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Self-intersection of the relative dualizing sheaf
on modular curves X;(NN)

par HARTwic MAYER

RESUME. Soit N un entier naturel impair sans facteur carré
ayant au moins deux diviseurs relativement premiers et supérieurs
ou égaux a 4. Le théoréeme principal de cet article est une for-
mule asymptotique exclusivement en termes de N pour l'auto-
intersection arithmétique du dualisant relatif des courbes modu-
laires X1 (IN)/Q. Nous en déduisons une formule asymptotique
pour la hauteur stable de Faltings de la Jacobienne J;(N)/Q de
X1(N)/Q ainsi qu’une version effective de la conjecture de Bogo-
molov pour X7 (N)/Q pour N suffisamment grand.

ABSTRACT. Let N be an odd and squarefree positive integer di-
visible by at least two relative prime integers bigger or equal than
4. Our main theorem is an asymptotic formula solely in terms of
N for the stable arithmetic self-intersection number of the relative
dualizing sheaf for modular curves X;(N)/Q. From our main theo-
rem we obtain an asymptotic formula for the stable Faltings height
of the Jacobian J;(N)/Q of X1(N)/Q, and, for sufficiently large
N, an effective version of Bogomolov’s conjecture for X (N)/Q.

1. Introduction

Let K be a number field and O its ring of integers. Let X'/Ok be
the minimal regular model of a smooth projective curve X/K of genus
gx > 0. We call X/Ok an arithmetic surface. In [2], S. J. Arakelov in-
troduced an intersection theory for metrized invertible sheaves on X' /Of-.
G. Faltings established in his work [9] many fundamental results to the
theory of Arakelov. Within this framework we may attach two important
invariants to the curve X/K: Let wy /0y be the relative dualizing sheaf on
X /Ok equipped with the Arakelov metric. The first invariant is the stable

1
arithmetic self-intersection number mwi 10K which is independent of
the field K as long as X/K has semistable reduction over Og. The second
invariant is the arithmetic degree of the direct image of Wy /0, which is, in

other words, the stable Faltings height of the Jacobian Jac(X)/K of X/K.

Manuscrit regu le 26 novembre 2012, accepté le 17 décembre 2013.
Classification math. 14G35, 14G40.
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The arithmetic significance of the stable arithmetic self-intersection num-
ber was given in [29] by showing that its strict positivity is equivalent to
Bogomolov’s conjecture (finally proven by E. Ullmo after partial results
by Burnol, Szpiro, and Zhang). Recall that this conjecture claims that the
set of algebraic points of the curve X/K embedded into its Jacobian are
discretely distributed with respect to the “Néron-Tate topology” supposed
that the genus of the curve is bigger than one. The second invariant is
particularly interesting in the situation of modular curves. E.g., the stable
Faltings height of the Jacobian of the modular curve X;(N)/Q plays an
important role in [8].

The only cases so far in which the stable arithmetic self-intersection num-
ber of the relative dualizing sheaf is known are arithmetic surfaces, where
the generic fiber is a curve of genus one (see [9]), a curve of genus two
(see [4]), or a modular curve Xo(N), N squarefree and 2,3 t N, (see [1],
[23]). More recently, upper bounds in the cases of modular curves X (N)
and Fermat curves were found (see [5]). There are expressions for the stable
Faltings height in the first two cases (see [4] and [9]). In the case of the mod-
ular curves Xo(NN), the stable Faltings height is asymptotically determined
n [17]. Asymptotics in the case of the modular curve X (V) are already
given in [8] (cf. remark 8.3).

1.1. Arakelov theory on arithmetic surfaces. Let X /O be the minimal
regular model of a smooth projective curve X/K of genus gx > 0. Let D
be a divisor on X and £ = Ox(D) the corresponding line bundle on X' /O
For every embedding ¢ : K — C we equip the induced line bundle L, on
the compact Riemann surface X, (C), X, := X x,Spec(C), with the unique
admissible metric (Arakelov metric) with respect to the canonical volume
form fican (cf. [28], p. 332). A line bundle £ equipped with these metrics
for all embeddings o will be denoted by £. For the relative dualizing sheaf
Wx /o the Arakelov metric has the following interpretation: the residual
maps

%, ) ® Ox,©)(P)lp — C

are isometries for all points P € X,(C) and all embeddings o : K — C,
where Oy (c)(P) is equipped with the Arakelov metric and C with the
standard hermitian metric (see [28], p. 333).

The intersection product of two metrized line bundles £ = Oy (P) and
M = 0x(Q), P,Q two horizontal prime divisors on X with no common
component and induced points P,, Q, on X,(C), is given by

Zﬂ: (PvQ)ﬁn_ Z ggan(PU7Q0)7

o:K—C
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where (P, Q)syn is their local intersection product on X'/Ox (see [28], p.
332) and gZ,,, is the canonical Green’s function on X, (C) x X, (C)\ Ax_(c),
denoting by Ay_(c) the diagonal, (for the definition see section 3.2).

1.2. Main results. Let X1(N)/Q be the smooth projective algebraic curve
over Q that classifies elliptic curves equipped with a point of exact order
N. Let N be an odd and squarefree integer of the form N = N /qr >0
with g and r relative prime integers satisfying ¢, > 4. Then, the minimal
regular model X (N)/Z[(n] is semistable (cf. proposition 7.3) and the genus
of X1(N)/Q denoted by gy satisfies gy > 0. With the notation @w% =
1

mwgﬁ( N)/0, our main theorem (cf. theorem 7.7) is the following:
Theorem. Let N be an odd and squarefree integer of the form N = N'qr >
0 with q and r relative prime integers satisfying q,r > 4. Then, we have

wa = 3gn log(N) + o(gn log(N)).

Our first arithmetic application is the following asymptotic formula for
the stable Faltings height hp,(J1(N)) of the Jacobian Ji(N)/Q of the
modular curves X;(N)/Q (cf. theorem 8.2).

Theorem. Let N be an odd and squarefree integer of the form N = N qr >
0 with q and r relative prime integers satisfying q,r > 4. Then, we have

hpal (J1(N)) = gIN log(N) + o(gn log(N)).

We also obtain an asymptotic formula for the admissible self-intersection
number of the relative dualizing sheaf wﬁy n in the sense of the theory of
Zhang in [33]. From this we can deduce, for large N, an effective version of
Bogomolov’s conjecture for the modular curve X;(N)/Q: Let hxt be the
Néron-Tate height on the Jacobian Ji(N)/Q, and let ¢p : X;1(N)/Q —
J1(N)/Q be the embedding of the modular curve X;(N)/Q into its Jaco-
bian with respect to a divisor D € Div (X;(N)) of degree one. With this
notation we prove the following (cf. theorem 8.7):

Theorem. Let N be an odd and squarefree positive integer of the form
N = N/qr with q and r relative prime integers satisfying q,r > 4. Then,
for any € > 0, there is a sufficiently large N such that the set of algebraic
points

{2 € )@ e (en@) < (5 - =) e }

1s finite, and the set of algebraic points

{2 € @ Ihvr(enla) < (5 +¢) tos() }
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is infinite, if the class [Ox, vy (Kx,(n) — (298 —2)D)] is a torsion element
in J1(N)/Q, where Kx, (ny is the canonical divisor on X1(N)/Q.

1.3. OQutline. The main structure of this article derives from proposition

7.6 providing us with the formula
_ I gyv+1

2

—4 — 1)gean(0, -
Wy gN(gN )gca ( OO) + SO(N) gN — 1
where Vj, Vo are explicit vertical divisors on X (IN)/Z[(n]. To achieve our
main theorem, we first compute the analytic part 4gn(gn — 1)gcan(0, 00)
following the strategy of [1] using results of [16]. Afterwards we deter-

mine the geometric part ﬁ% (Vb, Vo) sy, Of the stable arithmetic self-

(‘/07 VOO)ﬁn ’

intersection number @3

In section two we recall some basic facts of the (compactified) modular
curves and present the spectral expansion of the automorphic kernels of
weight 0 and 2. We conclude this section by observing that the arithmetic
average

gN
F(z) ::L Zyz\fj(z)\z (z =z +1iy € H)
9N o

of an orthonormal basis { fj}?ﬁl of holomorphic cusp forms of weight 2

with respect to the congruence subgroup I'1(/V) appears in the spectral
expansions of the automorphic kernels mentioned above. In section three
we obtain a formula which connects gean(0,00) with the constant term Cg
in the Laurent expansion at s = 1 of the Rankin-Selberg transform Rp(s),
s € C, of the function F(z). In section four we determine the Rankin-
Selberg transform of the hyperbolic part of the automorphic kernels. In
section five we analyze the Rankin-Selberg transform of the parabolic part
of the automorphic kernels and their spectral expansions. Subsequently we
obtain a first expression for Cp (cf. remark 3.9). In section six we may
finally determine the analytic part purely in terms of V. In section seven
we obtain our main theorem after having computed the geometric part
of the stable arithmetic self-intersection number @3%;. In section eight we
deduce the arithmetic applications mentioned above. In the appendix we
finally study an Epstein zeta function that appears in section four.

1.4. Acknowledgement. The results of this article are essentially those of my
thesis [21]. I am much indebted to my advisor Jiirg Kramer for his support
and very valuable comments on this work. Without his help this article
would not have appeared. I want to thank Bas Edixhoven who pointed out
two mistakes in a preliminary version of this article. To Anna von Pippich I
am very grateful for discussions concerning the analytic part of this article.
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2. Background Material

Let us collect some basic material of modular curves X (I'; (V)) and their
spectral theory. Our main references are [6], [13], and [26, 27]. The spec-
tral theory in [13] and [26, 27] is formulated in a more general framework,
namely for Fuchsian subgroups of the first kind. In order to keep this expo-
sition short, we restrict the discussion to the congruence subgroup I'i (N).

2.1. The upper half-plane. Let H := {z = z + iy € C|Im(z) =y > 0} be
the upper half-plane equipped with the hyperbolic metric

dz? + dy?
(2.1) dsﬁyp(z) = 7

giving H the structure of a 2-dimensional Riemannian manifold of constant
negative curvature equal to —1. The hyperbolic metric (2.1) induces the
distance function p on H defined by cosh (p(z,w)) =1 + 2u(z, w), where

(2:2) () = 2= (2w € H)
. u(z,w) = ———— 2, W
’ 4Im(z)Im(w) ’ ’
and the hyperbolic volume form on H given by finyp(2) == dx;;dy.

2.2. Modular curves X (I'1(N)). Let N > 1 be a positive integer and
I'1 (V) C SLy(Z) the congruence subgroup defined by

I'i(N):= {'y: (Z Z) €SLy(Z)|a=d=1 mod N, ¢ =0 mod N}
acting by fractional linear transformation z — vz := ‘cljis, v=(2%) €

I'1(N), on the upper half-plane H. The quotient space I'1 (N)\H is denoted
by Y (I'1(N)). Letting I'1 (V) act on the projective line IP’}@ by v(s : t) :=
(as+bt : cs+dt), (s : t) € Py, the (compactified) modular curve X (' (N))
associated to I'; (V) is defined as the quotient space

X (T1(N)) :=T1(N)\(HU Pg),

which can be endowed with a natural topology making the quotient space
into a compact Riemann surface (see [6], chap. 2.4).

The finite set Pp,(y) := X (F1(N))\Y (I'1(V)) is called the set of (inequiv-
alent) cusps of I';(IV) and is represented by the set of elements (a,c) of
(Z/NZ)? of order N modulo the equivalence relation (a,c) = (da/, ) if and
only if (a/, ) = (a + ne, ¢) for some n € Z/NZ. Moreover, the hyperbolic
volume form ppy, descends to a volume form on X (I'1(V)) (see [6], p. 181)
which we will denote again by pyp. For the moduli interpretation of the
modular curve X (I'1(N)) we refer the reader to section 7.
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2.3. Genus and volume formula. We assume N > 5 to avoid elliptic fixed
points and to have uniform formulas for the following quantities. Let gn be
the genus and vy the hyperbolic volume of X (I'1(NN)), then we have

(23) gy =1+ 5p(N NH( ) = 7 X eDp /)

d|N

and
T 1
(2.4) U = 6¢(N)N101|:[V <1 + p) ,

where ¢( - ) is Euler’s phi function (see [6], theorem 3.1.1, p. 68 and formula
(5.15), p. 182). In particular, we have gy > 1 for N = 11 or N > 13.

2.4. The Hilbert space L*(T'1(N)\H, k). Recall that a function f : H — C
is called automorphic of weight k, k € N, with respect to I'1 (), if it satis-
. . cz k
fies f(v2) = jr~(2)f(2) forall vy = (¢b) € T1(N), where ji, (2) := (\cz:l?k )
We denote by L?(I'y(N)\H, k) the Hilbert space of square-integrable auto-

morphic functions of weight k& with respect to I'1(N) with scalar product
given by

= [ SEIEm) (fe € PONNER).

