragraph applies again to show that (xn) does not converge y-
adically to a root of f as long as hY (y) is sufficiently large.

Finally, suppose that Nf is isotrivial as in the last paragraph, and that
ξ0 = σ(x0) ∈ ka. Without loss of generality, we will assume it lies in P1(k).
The entire sequence (ξn) must also be defined over k. But (ξn) is therefore
discrete in P1(Ky) for every place y, and so it cannot converge unless it is
eventually constant. This contradicts the hypothesis that (xn) is not even-
tually periodic. We conclude that Newton approximation fails to converge
for any places y in this case. �

References
[1] M. Baker, A finiteness theorem for canonical heights attached to rational maps over func-

tion fields, J. Reine Angew. Math., 626, (2009), 205–233.
[2] R. Benedetto, D. Ghioca, B. Hutz, P. Kurlberg, T. Scanlon, and T. Tucker, Periods

of rational maps modulo primes, Mathematische Annalen, doi:10.1007/s00208-012-0799-8,
(2012), 1–24.

[3] E. Bombieri and W. Gubler, Heights in Diophantine geometry, New Mathematical Mono-
graphs, 4, Cambridge University Press, Cambridge, (2006).

[4] G. S. Call and J. H. Silverman, Canonical heights on varieties with morphisms, Compo-
sitio Math., 89,2 (1993), 163–205.

[5] P. Corvaja and U. Zannier, Arithmetic on infinite extensions of function fields Boll. Un.
Mat. Ital. B (7), 11, 4, (1997), 1021–1038.

[6] X. Faber and A. Granville, Prime factors of dynamical sequences J. Reine Angew. Math.,
661, (2011), 189–214.

[7] X. Faber and J. F. Voloch, On the number of places of convergence for Newton’s method
over number fields, J. Théor. Nombres Bordeaux, 23,2, (2011), 387–401.

[8] S. Lang, Diophantine geometry, Interscience Tracts in Pure and Applied Mathematics, 11,
Interscience Publishers (a division of John Wiley & Sons), New York-London, (1962).



362 Xander Faber, Adam Towsley

[9] K. Nishizawa and M. Fujimura Families of rational maps and convergence basins of New-
ton’s method, Proc. Japan Acad. Ser. A Math. Sci., 68, 6, (1992), 143–147.

[10] J. H. Silverman and J. F. Voloch, A local-global criterion for dynamics on P1, Acta
Arith., 137, 3, (2009), 285–294.

[11] A. Towsley, A Hasse principle for periodic points, Int. J. Number Theory, 9, 8 (2013),
2053–2068.

Xander Faber
Department of Mathematics
University of Hawaii
Honolulu, HI
E-mail: xander@math.hawaii.edu

Adam Towsley
Department of Mathematics
CUNY Graduate Center
New York, NY
E-mail: atowsley@gc.cuny.edu

mailto:xander@math.hawaii.edu
mailto:atowsley@gc.cuny.edu

	1. Introduction
	2. Geometry of the Newton map
	2.1. Inseparability
	2.2. Degree and fixed points
	2.3. Dynamically exceptional roots

	3. Success of Newton's method over global height fields
	3.1. Global height fields
	3.2. Arithmetically exceptional roots

	4. Failure of Newton's method
	4.1. Global fields
	4.2. Function fields over global height fields

	References