The hyperbolic Laplacian of weight k
0? 0? 0
2.5 Ay = — — 4+ — iky—

acting as a non-negative self-adjoint operator on L?(I'; (N)\H, k) (in fact, it
is the unique self-adjoint extension of Ay acting on the subspace of smooth
and compactly supported automorphic functions of weight k; see [26], pp
309-310), gives rise to the spectral decomposition

L*(Ty(N)\H, k) = L*(Ty(N)\H, k) ,& L* (T (N)\H, k) & L*(T1 (N)\H, k) _;

here L?(I'y(N)\H, k), is the space of cusp forms of weight , i.e., of au-
tomorphic functions of weight k& with vanishing 0-th Fourier coefficients in
its Fourier expansions with respect to the diverse cusps of I';(NN), which
belongs to the discrete part of the spectrum, L?(I'y(N)\H, k)r is the dis-

crete part of L?(T'y(N)\H, k‘)é, given by residues of Eisenstein series, and

L?(T1(N)\H, k), forms the continuous part of the spectrum, given by in-
tegrals of Eisenstein series.
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2.5. Eisenstein series and spectral expansion. Let a € P (y) be a cusp of
I'1 (V) and o4 € SL2(R) a scaling matrix of a, i.e., o400 = a and

_ o [/1 1\
JalFl(N)aoa:{(O 1) |mEZ}

for I'1 (V) the stabilizer group of the cusp a. The Eisenstein series for the
cusp a of weight k with respect to I'; (V) is defined by (cf. [27], p. 291)

Eok(z,s) = Z Im(a;lvz)sjk,ggw(z)_l (s € C,Re(s) > 1).
YL (N)\'1(N)

The Eisenstein series Fq ;(z, s) defines an holomorphic function for Re(s) >
1 and is in this range an automorphic function of weight k in the z-variable.
Moreover, it possesses a meromorphic continuation to the whole s-plane.
The meromorphically continued Eisenstein serie Ej j(2,s) is holomorphic
for Re(s) = 3, and the poles at s with Re(s) > 1 lie all in the interval
(1/2,1] (cf. [27], Satz 10.3, Satz 10.4, and Satz 11.2).

If {u;}52, is an orthonormal basis of the discrete part of L2(T1(N)\H, k),
ie., Agu; = Ajuj, 0= Ao < A1 < Ag, ..., then every f € L*(I'1(N)\H, k)
has the spectral expansion

oo

(26)  f(2) =D (fuihuy(2)+

=0

1 e - -y
Z E/ (f,Eap(-s5 +ir))Ear(z, 5 +ir)dr,
aEPF1(N) e

which converges in the norm topology. If furthermore, f is smooth and
bounded, then the sums in (2.6) are uniformly convergent on compacta of
H (see [27], Satz 7.2, Satz 12.2, and Satz 12.3).

2.6. Shifting operator and eigenspaces of Ag = 0. Noting that Ag and Ao
have the same eigenvalues (see [26], lemma 3.2), we define L%\j (C1(N)\H, k),
k = 0,2, to be the eigenspace corresponding to the eigenvalue A;. The
differential operator (loc. cit. denoted by Kj)

0 0
(2.7) Ao = iyo— + v, L3, (T1(N)\H,0) — L3 (T1(N)\H, 2)
induces for A\; # 0 a bijection satisfying

(2.8) (Mo(f), Aolg)) = Ai{f, 9) (f,9 € L3, (T1(N)\H, 0)).

(see [26], lemma 6.1). For \; = 0 and k = 0, we have that LZ(T'1(NV)\H, 0)
is one dimensional generated by the only residue of the Eisenstein series at
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s =1 given by vy (see [13], theorem 11.3). For \; = 0 and k = 2, we have
an isometry

(2.9) L3(T1(N)\HL 2) — Sy(T1(N)

by sending f + y~!f(see [26], Satz 6.3), where S3(I'1(NNV)) denotes the
space of holomorphic cusp forms of weight 2 for I'y (V). For later purposes
we mention (see [27], p. 292, equation (10.8))

(2.10) No(Eao(z,8)) = sEq2(z,9).

2.7. Automorphic kernels of weight 0 and 2. Let h : R — C be a test

function, i.e., an even function satisfying for an A € R, A > 1:

. : . A
(i) h(r) can be extended holomorphically to the strip [Im(r)| < §

(ii) h(r) < (Jr| + 1) "2 for [Im(r)| < 4.
The inverse Selberg transform ko of h of weight 0 is given by the following
three equations (see [13], p. 32):

g(w) = % /—:O h(r) exp(—iwr)dr (w € R),
(e’ +e7" =2) =g(v) (v ER),
ko(u) = —% /:o ¢ (u + 0?)dv (u>0).

The inverse Selberg transform ko of h of weight 2 is given in the similar

way with the only change in the last step (see [11], p. 402 and p. 455):

1/*00 \/u—|—4+v2—vd
u

ko(u) :=— — "(u+ v
() == | () e ™

The automorphic kernel of weight 0 with respect to I'1(N) on H x H is
defined by

(2.11) Ko(z,w) == > kolu(z,yw)),
’yGFl(N)

(u>0).

which is an automorphic function of weight 0 in the z-variable; here the
function u is defined as in (2.2). Similarly, the automorphic kernel of weight
2 with respect to I'y (V) on H x H is defined by

(2.12) = > ka(u(z vw)y

+ET1(N) -7

w—7z

which is an automorphic function of weight 2 in the z-variable.

2.8. Spectral expansion of automorphic kernels. From the orthogonal pro-
jections (Ko(z,w),u;(2)) = ho(r;)u;(w) and (Ko(z,w), Eao(z, 3 + ir)) =
ho(r)Eapo(w, 5 + ir) (see [13], theorem 7.4), using the convention to write
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an eigenvalue \j as \j = i‘FT? with ; € C, we find from (2.6) the following
spectral expansion

Ro(evw) =2 3 b (=) )+

1 Feo . ‘
(2.13) o Z / ho(r)Eap(2, 3 +ir)Eqo(w, 3 + ir)dr.
a€Pry () " T
Noting that (K (2, w),u;(2)) = ha(r;)u;(w) and (Ka(z, w), Eq2(z, 3 +ir))=
ho(r)Eq2(w, 2 +ir) (cf. [1], lemma 3.1.1), we find from (2.6) and observa-
tions (2.8) and (2.9) the following spectral expansion

Ko(z,w)=h(%) > Tm(2) f;(z)Im(w) f ; (w) (2) Ao (uj)(w)+
j=1
(2.14) 4i > _+°O h(r)Eq2(z, & +ir)Eqa(w, & +ir)dr,

aEPpl(N)

where {f1,..., fgy} is an orthonormal basis of Sa(I'1(N)).

2.9. Let h(t,r) := exp (—t (% + r2)) be the test function with parameter

t € Rsg. The inverse Selberg transform of h(t,r) of weight 0 defines the
function ko (t,u) for u > 0; for a fixed v € I'1(N), we set

Ko~ (t, 2) :== ko(t, u(z,vz)) (z €eH).

Similarly, the inverse Selberg transform of h(t,r) of weight 2 defines the
function ka(t,u) for u > 0; for a fixed v € I'1 (), we set

Ko (t,2) :== ko (t,u(z,'yz))z_ — ja~(2) (zeH).
2.10. Lemma. Let be | € Z. With the above notation the following series

Z Ko (t,2) and Z Ky, (t,2) (z e H)
Y€l (N) Y€l (N)
tr(y)=l tr(y)=l

are automorphic functions of weight 0 with respect to I'1(N).

Proof. This follows from the fact that Ky ,(t,02) = K}, 5-1,5(t,2) for k =

0,2 and any § = (2%) € I'|(N). O

2.11. Notation. We define for t > 0, k = 0,2, and [ € Z with [I| > 2

(2.15) Hkl Z ka (t, 2) Hi(t, z) Z Hkl (t, 2)
~€T'1(N) leZ

tr(y)=l [1]>2
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(2.16) Py(t, z) = Z Ki~(t,2),
YL (N)
[tr(+)|=2
(2.17)
1 +o0 L e 2k 1
Ci(t,z) == I Z N h(t,r)|Ear(z, 5 +ir)|"dr — o
ClEPFl(N)
and
- > h(t,r;
(2.18) Dy(t, =) Z (t,rj)|uj(2)|?, Dal(t,z) == Z ()\ ])]Ao(uj)(z)IQ.
: j=1 ]

2.12. Basic formula. We assume that N = 11 or N > 13. We define the
'y (N)-invariant functions (cf. lemma 2.10)

(2.19) H(t,z) := Ha(t,z) — Ho(t, z) P(t,z) := Py(t,2) — Po(t, z)
C(t,z) = Ca(t,z) — Cy(t, 2) D(t,z) := Da(t, z) — Dy(t, 2),

such that observations (2.13) and (2.14), taking the difference of Ks(t, 2)
and Ky(t, z), imply

(2.20) gNF(2)+ D(t,z) = H(t,z) + P(t,2) + C(t, 2),
where
(221) FE) =L SRR

. = In jZIy j

with { f;}7X, an orthonormal basis of S5 (I'1 (IV)). Note that we have h(t, 1=
1 and that there is no elliptic contribution, i.e., there is no v € I'; (N) with
[tr(y)] < 2.

3. Green’s function on cusps

In this section we recall the definition of the canonical Green’s function
and derive a formula for its evaluation on cusps essentially in terms of the
function defined in (2.21). Our formula follows from previous work of A.
Abbes and E. Ullmo in [1] and J. Jorgenson and J. Kramer in [16]. In the
sequel we assume gy > 1, i.e., that N =11 or N > 13.

3.1. Canonical volume. Let S2(T'1(IN)) be the space of holomorphic cusp
forms of weight 2 with respect to I'1 (V) equipped with the Petersson inner
product

(f, g)Pet,2 = /X(Fl(N)) f(z)g(z)lm(z)zﬂhyp(z) <f7g S (FI(N)>>
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Choosing an orthonormal basis {fi,..., fgy} of S2(I'1(N)), the canonical
volume form on X (I'1(N)) is given by

. gnN
,Ucan(z) = ZQLN Z |fj(z)|2dz Ndz = F(Z),uhyp(z)a
=1

where F'(z) is defined by (2.21). Note that this volume form becomes under
the ismomophism S(I'1(N)) = HO (X(Fl(N)),Qﬁ((Fl(N))) given by f(z) —
f(2)dz the one considered in [2].

3.2. Canonical Green’s function. The canonical Green’s function gca, is the
unique smooth function on X (I'1(N)) x X(I'1(N)) \ Ax(r,(n)), denoting
by Ax(r,(n)) the diagonal, which satisfies:

(i) L2 gean(2, ) + 00(2) = fican(2),
(11) gcan(za w),ufcan(z) =0 Yw € X(Fl(N)),
X(T1(N))

where d,,(2) is the Dirac delta distribution.

3.3. To state the formula for the canonical Green’s function on cusps from
[1], we recall that, for a,b € Pp () cusps of I'i(IV), the Eisenstein series
Eq0(z,s) of weight zero with respect to I'(/N) admits at the cusp b the
Fourier expansion E,0(0b2,5) = > ,cz an(y, s; ab) exp(2minz) with

ao(y, s;ab) = Sapy* + Pan(s)y' %,

where

I'(s—1 c
(3.1) @ub(s):\/}(ﬁ]\l] Z b (c)

with

* %
c x

3:2) bw(e) =#{(7 ) € 0 T (V)age\gi T1(Nhgn/55 T2 (Voo |

here g4 and gy denote elements of SLo(Z) mapping the standard cusp oo of
SL2(Z) with represantative (1 :0) € ]P’(l@ to the cusps a and b, respectively.
Note that ¢qp(s) is a meromorphic function with a simple pole at s = 1

and residue vy (see [13]).

3.4. Proposition. Let N satisfy N = 11 or N > 13. Let X(I'1(N)) be
the modular curve associated to the congruence subgroup I'y(N). Then, we
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have for two different cusps a,b € Pr (n)
gcan(aa b) =

) 1 1 .
— 27 ll_{% (‘Puh(s) TN — 1) + 27 ll_gi (/1“1(N)\H F(2)Ea(2, 8)pnyp(2)+

2 1 1
F(w) B o(w, 2 +O <> ,
/I‘l(N)\H (W) Eoolw, 8)nyp(w) UN S — 1) gN

where the error term is independent of the cusps a and b.

Proof. This follows from proposition E in [1] in combination with the bound
on the hyperbolic Green’s function in [16], lemma 3.7 and proposition 4.7
with the universal constants for I'; (N) given in lemma 5.3 (¢) and lemma
5.9. O

3.5. Lemma. Let N satisfy N = 11 or N > 13. Let X (T'1(N)) be the
modular curve associated to the congruence subgroup I't(N) and 0,004,
d € (Z/NZ)*, the cusps having representatives (0 : 1) and (d : 0) in Rb,
respectively. With the notation oo = co1, we have

33) [ W FOEoC ) = [ FE)Baol ()

and

G [ FE ()= [ FE) ol g (2):
T (N)\H I (N)\H

Proof. We choose a5 = =Wy € SLa(R) with Wy = (S §) the Atkin-
Lehner involution and o' = (%) € SLy(Z) with ¢ = 0 mod N. Then,
oo and o4 are scaling matrices of the cusps 0 and oo4, respectively, i.e.,
we have ggoo = 0 as well as oy 'T'1(N)og = T'1(N) and oy 'T'1(N)gop =
I''(N)s and the same for o4. Hence it follows from the definitions that
Eoo(z,8) = Ex0(0y'2,5) and Es,0(2,8) = Foop(oy'z,s). Therefore, it
suffices for the proof of equations (3.3) and (3.4) to show F(z) = F(oy'z)
and F(z) = F(o; '), which we do now starting with the first equality.
The Atkin-Lehner involution Wy acts on the space Sa(I'1(NV)) of holomor-
phic cusp forms of weight 2 with respect to I'; (IV) by

flwy (2) 7= det(Wy)(=N2) "2 f(Wnz) = N(N2) 2 f(Wyz),

f € S3(T1(V)), and we have | |wylwy | = |f] for f € S5(T1(N)) (see [3],
proposition 1.1), from which we can deduce that {f;|w, }gﬁ | remains an
orthonormal basis, and so

(3.5) DL = filwy (2)
i=1 i=1
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Using equation (3. 5) we calculate

1 N?
Falz Im(Wy2)?|f; (Wnz v fi(Wnz
(7 W; Pl Wa) = szrgwn
19N

gnN
= oy LA 2= LSR8 = Fa).
9N ;5

This proves the ﬁrst equality. For the second equality, note that the space
S2(T1(IN)) of cusp forms of weight 2 decomposes in

) = @ Sa2(T1(N),¢)

where € runs through all Dirichlet characters mod N (see [6]). Thereby, we
define
Sa(T1(N),€) o= {f € $o(Ty(N)) | Flald) = e(d)f for all d € (Z/NZ)*)

denoting by (d) the diamond operator given by f|2(d)(z) := mf(’yz)
for some v = (2 5) € To(N) with & = d mod N. But since fjl2(d) =
e(d)f; for some Dirichlet character e, the set {f;|2(d)}7Y; remains an or-
thonormal basis of Sg(Fl(N)) Further, we have Im(ad 2)?|fi(ot2))? =
m(z)?|fj(z)|? showing F(c,'z) = F(z). This completes the proof of the
lemma. U

3.6. Lemma. Let N satisfy N = 11 or N > 13. Let X(I'1(N)) be the
modular curve associated to the congruence subgroup T'1(N) and 0,004,
d € (Z/NZ)* the cusps having representatives (0 : 1) and (d : 0) in P,
respectively. With the notation oo = 001, we then have that poso,(s) =
Yoo (8) holds for all d € (Z/NZ)*.

Proof. Noting that g, 'T1(N)eo 9o = ((§))) and g5 'T1(N)eo ga = ((§1))
with go = (') and g4 = (& 4) € SLa2(Z), we have to show by formula

(3.1) that the number of elements of the sets

suo={(2 2) (6 D) \rewmy (3 D)

is independent of d. To this end, we consider the map ¢ : Sq(c) — (Z/cZ)*
induced by mapping (a 5) — 0 mod c. Since (¢,d) = 1 and the right
action by ((31)) changes ¢ only by mod ¢, the map v is well-defined. We

now show that 1 is bijective starting from showing that v is injective. This
will prove the lemma.

Let (0‘1 511) and (0‘2 §2> be two representatives of elements of Sy(c) such
that §; = §o mod ¢, i.e., §o = §; +nc for some n € Z. By the right action of

(%) on (al 'gl) we obtain (al ?1) (§%) = (% & ). From this we conclude
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a101 = agdy mod ¢, i.e., ¢|(aa —aj). Furthermore, being elements of Sy(c),
we have N|a; and N|ag; since (¢, N) = 1, we find that ¢N|(ag — a1), which
shows as = a; + meN for some m € Z. By the left action of (§™") on
(% &), we obtain (§ ™) (% 5) = (24 ), which proves the injectivity
of .

We now show the surjectivity of 1. Let 6 mod ¢ be given in (Z/cZ)*; we

let & € Z be a representative satisfying (c¢,d) = 1. We have to find o, 5 € Z
such that the representative (06‘ ,g’) satisfiesa« =0 mod N, 8 =d mod N,

and ad — B¢ = 1, which, in fact, implies gg (if ,g’) g;l € I'1(N), as desired.
The first and second condition forces us to choose a and 8 of the form
a=xN and 8 = d+ yN with x,y € Z; we have to verify that there are
x,y € Z such that also the third condition is satisfied. The three conditions
imply —dc =1 mod N; hence, we find v € Z with vN —dc = 1. Now, since
(c,0) = 1, there are x,y € Z such that zd — yc = v. With this choice for
z,y € Z, we find ad — fc = 1. This completes the proof of the lemma. [

3.7. Rankin-Selberg transform. Let f be a 'y (N )-invariant function of rapid
decay at the cusp a, i.e., the 0-th Fourier coefficient ag(y; a) of the Fourier
expansion f(0az) = Y ,cz an(y; a) exp(2minz) of f at the cusp a satisfies
ao(y;a) = O(y=™) for all M > 0 as y — oo. Then, the Rankin-Selberg
transform Ry q(s) of f at the cusp a is defined by

+oo
Rrals)i= [ f(o) Baolzss)mn(2) = [ aolysaly*2dy
T1(N)\H 0

for Re(s) > 1. The Rankin-Selberg transform Ry 4(s) of f at the cusp a can
be continued meromorphically to the whole s-plane and has simple poles
at s = 0,1 with residue at s = 1 given by

resuca (Bra(e) = = [ Fhm (o)

(see, e.g., [10], p. 9). Applying the Rankin-Selberg transform to the function
F(z) defined in (2.21), which is of rapid decay at all cusps, we have the
Laurent expansion at s = 1, writing Rp(s) := Rro($),
(3.6) Re(s) =~ 4 Cr+0(s — 1),

vy s—1
denoting by Cr the constant term of this expansion.

3.8. Proposition. Let N satisfy N =11 or N > 13. Let X (I'1(N)) be the
modular curve associated to the congruence subgroup T'1(N) and 0,004, d €
(Z/NZ)*, the cusps having representatives (0 : 1) and (d : 0), respectively.

jh(in, we htl’U(?
(91\/ )

1 1
Gean(0,004) = 47CF — 27 lim (ﬂpooo(s) - ) +0
s—1 UN S — 1
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where the error term is independent of d.

Proof. This follows from proposition 3.4, lemma 3.5, and lemma 3.6, using
the notation of 3.7. O

3.9. Remark. In the next section we follow a strategy to determine the
constant Cr which was carried out by A. Abbes and E. Ullmo for the
modular curve Xo(N), N squarefree and not divisible by 2 and 3 in [1]
based on ideas of D. Zagier’s proof of the Selberg trace formula in [31]: we
will compute the Rankin-Selberg transforms, denoted by

(3.7) Ry(t,s), Rp(t,s), Rc(t,s), Rp(t,s)

of all terms displayed in (2.19) and determine their constant terms in their
Laurent expansions at s = 1. Letting ¢ tend to infinity, the contribution of
the discrete part Rp(t, s) will vanish, and so we obtain the constant Cr by
formula (2.20).

It might be interesting to look at the problem to determine Cr from the
adelic point of view starting with [14].

4. Contribution of Rankin-Selberg: hyperbolic part

In this section we calculate the contribution of the Rankin-Selberg trans-
form Ry (t,s) in terms of the Selberg zeta function.

4.1. Rankin-Selberg of hyperbolic part. We begin with calculating
the Rankin-Selberg transforms of the I'; (IV)-invariant functions (see (2.15)
at the end of section 3.5)

HkJ(tv Z) = Z Kk;y(tv Z) (t >0k =0, 2)

Y€1 (N)

tr(y)=l
for | € Z with |I| > 2.
We first note that the Rankin-Selberg transforms of these functions exist
for s € C with 1 < Re(s) < 1+ A and A as in 2.7. This can be shown
mutatis mutandis as in [1], proposition 3.2.1: one can reduce the question
to show

+oo  r1/2
Z / / Z | Ko~ (t, 2)|[yRe®2dady < oo

lI[>2 1/2 eF (N)
()=

for 1 < Re(s) < 1+ A, and the claim follows then from [1], lemma 3.2.1.

4.1.1. Elements of I'y (N) give rise to quadratic forms. Let us briefly discuss
this link. Therefore, we use the convention to write [a, b, ¢| for an (integral
binary) quadratic form ¢(X,Y) = aX? 4+ bXY +cY? € Z[X,Y]. Let Q; be
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the set of quadratic forms with discriminant disc(q) = [? — 4. The modular
group SLa(Z) =T'1(1) acts on the set of quadratic forms @Q; via

SLa(Z) x Q1 — Qu
(0,9) = qo0,
where (g0 8)(X,Y) = ¢((X,Y)d") with §' the transpose of §. For ¢ =
[a,b,c] € Q; and 6 = (3 Y) € SLa(Z) the quadratic form g o ¢ is explicitly
given by
(4.1) qo 6 = [q(z,2),b(xt + yz) + 2(azy + czt), q(y, 1)].

4.1.2. Definition. For a positive integer N and | € Z with |I| > 2, we
define

Qi(N) :={q = [aN,bN,c]|a,b,c € Z;disc(q) -4} C @
and
FLI(N):{’}/EF1 )|tI‘ —l}CFl N)

4.1.3. Let N be a positive integer and [ € Z with || > 2and [ =2 mod N.
We have a map ¢ : I'1 j(N) — Qi(N) defined by

(4.2) 7:(1—1-(1]\7 b

N 1—|—dN> — gy = [cN, (d — a)N, —b].

Supposed that N is odd, the map 1 defines a bijection between the sets
I'1(N) and Q;(N) as one verifies that the map ¢/ : Q;(N) — T'y(N)
given by
I=bN  _.
q:[aN,bN,C]H'Yq:: a?\[ l+§N

is well-defined. Once this is shown one easily verifies that the two maps v
and 1)/ are inverse to each other, which establishes the claimed bijection.

4.1.4. The congruence subgroup I'; (V) acts on the sets Q;(N) and I'y ;(V)
as follows: The action of I'; (V) on Q;(N) is given by

(4.3) ['1(N) x Qu(N) — Qu(N)
(6,9) = q o,

where equation (4.1) shows that this action is well-defined; the action of
I't(N) on I'y ;(N) is given by conjugation

(4.4) ['i(N) x Ty (N) — Ty (N)
(6,7) — & -y :=d6"190.
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Let N be an odd positive integer and [ € Z with |l| > 2 and [ =2 mod N.
Then the diagram

Fl(N) X Plyl(N) E— Fl,l(N)

idxwi \Ldz
[1(N) x Qu(N) ——= Qi(N)

commutes, where the horizontal maps are the group actions (4.3), (4.4),
and the vertical map v is given by (4.2). In particular, we have a bijection

[ (N)/T1(N) = Qu(N)/T1(N).

4.1.5. Let N be an odd positive integer. For 0 < u < N with (u,N) =1,
we set

M, (N) :={(m,n) € Z*| (m,n) = (0,u) mod N}.

Note that the congruence subgroup I'1 () acts on M, (N) by
Py(N) x My(N) — My(N)
(6, (m,n)) — (m,n)d.

Furthermore, for [ € Z with [I| > 2 and [ = 2 mod N, we set A}(N) =
I'1(N) x My(N) and define

APE(N) ={(7, (m,n)) € AF(N) | gy (n, —m) 2 0}
Note that A¥(N) = AT(N)U A}~ (N), and that there is an action of the
congruence subgroup I't (IV) on A}(NN) defined by

[1(N) x A (N) — Af(N)

(8, (v, (m,n))) = 8 - (7, (m,m)) = (6~ "43, (m,n)d),

which preserves the subsets Aj'Y(N), A~ (N) € A¥(N). Observing that
(god) - ((m,n)d) = q- (m,n)

using the notation ¢ - (m,n) := q(n, —m) as in [30], we make the following

4.1.6. Definition. Let N be an odd positive integer and [ € Z with |I| > 2
and [ =2 mod N. For 0 < u < N with (u,N) = 1, we define for s € C,
Re(s) > 1, the zeta function

(4'5) Cu,N(37l) = Z

(7,(m,n)) €A} (N)/T1(N)

1

G~ (n7 _m)s .

We show in the appendix that this zeta function is well-defined for
Re(s) > 1. Finally, we denote for any [ € Z by 7 the matrix 7, :=

L ﬁ—l
(2 4, ) € SLy(R).
L3
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4.1.7. Proposition. Let N be an odd positive integer and | € Z with |I| > 2
and I =2 mod N. For s € C satisfying 1 < Re(s) <1+ A, where A is as
in 2.7, and t > 0, we have

/ Hi1(t,2) Boo (2, $)iinyp (2) = Ta(t,s) Y cul(s)Cun(s,1),
I (N)\H 0<u<N
(u,N)=1

where we set

Iei(tys) = [ Ko (620 () + [ Ko (20 n(2) (k= 0,2)

and ¢y (s) := Z 'L;(QC? denoting by p(d) the Moebius function.
d>0
du=1mod N

Proof. First note that

Ewo(z,s) = Z Im(y2)% = Z S A

L1(N)oo\I'1(N) (o %)eri(N)

= 3 ¥y
(m,n)=(0,1) mod N
(m,n)=1

In order to write the Eisenstein series without the coprimality condition,
1
we define (n(s) := Z —, Re(s) > 1, and observe that

d>0 ds
(d,N)=1
y* y®
G (29) T 2 > —_— =
(m,n)=(0,1) mod N \mz + n| d>0 (m,n)=(0,1) mod N ’dmz + dn‘
(m,n):l (d,N)Zl (m,n):l

S S

Yy Yy
> > T = 2 D P b7k
450 (m'n)=(0,d) mod N [z + 1| 0<u<N  (m'n')ez? [m'z + |
(d,N)=1 (m/,n")=d (u,N)=1 (m/,n")=(0,u) mod N

Multiplying by (n(25)™' = 3 4s0 ’2(2'? and writing (m,n) instead of
(d,N)=1
(m’,n’) yields

Y
Exo(z,s) = Z cu(s) Z RSS—
Ocus N (momyez? |mz + nl
(u,N)=1 (m,n)=(0,u) mod N

s
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Now, since I'1(N) acts freely on A¥(N) and A¥(N) = A} (N) UA} ™ (N),

we obtain

(4.6) / Hy1(t,2) Eco,0(2, 8) pinyp(2) =
D1 (N)\H

Yoat) X K m () -

d<usht (7,(m,n))€AE(N) /Ty (N) *H

Z Cu(S)( Z / K~ (t, z)muhyp(z)—k

(7,(m,n)) €A™ (N)/T1(N)

ro / Ko, |mz + n|25 Mhyp(z>> '
1

For (7, (m,n)) € A} (N) with v = (12‘@]\[ 1+IZlN)’ we define the matrix

(v:(m, n))GA“ N)/

Mo 1 ( n  —(d—a)Ng—bm

—m ¢Nn—(d—a)N 2) SL2(R).

L
¢y(n, —m)?
One computes @%ﬁi;s =5 (nl,/im)s (see [30], p. 127) and an elementary

calculation proves the equality M ~'yM = ;. Recalling that K kA (t,02) =
K 5-145(t,2) (k = 0,2) for any § € SL2(R), we obtain by the change of
variable z — Mz

/ Ky (2, Z+n|23Nhyp(Z) = q(n_/ Koy (8, 2)y° pnyp (2),
2l
and hence
yS
(47) Z /Kkn(t,Z)W_i_n’%Nhyp(z) =
APF(N)/T1(N)

Cu,N(Sa l) »/H Kk,’yl (tv Z)ysﬂhyp(z)‘
For (v, (m,n)) € A}”(N) we define the matrix
1 n (d—a)N% +bm )
Y — ( 2 ) € SLa(R
it e @) < S

In{br]l\l/}’]\zﬂzrzf% = ’y(Tz,L/ “m)s as well as M'~H(—y)M' =

-
7y—i1. Since we have Ky, ~(t,z) = Ky, _(t, z), the change of variable z — Mz

and one verifies again
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implies

/K’” z+n|25uhyp /Kk - |mz—|—n\25’uhyp<)

_ W/ Ky, (£, 2)y° pngp (2)-

Observing that ¢—, = ¢,-1 and ¢,-1 = —¢,, we find

(4.8) . / Ko (1,

(v,(m ))GA“ N)/

Z 1—m)5 /H Ky, (t2)Y° pnyp(2) =

(r(mmyear (/) S

1
- K t7 s _
Z ) q,y(n’ _m)s ~/]HI k»’Yfl( Z)y Nhyp(z)

(77(m7n))€A7+(N)/F1(N

<u,N(5a l) /H Kk’,’y_l (ta Z)ysluhyp(z)'

Equation (4.6) together with equations (4.7) and (4.8) proves the proposi-
tion. U

mz + n‘zs 'uhyp(Z) N

2. Hyperbolic contribution and Selberg zeta function. In this
section we compute the constant term in the Laurent expansion at s =1
of the hyperbolic contribution Ry (¢, s), i.e., by proposition 4.1.7, of

Ry(t,s) = Z (I(t,s) — Ioy(t, s)) Z cu(s)Cun (s, 1) (t>0).

[7]>2 O<u<N

=2 mod N (u,N)=1
4.2.1. Let N be an odd positive integer and [ € Z with |[| > 2 and | = 2
mod N. We denote by h;(IV) the cardinality of the set Q;(N)/I'1(N). The
finiteness of h;(N) follows from the finiteness of the class number h;(1) of
properly equivalent quadratic forms with discriminant [? —
Note that for a quadratic form ¢ = [aN,bN,c] € Q;(N) the stabilizer
['1(N)g = SLa(Z)¢NT'1(N) of ¢ € Qi(N) is an infinite cyclic group generated
by oy := af, where ay is the generator of SLo(Z), and k is the least positive
integer such that af € T'1(IN). We denote by ¢, the eigenvalue of a, with
83 > 1 which is, in fact, the k-th power of the fundamental unit ¢¢ in the real
quadratic field Q(v12 — 4). In particular, &4 is independent of the choice ¢ in
Qi(N). Let us also mention that observation 4.1.4 implies I'1 (N )q = Z (),
where Z(7y,) is the centralizer of v, in I'y (V).

4.2.2. Proposition. Let N be an odd positive integer, | € 7 with |l| > 2
and l = 2 mod N, and 0 < u < N with (u,N) = 1. Then, the zeta
function ¢, n(s,1) defines for Re(s) > 1 a holomorphic function and has a
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meromorphic continuation to the whole complex plane with a simple pole at
s =1 with residue

2
ress—1Gu,nN (s, 1) = Z m log(eq).

q€Qi(N)/T1(N)

We prove this proposition in the appendix which is a slight variant of a
result of E. Landau in [20].

4.2.3. Corollary. Let N be an odd positive integer and | € Z with |I| > 2
and l =2 mod N. Then the series

> culs)Cun(s;l)

0<u<N

(u,N)=1
has a meromorphic continuation to the half plane Re(s) > 1/2 with a simple
pole at s = 1 and residue

resg—i Z cu((s)g‘m]\;(s,l):i Z };lg;%'

(Ou<]1<[)<ivl TN q€Qi(N)/T1(N)

Proof. Note that ¢,(s) with 0 < v < N and (u, N) = 1 is holomorphic
for Re(s) > 1/2. Therefore, by proposition 4.2.2, we have a meromorphic

continuation of Z cu(8)Cu,N(5,1) to the half plane Re(s) > 1/2 and

O<u<N

(u,N)=1
(4.9)

cu(1 2
resg—1 Z cu(s)Cun(s,l) = Z ]\52) Z ﬂlog(sq).
(ou<]1<[)<ivl (0u<}f/)<iv1 q€Qi(N)/T1(N)

We have
(4.10)
> oam= > Mo o =S
0<u<N d>0 CN(Q) <(2)p|N1 p2 ? N 17
(u,N)=1 (d,N)=1

Plugging equation (4.10) in (4.9) and taking the formula (2.4) into account,
the claim of the corollary follows immediately. O

Recall that we defined in section 3.3 the test function h(t,r) to be the
function h(t,r) = exp (—t (% + 7’2)> (t > 0,r € R) with Fourier transform
given by

(4.11) g(t,w) = exp (—4 - 42) (t>0,w e R).

1
VAt
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4.2.4. Lemma. For anyt > 0, we have the Laurent expansion
Lt,s) = Toa(t,s) = (s = DA(E) + O ((s = 1)?) (s = 1),

where

h(t,r)

+oo
A(t) = 2711 4/ 5 exp ( — 2irlog(ny))dr

l+\/

with ng : 4 and n, L the eigenvalues of ;. Furthermore, we have

T gt
<" .
0] < 2(log(ny)?

Proof. For the first statement see [1], proposition 3.2.2. For the second
statement, we first observe that

(4 12)

+oo _ t
7_1_4 / exp( 2ir log(nl))dr:l/ g(&,21og(ny))d¢.
0
By definition, we have

1/t 1 2
_ & _ (log(m))
5 / 9(6 2log(m))de = 5 | ——exp (—§ - EE) dE € R,

and the change of variable x := % yields then

I B E 1 2
Ai(t) = - e Vina? exp (_E — (log(ny)) a:) dz.
Since % exp (—ﬁ) < 1 for x > 0, we find
+o00 - ) ’
0> A(t) > — exp (—(log(ny))2z) dz = —— - _plos(m)/ ,
> A0) 2 5 [ e (~loglm))Pr) de = g,
from which the claimed bound follows. 0

4.2.5. Proposition. For anyt > 0, the function Ry (t, s) is holomorphic

at s = 1. Furthermore, we have with n; = HviE—4 l2
1
Ry(t,1) =—— Z Z o log(sq) X
TON- 2 AN/ ) Vi

=2 mod

+oo }
2nl 4 /

exp (—2ir log(m))dr> :
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Proof. 1t suffices to prove that Ry (t, s) is bounded at s = 1. From corollary
4.2.3 and lemma 4.2.4 we find the inequality

—log(n)/t

n 2h(N)log(eq)

Iog(t,1) — Io(t, 1 cu(D)Cnu(10)| < o7 :

(I2,(t, 1) = Tou( )>0<uZ<N, (W)Cnu(l,) 2(log(ng))? vy V12 —4
(u,N)=1

We first note that h;(IN) can be bounded by the classical class number
hi(1) by hy(N) < hy(1)[SL2(Z) : T1(N)] and that e§ = &, holds for some
0 < k < ¢(N). Since by Siegel’s theorem (see [32], p. 85)

> I o) (o),
0<D<I%2—4

we obtain

(4.13)
2n= log(ny)/t

‘ > (It 1) = Ioy(t, 1)) > Cu(l)CN,u(lal)‘ <Oy Y =

9loo(n))2
[{]>2 O<u<N [1>2 2(log(n1))
=2 mod N (u,N)=1

with C some constant depending solely on N. As for [ > exp(3t) we have

g o0

L <
2(log(n1))?

with € > 0 small enough, the series on the right hand side of inequality

(4.13) converges, which proves the holomorphicity of Ry (t,s) at s = 1.

The claimed value of Ry (t,s) at s = 1 follows now from corollary 4.2.3 and

lemma 4.2.4. O

4.2.6. Definition. Let v € I'; (V) be a hyperbolic element, i.e., [tr()]| > 2.
The norm N(v) of v is defined by N(v) := v?, where v is the eigenvalue
of v with v? > 1. We denote by 7o the generator of the centralizer Z(v) of
v, and call v primitive if v = g holds.

4.2.7. The Selberg zeta function Zr, y)(s) associated to I'y (V) is defined
via the Euler product expansion

Zrywy(s) = I Zy(s) (Re(s) > 1),
PIEH (L1 (N))

where H(I'1(N)) denotes the set of primitive conjugacy classes of hyperbolic
elements in I'1 (V) and the local factors Z,(s) are given by

o0

Zy(s) = [T (1= N(5)~t+m).

n=0
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The Selberg zeta function Zr (n)(s) is known to have a meromorphic con-
tinuation to all of C and satisfies a functional equation (cf. [13], section
10.8).

4.2.8. The hyperbolic contribution Or, (x)(t) in the Selberg trace formula
(cf. [13], theorem 10.2) is given by

3 log (N(70)) o
e h[zil N2~ Ny 7o 108 (V00

For v € T'y;(N), one easily verifies, using the fact tr(y) = N(vy)Y/2 +
N(v)~Y2, the formulas

2
N)Y2=NH) 2 =Vi2—4 and N(y)_<l+\/m> _ 2

2 b
Further, note that the primitive element ~y associated to the hyperbolic
conjugacy class [y] generates the centralizer Z(y) = Z(v) (see [13], p.

137), and hence equals the generator o, of the stabilizer I'i(N)y, of g,.
Therefore, we have

21log (g4)
Or, (v (t) = Z Z Hg(t, 2log(ny)).
[[1>2 q€Qi(N)/T'1(N)

=2 mod

For any ¢t > 0, we have by formula (4.12)

1 t
/0 Or, () (€)dE.

(4.14) Rig(t,1) = —5 -

4.2.9. Proposition. The integral f(f Or, (n)(§)d§ is asymptotically equiv-
alent to t fort — oo, i.e.,

t
/0 Or, ) (€)dE ~ t

holds. Furthermore, we have

+oo A Zron(5) 1
/O (Or, v () — 1) dt = lim (ZMV)(S) -t

Proof. Having McKean’s formula (see [22], p. 239)

1 le“l(N)(S)
2s—1 Zl"l(N)(S)

the proof is exactly the same as the proof in [1], proposition 3.3.3, for
To(N). O

= /OJFOO exp(— s(s — 1)t)@F1(N) (t)dt,
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4.2.10. Corollary. The hyperbolic contribution Ry (t,1) for t — oo is
given by

A s
Ru(t,1) = — ¢ ! lim( n) 1 )+21 +o(1).

2un  2uy s—1 Zryny(s) s—1 UN

Proof. This follows now immediately from observation (4.14) and proposi-
tion 4.2.9. 0

5. Contribution of Rankin-Selberg: spectral and parabolic part

In this section we determine the contribution of the Rankin-Selberg
transforms of the remaining I'y(/V)-invariant functions Py(t,s), Ck(t,s),
and D(t,s) (k = 0,2) of formula (2.20). The contribution of Py (¢,s) can
be taken from [1] which we cite at the end of the second section of this
chapter.

First observe that we have (for suitable s)

400
/ Pk(t7z)Eoo,0(275)Nhyp(z):/ pr(ty)y" 2dy (k=0,2),
I (N)\H 0
and

+oo _9
Lo Gt ) Bz (s) = [ ety (k=0,2),
Ty (N)\H 0

where pi(t,y) and cg(t,y) are the 0-th Fourier coefficients of Py(t, z) and
Cy(t, z) with respect to the cusp oo, respectively. Proceeding as in [1] we
provide a further decomposition of the sums pi(t,y) + ck(t,y), k = 0,2.
Recall that the 0-th Fourier coefficient of the Eisenstein series Eq(z, s),
a € Pr (), Is given by

ao(y; 53 000,0) = Saooy® + Paco(5)y'
where ¢q00(s) is defined as in (3.1). Then, for s = § +ir € C, we have
(5.1) Z lao (y, 2+ aoo,O) |2 =
a€Pr, (v)
29 + Pooos (% . M,) y1+2ir + Poono (% + ir) y1—2ir

since the scattering matrix ®(s) = (ap(s)) is unitary for Re(s) =

a7bEPF1(N)
3 (see [13], theorem 6.6). By observation (2.10), we find

(% + 2'7") ag (y,  +ir; aco, 2) = Ao (ag (y, $+ir; aoo,()) ) =

(3 +ir) Sasot® 7 + e (5 4 (5 — i) y3 7,
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which implies

1
+
(5-2) E |ao (y, % + ir; aoo, 2) |2 = 2y+Poooo (% _ ir) 7.2/1-1—217‘_1_
a€Pr () i

1— 217“
79
“+r

2
1
2

1
Poooo ( + zr) i
3

Let us define for k = 0, 2 the functions

41
pk,l(t>y) = / ’ Z Kkﬁ(tvx —i—zy)dx,
- Y€T1(N)
[tr(1)[=2,7¢T1(N)oo

=

+o00
h(t,r)dr

Yy
pra(t,y) / Z Kaglta i) = o
2

and

k
1 . b
y —+00 ) 1 + ir ) 2 . k 1
Ck’l(t’ y) = _27.[. h(t, T)@oooo(% - ZT‘) (H) y2wdr -,
—00 3 —

cko(t,y) = f% Z /+ /+OO (t, 1) ’Eak x+iy,%+ir)‘2drdx,

a€lry vy "

NG

where E‘ak (:U—I—iy, % —|—ir> = FEy (:r:+zy, 5 +z7“) —ap (y,%+i7“; aoo,k:).
Using the above notation, observations (5.1) and (5.2) allow us to write
)

pr(t,y) + er(t,y) = pea(t,y) + pe2(ty) + cea(t,y) +cre(t,y)  (B=0,2).
Defining the integrals

+o0
Rp, ,;(t,s) :== /0 e (ty)y* 2 dy (k=0,2;5=1,2).

Rey (L, s) = /(:OO crj(t,y)y**dy (k=0,2;5=1,2)
we find
(5:3)  Rp(t;s) = (Rp,,(t,5) = Rpy, (t,5)) + (Rpya(ts) = Reyu(ts)
and

(54) Ro(t,s) = (Roy,(t,5) = Roy, (t5)) + (Reua(t,5) = Rey, (t9)) -
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5.1. Rankin-Selberg of spectral part.

5.1.1. Lemma. For s € C with 1 < Re(s) < A, where A is as in 2.7, and
t > 0, we have

RCO,I(t7 S) = _%h <t7 %) Poooco (%)

and

1 , 1—-s
Re,, (t,s) = —§h (t, %) Poooo (%) s
Proof. The proof is similar to the proof in [1], lemma 3.2.17 for the con-
gruence subgroup I'g(N). Since loc. cit. there is no proof in the case k = 0,
we give for the convenience of the reader a proof here, and refer to [1] for
the case k = 2.
The idea is to apply Mellin’s inversion theorem. To this end, we consider,
for a fixed ¢t > 0, the function A(t, r)¢Yscco (% - ir) y*" as a function in the

complex variable r. This function is holomorphic in the strip 0 < Im(r) < %

except for a simple pole at r = %, as Yoooo (% — ir) has a simple pole there

with residue ﬁ Furthermore, this function tends to 0 for Re(r) — oo by

the fact that poose (% — ir) is uniformly bounded by [12], theorem 12.9.

Now, for ¢ € R such that % <c< %, the residue theorem implies

— % _J:O h(t,T)Pooco (% — z'r) y¥rdr =
[ Y (3 i 1 3) ey (s (3 7))
— % J:(:_:ljz(t, T) Pooco (% — ir) YA dr + Uiv

Hence we have

+oo+ic ‘
co1(t,y) = Y / h(t, ) Yooco (% _ ir) v dr.

_% —oo+ic
If we change the variable by s = —2ir, we obtain
2c+i0c0
— _L s 1+s -5
CO,l(ta y) - 47i %e—ico h (t’ 2) Poooco ( 2 )y dS’

and from the inverse Mellin transform we deduce the claimed equation

R )= [ w200 =5 (18) e (4.
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5.1.2. Let f(z) be an automorphic function of weight 0 with respect to
' (N) with eigenvalue A and of rapid decay at the cusp co. Then, we have

Lo Mol oz )y (2) =
T1(NV)\H

() [ O ol i),

The proof is analogous to the proof of [1], lemma 3.2.18, where this claim
is formulated for the congruence subgroup I'g(N). Namely, the Rankin-
Selberg method implies as in [1]

(55) /F1 N)‘\%Iof( 2)[* Bso 02, 8) pnyp(2) =
1
-3 Fl(Nﬁ]gI (|f(z)\ ) Eoo0(2, 8) fihyp (2 +/\/1(N)\ )2 Eno0(2, 8) finyp (2).

Since s(1—s) is the eigenvalue of E o(2, ), Green’s second identity implies

1
2 Fl(N)\%O (|f(z)‘2) Eso0(z, 8) pinyp(2) =

s(s—1)
2 /rl(m\{ﬂ(z)'QEw’O(zvS)Mhyp(Z)-

Plugging equation (5.6) in equation (5.5) the claim follows.

(5.6)

5.1.3. Lemma. For s € C with Re(s) > 1 and t > 0 the integrals

+oo
R, ,(t,5) :/0 cra(t,y)y’ >y (k=0,2)

exist and have a meromorphic continuation to the whole s-plane with a
simple pole at s = 1. Furthermore, we have

s(s—1) [+ .
R02,2<t7 s) :Roo,z(tv 3)+ ( 2 )/0 CO,2<t7y)y Qdyy

where cf o(t,y) is defined as co2(t,y), but with the function h(t,r) replaced
h(t,r)

by h*(t,r) := ~Z.
Y ( T) i+7ﬂ2

Proof. Recall that we have by definition

+00 9
/O cr2(t,y)y® “dy =

1 +1/2 p4o0 _ 2
——/ ( / / h(t, r)‘Em (x + 1y, % + zr)‘ drdx) y*2dy.
47 1/2 J—o0

aePr 1(N)
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Since Eqo(z + iy, 2 +ir) and also Eqa(x + iy, %+ +ir) are of rapid decay as
y — oo by [27], lemma 10.2, we find that the expressions

1/2 oo -
E / / /+ h(t,r) ’Ea,k (:L‘ ~+ 1y, % + ir) ‘2 drdz (k=0,2)
ach, 1/2/~co0
'y (N)

satisfy the growth condition of 3.7, and the first statement of the lemma
follows.

For the second statement, note that we are allowed to interchange the
integrals for Re(s) > 1. Hence we have for k =0, 2

400
(5.7) /0 kot y)y* 2dy =

1 +o00 _ ) ' 5
Ao e (CIGPX: /1“1(N)\H ‘Ea’k (z, 3t zr)‘ Eooo(z, S)Mhyp(z)> dr.
Iy (N)

Since we have
(5.8) Ao (Eap (z, % + zr)) = (% + ir) E’QQ (z, % + ir) ,
and as E’ap (z, % + ir) is an eigenfunction of the hyperbolic Laplacian Ag

with eigenvalue % + 72, which is of rapid decay at the cusp oo, equation
(5.8) and observation 5.1.2 imply

el b ) Bt i -

(=0 5 [ oo ) ot

a€Ppr 1(N)

Therefore, we have by equations (5.7)

+oo . +00 o s—1 o
/0 c22(t, )y 2dy=/0 co2(t,y)y 2dy+()/0 cho(ty)y*2dy,

2
where
1 +1 +o00 - ] ] 2
cpolt,y) = —— Z 2/ h*(t,r)‘Ea,o (x—i-zy,%—i—zr)’ drdz
’ 41 1 J_
a€Pr; () 2
. * h(t7 T) :
with h*(t,r) = § et This completes the proof of the lemma. O
1 T
5.1.4. Lemma. For s € C with Re(s) > 1 and t > 0, we have
(s —1) <= h(t,r;
Rp(t,s) Z ‘] R|uj‘2 s).

Jj=1
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Proof. Since the u;’s are cusp forms they are of rapid decay at all cusps and
the Rankin-Selberg transforms exist for Re(s) > 1. By observation 5.1.2 we
find

s(s—1
Rle(uj)\Q(t7 5) = (Aj + (2>> R|uj|2(t, s)

which implies the claim of the lemma. O

5.2. Spectral and parabolic contribution.

5.2.1. Note that for an odd and squarefree positive integer N, we have by
[12], p. 566, proposition 6.3

~5)¢@s—1) 1
2 —2s
T(5)C(25) ==

p|N

T (s
Pooco () =27

where ¢Yooao($) is the function in the constant term of the O-th Fourier
expansion of the Eisenstein series E (2, s). (In the notation loc. cit. we
have to choose 1 = 9 = 1 and A; = A, = 1, which corresponds to the
cusp 00). One easily computes its Laurent expansion to be

(5.9) Prooc(s) = —— +1( —2Zp21°g )+o<s—1>,

vNys—1 oy

1
I'\s—5
where v is the Euler constant and a is the derivative of \/m WQ(ES) at s = 1.

5.2.2. Proposition. Let N be an odd and squarefree positive integer. For
any t > 0, we have the following Laurent expansion in a neighbourhood of
s=1

RC2,1 (ta 3) - RCO,1 (t? 5) =

11 t 1 am p?log(p)
— 142 — =2 —_— O(s —1).
’UNS—1+27)N+2UN<+7+6 I%:Vgﬂ—l +0(s )

Proof. By lemma 5.1.1, we have
1 1—s
_ 1S +s
R02,1(t’8)_ 2h<t )‘POOOO( 2 )1+5’

which is holomorphic at s = 1. Then, since h(t,%) = 1, we obtain by
observation (5.9) the Laurent expansion

1
(5.10) Re, (t,s) = — + O(s —1).
’ 21)]\[
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Again by lemma 5.1.1, we have

~Rey(t,5) = 5h (1,5) puono(59),

which has a pole of order one at s = 1. Then, since

%h (t, %) = %exp(—t(i—!—(%)ﬁ) _! —I-it(s— 1)—!—0((3— 1)2),

2
we obtain again by (5.9) the Laurent expansion
- RC’o,l (t> 5) =
1 1 t 1
— 2 — =2 1 O(s—1
v]\/s—lJFQUNJFQUN(7+ p|ZN 2 ng)+ (s )

which implies with the Laurent expansion (5.10) the claim of the proposi-
tion. O

5.2.3. Proposition. For any t > 0, we have in a neighbourhood of s = 1
the following Laurent expansion

RC2,2 (ta 3) - RCO,2 (ta S) - C4(t) + O(S - 1)7
where the constant Cy(t) tends to zero as t — oo.

Proof. By lemma 5.1.3 we have

s(s—1)

+o00
Re, , (t,s) — Rey , (t,s) = 2 /0 08,2 (t, y)ys_Qd%

where we set

1 1/2 oo h
o2t y) = —— / / 2 ao(:c + 1y, 2 + zr)‘ drdz.
aepp 1/2 J—c0 4 —i—r

By means of 3.7 the 1ntegral

+o0o . 5
/0 co2(t,y)y™ “dy

has a meromorphic continuation to the whole s-plane with a simple pole
at s = 1. Therefore Rc, ,(t,s) — Rc,,(t,s) is holomorphic at s = 1 for any
t > 0. Since we have chosen h(t,r) = exp(— t(§ +r?)) the constant Cy(t)
in the Laurent expansion tends to 0 as t — oo, as we claimed. O

5.2.4. Proposition. For any t > 0, we have in a neighbourhood of s = 1
the following Laurent expansion

1 X h(t,ry)
5.11 Rp(t,s) = ~2 +O0(s —1).
(5.11) plt9) = 5= 32 T 0l — 1)

j=1
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Proof. By lemma 5.1.4 we have

Rp(t,s) = 3(82_ by h(i:;j)Rmz(s).

j=1
We know from 3.7 that all R, 2(s) have a meromorphic continuation to

the whole s-plane with a simple pole at s = 1 with residue v&l. Hence the
summands
s(s —1) h(t,r;)
2 Aj
are holomorphic at s = 1, and since the series Rp(t, s) converges uniformly
in a neighbourhood of s = 1, the series is holomorphic at s = 1. From this
the Laurent expansion (5.11) follows immediately. O

Rl“j\z(s)

We conclude this section by recalling some known results from [1]. Let
N be a positive integer. We denote by d(/N) the number of positive divisors
of N and by o4(N) := st, s € C, the divisor sum of N.

dN

5.2.5. Proposition. For any t > 0, we have in a neighborhood of s = 1
the following Laurent expansion

RP2,1(t73) - RP0,1 (t7 3) =
<_ Ly L dr) P(N)A(N) 1

2 dr oo %—f—?“?

P(N)AN)C1(H)  o(N) (1 L[ e dr>x

UN UN 2 4T J - %—I—T2

d(N) (37 + = oxo) + (1- o) al<N>> +0(s ~1),

1
v P *
_1
where a is the derivative of ﬁ% at s =1 and Cy(t) is a function,

which converges for t — oo.

Proof. Every element v € I'g(N) with [tr(y)| = 2 lies already in I'1 (V) as
we can write v = (“g“ 13(1) with a> = —bc = 0 mod N. Hence we can

just apply [1], p. 57, equation (28), and p. 60, lemma 3.3.10. O

5.2.6. Proposition. For any t > 0, we have in a neighborhood of s = 1
the following Laurent expansion

RP2,2 (t7 3) - RPo,z <t7 5) =

<417r+02(t)> 1 : +<r'(2) +74; log(4m) () +(13(t)>+0(s _1),
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where Ca(t) and Cs(t) are functions in t tending to 0 as t — oo and =y
denotes the Euler constant.

Proof. Also here, as every element v € I'g(IV) with [tr(y)| = 2 lies already
in I'1(N), we can apply [1], p. 57, equation (28) and p. 60 on the top. O

6. Analytic part of UJZV

In this section we determine the analytic part of the stable arithmetic
self-intersection number of the relative dualizing sheaf, i.e., we obtain an
asymptotic formula in N for the Greens function evaluated at the cusps 0
and ocog, d € (Z/NZ)*, of T'1(N).

6.1. Lemma. For an odd and squarefree positive integer N, we have

1 1 1 am —p*+2p+1
lim <<POoo(5) - ) = (27 + o +> lelOg(p)) ;
pIN

s—1 ’UNS*l UN

1
I'ls—5
where v is the Euler constant and a is the derivative of ﬁW«;S) ats = 1.

Proof. From [19], Satz 1, p. iv, we have for any j
Too
i To(N
ool (€)= D boco, (c);
/=1

here vé denotes the ramification index of the cusp 0; of I'1 (V) lying over
the cusp 0 of the congruence subgroup I'g(V) contained in I'; (N), o refers
to the number of cusps ooy lying over the cusp oo of T'g(N), and, for ¢ € N,

0 =#{(5 1) € o To(N)o 0\ oW )goe /95T Moo 1

with go = (') and goo = (1) of SL2(Z) mapping the standard cusp

oo of SLz(Z) to the cusps 0 and oo, respectively. The quantity bo;co,(c) is
defined by (3.2).

In the sequel we will choose for 0; the cusp 0 of I'; (IV) as the cusp lying over
the cusp 0 of I'g(V); since we have I'g(N)p = I'1 (IN)o, the cusp 0 of I'; (N)
is unramified over the cusp 0 of T'g(N), which shows v} = 1. Furthermore,
as the group I'1 (V) is normal in I'g(/N) and since again I'o(N)oo = I'1 (IV) 0o,
all the cusps ooy lying over the cusp oo of I'g(N) are unramified, whence

reo = [[o(NV) : T1(N)] = ¢ (N).
Note that we have (in the obvious notation)

voluyp(CL(N)\H) = [Co(IV) : T (N)]voluyp(To(N)\H)
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Then, the lemma follows immediately from lemma 3.6 and the Laurent
expansion for odd and squarefree N (see [1], p. 67)

Fo(N) o 1 1
oo (8) = vl (o (V) 5 = -+
! an —p?+2p+1
ot gt o +0(s—1).
volpyp (Lo (V) \H) ( T %:V 2 — 1 g(l’)) ( )

g

6.2. Theorem. Let N be an odd and squarefree positive integer. Then the
constant term Cp in the Laurent expansion of the Rankin-Selberg transform
Rp(s) of F at s =1 is given by

Z! s
Cp=— ! hm(Fl(N)()— ! >+

2gNUN s—1 Zl"l(N)(S) s—1

<2+2 +?_22p log(p)> +F/(2)+7—log(47r)+

2gNUN p?—1 drgn
©(N)d(N) am 2p+1 ( 1 >
P o0y —3y— 28 log(p)— (1— (N)),
29N UN 6 +p|ZN pr1 oeP) )71 V)
r s—%

where v is the Euler constant, a is the derivative of ﬁm at s =1,
and C1 is the limit C1 := limy_,o, C1(t) (coming from proposition 5.2.5).

Proof. The idea of the proof is to use equation (2.20) and to determine the
constant terms in the Laurent expansions at s = 1 of the Rankin-Selberg
transforms on the right-hand side as t — oo. This gives an expression of
CF, since by proposition 5.2.4, we have lim;_,o, Rp(t,1) = 0 showing that
on the left-hand side there is no contribution from the discrete part adding
to CF.

Now we determine the constants in the Laurent expansions of the Rankin-
Selberg transforms on the right-hand side of equation (2.20) as ¢ — oo
using the facts (5.3) and (5.4). From corollary 4.2.10 and proposition 5.2.2
we find

(6.1) lim lim (RH(t, s) + (RCQ,1(t73) — RCQ1 (t, S)) _ i 1 > _

t—00 s—1 oy s —1

Z! s 2
! hm< () 1 >+21 (2+2’y+m—2 plog(p)).
UN

C 2up 5ol Zrny(s)  s—1 6 e p?—1
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Denoting by R the residue of Rp, , (t,s) — Rp,, (t,s) at s = 1, we find from
proposition 5.2.5

(62) lim lim (RP2 1(t S) RP()J(t, S) _ Rl > _

t—00 s— s—1
p(N)d(N) _am 2p+1 1
%N(QC —3y- +p|ZN | log(p) — (1—d(N)>01(N)>,

where C is the limit C := limy_,o, C (). From proposition 5.2.6 we find

(6.3) lim lim (an(t 5)— Rp,,(t,s) — (1 + C’Q(t)> 1) =

t—00 51 47 s—1
I"(2) + v — log(4m)
47 ’
and proposition 5.2.3 implies
(6.4) lim lim (Reus(t,5) = Ropu(t5)) = 0.

Collecting all constants (6.1), (6.2), (6.3), and (6.4) and dividing them by
gn, proves the claim of the theorem. O

6.3. Corollary. Let N be an odd and squarefree positive integer satisfying
N =11 or N > 13. Let X(I'1(V)) = X1(N)(C) be the modular curve with
genus gn > 0. Then for the cusps 0,004 € X1(N)(C), d € (Z/NZ)*, we
have

2m Zp (N)(S) 1

can(0,004) = — lim 1 _ +
fean{ 2 gNUN s—1 (ZI‘l(N)(S) s—1

2 2] (2 — log(4

il 2—i—2fy+aj_2zp20g(p) + ()+’Y Og( 7T)+
gNUN 6 pe — 1 gnN

p|N
2mp(N)d(N) am 2p + ( )
201 —3y——+ 1 —(1— o_1(N)| -

2 —p*+2p+1 1
l 27 + ﬂ + Tilog(p) + O()’

r sfl

where 7y is the Euler constant, a is the derivative of fFiC(Q) at s =1
and C1 is the constant from theorem 6.2.
1
gean(0,004) = 47Cp — 27 hm (90000( ) — ) +0 () .
vy s—1 N

Hence lemma 6.1 and theorem 6.2 imply the statement of the corollary. [

Proof. By proposition 3.8, we have
1 1
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6.4. A bound for the constant term in the Laurent expansion of the log-
arithmic derivative of the Selberg zeta function at s = 1 is provided by a
result of J. Jorgenson and J. Kramer in [15], p. 29, namely

. (Zp(s) 1 .
(6:5) ll—% (Z;(s) s — 1) O=(NV%),

where the implied constant depends only on €. There is the weaker bound
7
O (N8%%) due to P. Michel and E. Ullmo in [23], corollary 1.4.

6.5. Theorem. Let N be an odd and squarefree positive integer satisfying
N =11 or N > 13. Let X(I'1(V)) = X1(N)(C) be the modular curve with
genus gn > 0. Then for the cusps 0,004 € X1(N)(C), d € (Z/NZ)*, we
have

49N (9N — 1)gean(0, 004) = 29N 1og(N) + o(gn log(N)).

Proof. From corollary 6.3, we deduce

(6.6)

8oy —1) . (Zrywn(s) 1
v (ox ~ Dian(0,000) =~ i (z?EN;@ “io1)”
1

8m(gn — 1) am p*log(p) ,
SMIN T ) (g 49y 4 40 o N P08 4 0 — 1) (T(2) + ~—
e + 27+ Z]:VPQ_l +4(gn — 1) (T'(2) +~

log(4m)) + SWw(N)dijz\Y)(gN_ )<20 -3 _7_,_2 2p:—11 log(p)— (1_

1 8mgn(gn—1) am —p +2p+1
d(N))O'—l(N)) e <2fy+6+z%:v a1 log(p)> +0(gn)-

The asymptotic % =1+ o(1) together with vy = %pr(]ﬁ —1)
p

imply

8m(gn —1)  48(gn—1) o
(6.7) e ARSI )

Hence, since we have

2

am -p°+2p+1

2t g+ Dy log(p) = log(N) + O(loglog (),
p|N
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we find with observation (6.7)

8 -1 —p*+2p+1
mgn (9N )(27+%+Z P” 2 logi(p)) —

6 -
UN PIN p

2gn log(N) + o(gn log(N)).

Noting that all other summands on the right-hand side of (6.6) vanish in
the little o-term (for the first summand we use the bound (6.5)) we obtain

4gn (9N — 1)gean(0, 004) = 2gn log(N) + o(gn log(NV)).

7. Geometric part of 612\, and main theorem

7.1. Let X;(N)/Q be the smooth projective algebraic curve over Q that
classifies elliptic curves equipped with a point of exact order N. There exists
a canonical analytic isomorphism

j: X(T1(N)) =T1(N)\(HUPgG) — X1 (N)(C),

and we say that a K-rational point z € X;(N)(K) is a cusp if x €
§(T1(N)\Pg,). Note that the cusp 0 of X1(N)/Q is Q-rational and the cusp
oo of X1(N)/Q is Q({n)-rational (see [25], proposition 1).

7.2. Let X1(N)/Q(¢n) = X1(N) xg@ Q({n) be the modular curve over the
cyclotomic field Q({x). Let X1 (N)/Z[(n] be the minimal regular model of
X1(N)/Q(¢n), i-e., a regular, projective, and flat Z[(]-scheme with generic
fiber isomorphic to X1(N)/Q(¢x). Under the assumption that gy > 1,
minimality means by Castelnuovo’s criterion that the canonical divisor K
corresponding to the relative dualizing sheaf is numerically effective, i.e.,
Ky -V >0 holds for every vertical prime divisor V' of X1 (N)/Z[(n].
Integral models of modular curves were intensively studied by many people.
We collect in the following proposition some facts from [18].

7.3. Proposition. Let N be a squarefree positive integer of the form N =
N'qr with q and r two relative prime integers satisfying q,r > 4. The
minimal regular model X1 (N)/Z[(N] has smooth fibers over prime ideals p
of Z|(N] with p{ N. For p|N the fiber of X1(N)/Z[(n] over p is the union
of two irreducible, smooth, and proper k(p)-curves C1p and Coy, k(p) the
residue field at p, intersecting transversally in

_p—1 @(N/p)N 1

N
aly

k(p)-rational points. Moreover, the curves Cy and Cay are isomorphic.
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Proof. First we suppose that there is a regular model of X;(N)/Q(¢{n)
with fibers as described in the proposition. Then, the adjunction formula
for arithmetic surfaces implies K-V = 2po(V)—2+s, > 0 for every vertical
prime divisor V' in the fiber over p|N, where p,(V') denotes the arithmetic
genus of V. In the case of good reduction, we find Kn -V =2gy —2 > 0 as
N > 13. Hence the regular model is minimal. As a minimal regular model
is unique up to isomorphism, it suffices to find such a regular model.

Let M(I'1(N))/Z[¢n] be the compactified coarse moduli scheme of canon-
ical balanced I'1(/V)-structures as described in [18], chap. 9, which exists
only if N is a positive integer of the form N = N’ ¢r with ¢ and r two relative
prime integers satisfying ¢, r > 4. It follows from the modular interpretation
that M(I'1(N))/Z[¢n] is a model for X1(N)/Q(¢n). That M(I'1(N))/Z[CN]
is a regular model having smooth fibers over p { N follows from [18], the-
orem 5.5.1, theorem 10.9.1, and the summarizing table on p. 305. For p|N
the fiber of X} (N)/Z[(n] over p is the union of two irreducible, smooth,
and proper k(p)-curves which are isomorphic and intersect transversally,
follows from [18], theorem 13.11.4. The formula for the intersection number
sp follows from [18], corollaries 5.5.3 and 12.9.4. O

7.4. Let 0,00 € X1(N)(Q(¢n)) be the cusps with representatives (0 : 1),
(1:0)in P(b, respectively. We let Hy, Hy be the horizontal divisors obtained
by taking the Zariski closure of 0,00 in X (N)/Z[(n], respectively. Note
that for m = 0, co there exists an open subscheme containing H,,, which is
smooth over Z[(n] (see [18], theorem 10.9.1).

7.5. Proposition. Let N be a squarefree positive integer of the form N =
N'qr with q and r two relative prime integers satisfying q,r > 4. Then,
there exist vertical divisors Vp, € Div(X1(N))g (m = 0,00) satisfying

(7.2)
(@ v)/21cx) © Oy () (Hin) 2972 © Oy, () (Vin) ) - Oy ) (V) = 0

for all vertical divisors V' of X1(N)/Z[(N]. Furthermore, we have the fol-
lowing intersection numbers

(‘/07 ‘/O)ﬁn = (Vooa Voo)ﬁn = _(‘/07 Voo)ﬁn -

B 24(gy —1)* ~p+1
PGP = 1) 2 p—1 0

Proof. We start by considering a fiber over a closed point p € Spec(Z[(n])
with p|N. The fiber consists by proposition 7.3 of the two irreducible com-
ponents C7p and Cap. The horizontal divisors Hy and H, intersect the
fiber in a smooth k(p)-rational point, and, by the cusp and component la-
beling in [18], p. 296, they do not intersect the same component. We denote
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by Cop and Cp the component intersected by Hy and Ho, respectively.
Let us define the Q-divisors

-1 —1
‘/O,P = *gN 0043 and VOO,]J = *gN COO,p
Sp Sp
Then, we claim that
Vp = Z Vop and Vo= Z Voorp
peSpec(Z[¢n]) peSpec(Z[Cn])
pIN pIN

fulfill the conditions stated in (7.2). Noting that
Ky - Cop = degwe, ,/kp) = degwe, ,/kp) = BN - Coop

and KN . (Co,p—i-coqp) = 29]\[—2, we ﬁnd KN 'COAJ = KN 'Coo,p = JgN — 1.
We have to consider the following three cases:

(i) V. =V, with p { N. In this case we calculate, using the adjunction
formula

(@2 0)/210) © Oy () (Hin) 2~ 9D @ Oy, () (Vin) ) - Oy ) (V) =
(295 — 2 = (295 — 2)) log (#k(p)) = 0.

(ii) V = Cpp with p|N. In this case we calculate

(Ba) 21601 © O () (i) 29 © O, (3 (Vi) ) - Oy (V) =
(9v —1— (295 —2) + gy — 1) log (2k(p)) = 0.

(ili) V = Cpp withp|N, n € {0, 00}, and n # m. In this case we calculate
(Ba) 21601 © Ot () (Hi) 2™ © O, (3 (Vi) ) - Oy (V) =
(9v — 1= (gv — 1)) log (8k(p)) = 0.

This proves the first part of the proposition. Now, proposition 7.3 implies

—1)2
(‘/07 ‘/O)ﬁn = (Vom Voo)ﬁn = _(‘/07 Voo)ﬁn = - Z MCO,]J . Coo,p -

p|N P
¢ (gv —1D?log (tk(p)) e 1 log (#k(p))
}%:V 5 = 24(9N 1) MZN p—1 . Hq‘N/p (q2 — 1)7

which proves the proposition noting that Zlog (8k(p)) = »(N/p)log(p)
plp
Il

7.6. Proposition. Let N be a squarefree positive integer of the form N =
N/qr with ¢ and r two relative prime integers satisfying q,r > 4. Let 0,00
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be the cusps of X (T'1(N)) with representatives (0 : 1), (1:0) in P(b, respec-
tively, and let Vi, Voo be the wvertical divisors of proposition 7.5. Then, we
have

. I gyn+1
7.3 war =4 — 1) gean(0, 00) + ——
(7.3) N =498 (9N — 1)gean(0, 00) SN g =1
Proof. Formula (7.3) is analogous to the corresponding formula in propo-
sition D of [1] and, in the smooth case, the formula given in [29], p. 241.
We first claim that a multiple of the line bundle

(WXl(N)/Z[CN]®OX1(N) (Ho)®_(29N_2)®OX1(N)(V0)) | x, () € T1 (V) (Q(Cw))
has support in the cusps. Since I';(N) has no elliptic points for N > 4
(see [6], p. 107) the natural map X (I'1(N)) — P& has constant ramifi-
cation index at points over the elliptic point of order two in }P’%: and has
constant ramification index at points over the elliptic point of order 3 in
PL. Therefore, our first claim follows from [1], lemme 4.1.1. Hence a well-
known theorem of Manin and Drinfeld (see [7]) says, that this line bundle
is a torsion element in the Jacobian J;(N)/Q({n). Now, as condition (7.2)
is satisfied, a theorem of Faltings and Hriljac (see [9], theorem 4), and the
fact that the Néron-Tate height vanishes at torsion points, imply as in [1]

D wyzicwl = = 208 (an = 1) (O, av) (Ho)? + Oy vy (Hoo)?) +

(7.4 5 (O (W) + Oy ) (V)

Now we consider the admissible metrized line bundle

Oy (n)(Hoo) @0 1, () (Ho)® ' @ (6X1(N)(Vb) ® @Xl(N)(Voo)@)_l)

which is orthogonal to all vertical divisors V' of X;(IN) because of the con-

ditions (7.2) and has the generic fiber with support in the cusps. Then, a

similar argument as above shows

O, (v) (Ho)* + Oy () (Hoo)? =20 1, () (Ho) - Oy vy (Hoo )+

(Vba VO)ﬁn -2 (‘/07 Voo)ﬁn + (Vom Voo)ﬁn
(29N — 2)? .

Since by 7.4 the horizontal divisors Hy and H., do not intersect, lemma

7.5, substituting equation (7.5) into (7.4), implies

(7.6)

(va VOO)ﬁn .

®1/(29n—2)

(7.5)

_ . gy +1
D) zicw] = 498 (gn = 1) D 92 (0,000) + T 1 (Vo: Voo )iy -
o:Q(¢n)—C IN
Note that the modular curve X;(N)/Q is defined over @, and hence the
Riemann surfaces X;(N), are in fact all equal to X (I'1(V)). Moreover,
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proposition 3.8 implies g, (0,00, ) = g% (0,00, for any two embeddings
o,0" : Q(¢{n) — C. Therefore, dividing both sides of equality (7.6) by ¢(N),
we obtain formula (7.3). O

7.7. Theorem. Let N be an odd and squarefree positive integer of the
form N = N'qr with ¢ and r two relative prime integers satisfying q,r > 4.
Then, we have

@ = 3gnlog(N) + o(gy log(N)).
Proof. By proposition 7.6, using theorem 6.5 and proposition 7.5, we have

24(gn + D(gy —1) <~ p+1
@ — 1) sz:v o os(p) + o{aw log(N).

@y = 2gn log(N) +

Noting that % =1+ o(1), the claimed asymptotic follows. O
p

8. Arithmetic applications

8.1. Stable Fualtings height. Let J1(N)/Q be the Jacobian variety of the
modular curve X;(N)/Q and let hpa(J1(N)) be the stable Faltings height
of J1(N)/Q. The arithmetic Noether formula (see [24], theorem 2.5) implies

(8.1)

12hp (J1(N)) = T% + Z
p\N

log ) 4 0pal (X (1 (N))) — 4gn log(27),

where s, is given by the formula (7.1) and dpa (X (I'1(N))) denotes the
Faltings’s delta invariant of X (I';(NV)) (for the definition see [9], theorem
1, or, for another approach due to J.-B. Bost, see [28]). In [17] it is proved
(see loc. cit. theorem 5.3 and remark 5.8) that

(8.2) dpar (X (T'1(N))) = O(gn)-

8.2. Theorem. Let N be an odd and squarefree positive integer of the
form N = N'qr with ¢ and r two relative prime integers satisfying q,r > 4.
Then, we have

hpa (J1(N)) = QZN log(N) + o(gn log(N)).

Proof. Noting that

1 Sp lo N)d(N lo
3> log(y) = 205 B AR 5 B o10g(v)
pIN pIN p|N
and
Q?N ;zgfpi N @(Nl);l(N) 3 lc;g(pi _ o(g log(IV)),
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(8.3) %Z o 7 log(p) = o(gn1og(N)).

ple_

Hence observations (8.1) and (8.2) together with theorem 7.7 imply state-
ment of the theorem. O

8.3. Remark. In [8], p. 83, theorem 16.7, the authors found the bound

heat (J1(pl)) = O((pl)* log(pl)),

where p and [ are distinct primes with [ > 5. In theorem 8.2 the leading
term is explicit.

We note that theorem 8.2 might lead to a similar bound on the minimal
number of congruences of modular forms with respect to I'1 (V) as in [17],
remark 6.6, p. 37, in the case of T'g(V).

8.4. Admissible self-intersection number. We assume that the reader is fa-
miliar with the theory of the admissible pairing in [33].

Let N be an odd and squarefree integer of the form N = N gr with
q and 7 relative prime integeres satisfying q,r > 4. The dual reduction
graph G of the fiber of &1 (N)/Z[(n] over the prime ideal p of Z[(x] with
p 1 N consists by proposition 7.3 of two vertices which are connected by

Sp = % . W I1 gl (1 + %) edges of length 1. Hereby the two vertices

correpond to the irreducible components Cp , and C, , over p. Note that the
genera of the two components Cp, and Cyp are the same by proposition
7.3, which we denote by g,. Then, we have gy = 2g, + sp — 1 and the
canonical divisor K¢, on Gy (for the definition see [33], p. 175) is in this
case given by

Kg, = (gn — 1)[0 + oo].

We set ap = sps—ﬂlg,, and [l := 2ay + sp, and the admissible measure with
respect to Kg, on Gy (for the definition see [33], theorem 3.2) is given by

(8.4) fip 1= =2 (80 + 000) + —da

Recalling the notation from [1], we have for n = s, that the admissible
Green’s function gfpp with respect to p, of the graph Gy is given by (cf. [1],
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p. 65)
gi)p (25,0) = 223953 B aps;:p 2 — 3ag;:ljsp?
95 (z,00) = 229(1 —x)? - aps;:psn (1—j) - w,
(8.5) g (x5, 25) = (1—;_23) mj(l_wj)_W’
where 0 < z; <1 (j = 1,...,sp) denotes the coordinate along an edge.

Note that for prime ideals p,p’ of Z[(x] with p|p and p’|p, we have G, =
Gy, and we simply write G, for this graph; further, we write in this case
also simply sy, ap, lp, Ka,,, p1p for sy, ap, ly, Kg,, pp, respectively. Let w, n be
the admissible metrized relative dualizing sheaf of the curve X;(N)/Q as
defined in [33], p. 181 and p. 188.

8.5. Theorem. Let N be an odd and squarefree integer of the form N =
N/qr with q and r relative prime integeres satisfying q,r > 4. Then, we
have

Wan = 39N log(N) + o(gn log(NV)).
Proof. By [33], theorem 5. 5 we have

”
Wy —Way = erlog th(p) = 7 log (),
90 p|N P\Np
where
Tp i=Tp = ggpp (z,2) (29~ — 2)pp(x) + 5KGP)'

GP
Now we calculate (as in [1], p. 65) the value r, for the graph G, with p|N.
The definition of r), and the formula for the admissible measure 1, of (8.4)
yield
(v DB+ =) gy —D? (25— Dlgn — 1)*
3spg 39" SpIN '
Noting that s, < gy and Z—JZ =p+ 1+ O(1) holds for p|N, we obtain

Tp:

+2 4 0(1).

—(p+1) 3

Therefore, we have

> r_pllog(p)=2$

p|N p p|N ( D

log(p) + O(log(N)).

Then, theorem 7.7 and the asymptotic (8.3) imply
W N = 3gn 1og(N) + o(gn log(N)).
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This completes the proof of the theorem. O

8.6. Effective Bogomolov. Let X /K be a smooth projective and geometri-
cally connected curve over a number field K of genus gx > 1. For a divisor
D € Div(X) of degree 1, let

op : X — Jac(X)

be the embedding of the curve X/K into its Jacobian Jac(X)/K defined
by the mapping = — [Ox(x — D)]. Then there exists an € > 0 such that
the set of algebraic points

{OCGX )| hnt (p(2)) Se?}

is finite, where hxt denotes the Néron-Tate height on Jac(X)/K (Bogo-
molov’s conjecture). The conjecture was proved by E. Ullmo in the case of
curves and by S.-W. Zhang, more general, for any non-torsion subvariety
X of an abelian variety A/K.

Due to L. Szpiro and S.-W. Zhang it is known (see [33], theorem 5.6)
that for every € > 0 the set of algebraic points

o2
) X(K __Ya
(8 6) {l‘ S |hNT(SOD( )) < 4(9)( — 1) E}
is finite, and that the set of algebraic points
o2
. X < a0
(8.7) 7 € X(K) [ hvr(ep(@)) < 5

is infinite if [Ox (Kx — (2gx —2)D)] is a torsion element in Jac(X)/K.

8.7. Theorem. Let N be an odd and squarefree positive integer of the form
N = N'gr with ¢ and r relative prime integers satisfying g, > 4. Then,
for any € > 0, there is a sufficiently large N such that the set of algebraic
points

{w € X1(N)(Q) | hnt(¢p(2)) < (i — E) log(N)}

is finite, and the set of algebraic points

{2 € @ [ wrlenta)) < (5 +¢) log)}
is infinite, if [Ox, (v)(Kx,(v)— (2958 —2)D)|is a torsion element in Jy(N)/Q.

Proof. The first and second statement of the theorem follow immediately
from the height bounds (8.6) and (8.7) in conjunction with theorem 8.5. [J

8.8. Remark. If D = [0] then [Ox, v (Kx, () — (295 —2)D)] is a torsion
element in J;(N)/Q, which gives an example for the second statement in
theorem 8.7.
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9. Appendix: Meromorphic Continuation

In this appendix we give a proof of proposition 4.2.2. Recall that for N
an odd positive integer and [ € Z with |[| > 2 and | =2 mod N, as well
as 0 <u < N with (u, N) =1, we define the zeta function

> =

(s € C, Re(s) > 1).
(ra(mayeart ()

We will show that (, n(s,!) is well-defined and has a meromorphic contin-
uation to the whole s-plane. Furthermore, we will determine its residue at
s=1.

Throughout this section we keep the above assumptions on N, [, and u.

9.1. Let ¢ = [aN,bN,c|] € Qi(N) with r := ged(aN,bN,c) the greatest
common divisor of the coefficients of q. We define the set

MY(N):={(m,n) € Z*|(m,n) = (0,u) mod N; q(n,—m) > 0} C M,(N).
Let us set ¢ := bN+27 Vclz_4 and 6 := W_Qi Vcl2_4 such that
(9.1) q(n, —m) = c¢(m — On)(m — On).

Further, we set (t4, uq) := (to, “2) with (%9, uo) the smallest positive solution

of Pell’s equation X? — di%(q)YZ = 4 such that % =1 mod N. Then,
the generator oy of I'1 (V) is explicitly given by (cf. [32], p. 63, Satz 2)

tg—bNug cu
— 2 —*Y%q
Qg = t 4+bN c Fl(N)
q aNu, % ’

and the power g, of the fundamental unit ¢ of 4.2.1 is of the form ¢, =
tq+u+ V=1 Therefore, for (m',n) = (m,n)ak € My(N), k € Z, we find (cf.
132], p. 70)

9.2) m' —6n' = Eg(m —6On) and m' —On' = ég(m —0n),

where g,:= tq*"‘lf V=4 s the conjugate of £4 in the quadratic field Q(vI?—4).
As g484 > 0, equations (9.1) and (9.2) imply g(n’, —m/) > 0; this gives a
well-defined action
(9.3 [y (), % ME(N) —» ME(N)
(6, (m,n)) = (m,n)é.
With the above notation and the isomorphy I'y ;(N) /T (V)= Qi(N)/T'1(N)
in 4.1.4, we find

Cu,N(SJ) = Z Z

2€QUNIITL (V) (mamyend () (), 100
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Finally, we set E, := t";f# with (t4,uq) as above, and define the set
RY(N) = {(m,n) € Z*| (m,n) = (0,v) mod Nin > 0,m > Egn}.

9.2. Remark. By observation (4.1) we may assume that the coefficients of
some representative ¢ = [aN, b, c] of an equivalence class of Q;(N)/T'1(N)
satisfies alN > 0,bN < 0, and ¢ > 0. We will exploit this fact in the sequel.

9.3. Lemma. Let N be an odd positive integer and | € Z with |l| > 2
and I = 2 mod N. Further, let 0 < u < N with (u,N) = 1 as well as
0<u <N withuw = —u mod N. Then, we have for Re(s) > 1

v = 3 DL o

se@N )\ manera vy 100 T R ()

1
Q(na _m)s '
Proof. We prove that the zeta function is well-defined in 9.6. Let us define
for ¢ = [aN,bN, c] € Q;(N) with ¢ > 0 (which we can assume) the sets
MIE(N) := {(m,n) € MY(N)|m —0n = 0}.
This allows us to write MJ(N) as a disjoint union MZ(N) = MI*(N) U
M3~ (N), which descends by observation (9.2) to
M{(N)/T1(N)q = MI"(N)/T1(N)q UM~ (N)/T1(N)g.

Now, we define a map ¢, : MZ*(N)/T1(N), — R1(N) as well as a map
¢, + M3~ (N)/T1(N)y — RZ,(N) which will turn out to be bijections.

This proves then the statement of the lemma.
To define the map ¢, let (m,n) € MJIT(N). By observation (9.2) we find

u

for (m/,n’) = (m,n)ak, k € Z, the equation (cf. [32], p. 70)

m' — On/ <€q>km—0n_(€ )_ka—gn
q

gq) m—06n m—6n’

m —6on'
Hence in each orbit of MZ*(N) by I'1(N)g, there is an element (m’,n’)
which satisfies 1 < z::gz; < 53. We find

I Dol I Dol 2 0
m' — On m' — On e%0 — 0
l<———— «=n'>0 and — —— <2 <e=m >14 n'
m' — 0n’ m/ —fn' — ¢ Toel-1 ’
. . 209 . .
and a little computation shows 55‘37_1 = FE,, from which we obtain a well-
q

defined map ¢} : M3t (N)/T1(N); — RL(N) given by (m,n)-T1(N), —
(m’,n'). Now, we define the map (@) : RI(N) — MIt(N)/T1(N), by
(m,n) — (m,n)-I'1(N),. It is straightforward that this map is well-defined.
One easily verifies that the maps ¢ and (o, )/ are inverse to each other,
which proves that o, is a bijection.
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To define the map ¢y, we let ¢ : MZ~(N)/T1(N), — ML (N)/T1(N),
be the bijection induced by mapping (m,n) — (—m, —n). Defining the map
©u 1= @5 o p gives rise to a bijection ¢, : MI™(N)/T1(N)y — RL(N).
Since ¢, and ¢, are bijections, the statement of the lemma follows. [

9.4. Let N be an odd positive integer, | € Z with |l| > 2and [ =2 mod N,
0 <u < N with (u,N) =1, and ¢ € Q;(IN). Then, we define the theta
series 97 \ (¢) by

(9'4) ﬁZ,N(t) = Z exp ( - tQ(nv *m)) (t € R>0)7
(m,n)ERL(N)

which is a little variant of the theta series studied by E. Landau in [20]
defined as follows: Let E € R\ {0} and Lg be the lattice defined by

Lg = Zwi + Zws

with wy = (1,0) and wy := (E,1). Let Sg p be the truncated and shifted
lattice defined by

Sg.p = {(a:,y) € R?*|(z,y) € P+ Lg;y > 0,$2Ey}.

and P = (x0,90) € R? lying inside the parallelogram determined by the
four points (0,0), (1,0),(E,1), and (E 4+ 1,1). Let ¢ = [a,b,c] € Q;(1) be
a quadratic form with a > 0,b > 0,¢ > 0, and discriminant D = [?> — 4.
Then, E. Landau considers the theta series

19%713(15) = Z exp (— tq(z,y)) (t € Rso).
(x,y)ESEyp

If E satisfies £ > %, then the theta series 9% (t) converges for t > 0,
and we have
a_9 a_1

k k
(9.5) 0% p(t) = —~ " tag+ait? + ...+ apt? + Oy (t#)
2

as t — 0 with a; € R,k > —2, where all appearing constants depend on
the choice of E, P, and ¢g. Furthermore, av_s is given by

1 20E +b+ VD
a_g = log
2D T 2aE+b—+VD
(see [20], Hilfssatz 11; note that in [20] the quadratic forms are of the
form ¢(X,Y) = aX? 4+ 2bXY + c¢Y? and the discriminant is defined by

disc(q) = b? — ac. This causes the factor of 2 appearing in the expression
of a_g).

(9.6)

9.5. Lemma. Let N be an odd positive integer, | € Z with |l| > 2 and
=2 mod N, 0<u< N with (u,N) =1, and ¢ = [aN,bN,c] € Q;(N) a
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quadratic form with aN > 0, bN < 0,¢ > 0. Then, the theta series 07 \(t)
converges for t > 0, and we have

q B2 5 1 k Et1
07) N =" + B0+ Bitt o+ Bt + O (1)
’ t
ast — 0 with B; € R,k > —2, where all appearing constants depend on the
choice of u, N, and q. Furthermore, B_o is given by

1

f-2= 4]\72\/@ log(eg)-

Proof. We show that 07 y(t) is a sum of Landau’s theta series 9% p(t).
Let be L := cuyN. First note that the points (m,n) = (0,u) mod N with
m > Eyn and n > 0 do lie in the interior of the parallelograms of Width and
height L of the cone defined by y > 0 and z > E,y. Now, let be § := 7 and
n := 4. Then, we obtain cng points P, = (zp,yn), h = 1,. 02u2 in the
parallelogram now of width and height 1 with respect to the coordmates &
and n. We set

A:=cL? B:=-bNL? C:=aNL?
and define ¢’ := [A, B,C|] such that q(y,—x) = ¢(¢,n) and disc(¢’) =
— 4AC = disc(q)L*. By the definition of the theta series, we have

792 Nt Z Eq,Ph

Since

+ DNy - DN +VI12 -4  —B+y/disc(¢)
B 24 ’

E,="
1 2cuyq 2c

we can apply Landau’s result and obtain

C2u2
/ a_2h a_1,h 1 k kt1
> (0%Q7Ph(t) R Qop — Qi pt? — ... — an,hm) < Ctz
h=1 2
CQUS
with C := Z Ch, where the C}, are the implied constants of formula (9.5).
h=1
CZU(QI
This implies with §; := Z ajp the claimed growth behaviour (9.7) of
h=1

91 (t) ast — 0.
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It remains to determine _s. By formula (9.6) we have

_9 =c"u 0
» =My m 1 2B, bN —VIE_4

B 1 o T T U ?2—4

2N2VI12 —4 gtq—uq 12 —4
1 tg +ugViz —4 1

= log = log(eq).

N2VI2 -4 2 N2VI12 —4
This finishes the proof of the lemma. U

9.6. Proof of proposition 4.2.2. Since g(n,—m) > 0 holds for (m,n) €
RI(N), we can use the well-known integral representation

08 Y L. F(ls) /0 TR (Ddt (Re(s) > 1).

(m,n)ERL(N) q(n, —m)°

Using the asymptotics (9.7), we find

1>~ Lot (B2 B k
—_— 519 tdtzi/ts 1(+ + 0o+ ...+ t2>dt—|-
F(S)/{) u7N( ) F(S) 0 ¢ t% /80 ﬁk

1 1 1 +o00
t* IRy (t)dt + / 90 (t)dt
F(S)/o k( ) F(S) 1 u,N( )
with Ry(t) = Ok(t 2 ). For Re(s) > 1 the first term on the right hand side
is well-defined and is equal to

1 _ _

(52+51 +@+ P Br >,
Iis)\s—1 s—1/2 s s+1/2 s+k/2

which extends to a meromorphic function on the whole complex plane. For
Re(s) > # with k£ > 2 the integral of second term on the right hand

side converges absolutely and uniformly, since in this case we have
IR (t) = O(¢) (t —0).

The third integral converges absolutely and uniformly for any s € C. So
we can deduce from equations (9.8) and (9.9), applied to u and «/, that
Cu,N(s,1) is well-defined for Re(s) > 1 and has a meromorphic continuation
to the half plane Re(s) > =%t with k > 2. This finishes the proof of the
first part of the proposition as k£ can be arbitrarily large.

It remains to calculate the residue of (, n(s,1) at s = 1. We deduce from
equation (9.10) that ¢, n(s,!) has a simple pole at s = 1 with residue

20y (N)
N o8(E)

as _o does not depend on u and u/. This proves the proposition 4.2.2.

(9.9)

k+1
t 2

(9.10)

ress:lCu,N<3a l) = QhZ(N)ﬁ_Q -
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