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Self-intersection of the relative dualizing sheaf
on modular curves X1(N)

par Hartwig MAYER

Résumé. Soit N un entier naturel impair sans facteur carré
ayant au moins deux diviseurs relativement premiers et supérieurs
ou égaux à 4. Le théorème principal de cet article est une for-
mule asymptotique exclusivement en termes de N pour l’auto-
intersection arithmétique du dualisant relatif des courbes modu-
laires X1(N)/Q. Nous en déduisons une formule asymptotique
pour la hauteur stable de Faltings de la Jacobienne J1(N)/Q de
X1(N)/Q ainsi qu’une version effective de la conjecture de Bogo-
molov pour X1(N)/Q pour N suffisamment grand.

Abstract. Let N be an odd and squarefree positive integer di-
visible by at least two relative prime integers bigger or equal than
4. Our main theorem is an asymptotic formula solely in terms of
N for the stable arithmetic self-intersection number of the relative
dualizing sheaf for modular curvesX1(N)/Q. From our main theo-
rem we obtain an asymptotic formula for the stable Faltings height
of the Jacobian J1(N)/Q of X1(N)/Q, and, for sufficiently large
N , an effective version of Bogomolov’s conjecture for X1(N)/Q.

1. Introduction
Let K be a number field and OK its ring of integers. Let X/OK be

the minimal regular model of a smooth projective curve X/K of genus
gX > 0. We call X/OK an arithmetic surface. In [2], S. J. Arakelov in-
troduced an intersection theory for metrized invertible sheaves on X/OK .
G. Faltings established in his work [9] many fundamental results to the
theory of Arakelov. Within this framework we may attach two important
invariants to the curve X/K: Let ωX/OK be the relative dualizing sheaf on
X/OK equipped with the Arakelov metric. The first invariant is the stable
arithmetic self-intersection number 1

[K : Q]ω
2
X/OK which is independent of

the field K as long as X/K has semistable reduction over OK . The second
invariant is the arithmetic degree of the direct image of ωX/OK which is, in
other words, the stable Faltings height of the Jacobian Jac(X)/K of X/K.

Manuscrit reçu le 26 novembre 2012, accepté le 17 décembre 2013.
Classification math. 14G35, 14G40.
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The arithmetic significance of the stable arithmetic self-intersection num-
ber was given in [29] by showing that its strict positivity is equivalent to
Bogomolov’s conjecture (finally proven by E. Ullmo after partial results
by Burnol, Szpiro, and Zhang). Recall that this conjecture claims that the
set of algebraic points of the curve X/K embedded into its Jacobian are
discretely distributed with respect to the “Néron-Tate topology” supposed
that the genus of the curve is bigger than one. The second invariant is
particularly interesting in the situation of modular curves. E.g., the stable
Faltings height of the Jacobian of the modular curve X1(N)/Q plays an
important role in [8].

The only cases so far in which the stable arithmetic self-intersection num-
ber of the relative dualizing sheaf is known are arithmetic surfaces, where
the generic fiber is a curve of genus one (see [9]), a curve of genus two
(see [4]), or a modular curve X0(N), N squarefree and 2, 3 - N , (see [1],
[23]). More recently, upper bounds in the cases of modular curves X(N)
and Fermat curves were found (see [5]). There are expressions for the stable
Faltings height in the first two cases (see [4] and [9]). In the case of the mod-
ular curves X0(N), the stable Faltings height is asymptotically determined
in [17]. Asymptotics in the case of the modular curve X1(N) are already
given in [8] (cf. remark 8.3).

1.1. Arakelov theory on arithmetic surfaces. Let X/OK be the minimal
regular model of a smooth projective curve X/K of genus gX > 0. Let D
be a divisor on X and L = OX (D) the corresponding line bundle on X/OK .
For every embedding σ : K −→ C we equip the induced line bundle Lσ on
the compact Riemann surface Xσ(C), Xσ := X×σSpec(C), with the unique
admissible metric (Arakelov metric) with respect to the canonical volume
form µcan (cf. [28], p. 332). A line bundle L equipped with these metrics
for all embeddings σ will be denoted by L. For the relative dualizing sheaf
ωX/OK the Arakelov metric has the following interpretation: the residual
maps

Ω1
Xσ(C) ⊗OXσ(C)(P )|P −→ C

are isometries for all points P ∈ Xσ(C) and all embeddings σ : K −→ C,
where OXσ(C)(P ) is equipped with the Arakelov metric and C with the
standard hermitian metric (see [28], p. 333).

The intersection product of two metrized line bundles L = OX (P ) and
M = OX (Q), P,Q two horizontal prime divisors on X with no common
component and induced points Pσ, Qσ on Xσ(C), is given by

L ·M = (P,Q)fin −
∑

σ:K→C
gσcan

(
Pσ, Qσ),
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where (P,Q)fin is their local intersection product on X/OK (see [28], p.
332) and gσcan is the canonical Green’s function on Xσ(C)×Xσ(C)\∆Xσ(C),
denoting by ∆Xσ(C) the diagonal, (for the definition see section 3.2).

1.2. Main results. Let X1(N)/Q be the smooth projective algebraic curve
over Q that classifies elliptic curves equipped with a point of exact order
N . Let N be an odd and squarefree integer of the form N = N

′
qr > 0

with q and r relative prime integers satisfying q, r ≥ 4. Then, the minimal
regular model X1(N)/Z[ζN ] is semistable (cf. proposition 7.3) and the genus
of X1(N)/Q denoted by gN satisfies gN > 0. With the notation ω2

N =
1

[K : Q]ω
2
X1(N)/OK our main theorem (cf. theorem 7.7) is the following:

Theorem. Let N be an odd and squarefree integer of the form N = N
′
qr >

0 with q and r relative prime integers satisfying q, r ≥ 4. Then, we have
ω2
N = 3gN log(N) + o

(
gN log(N)

)
.

Our first arithmetic application is the following asymptotic formula for
the stable Faltings height hFal

(
J1(N)

)
of the Jacobian J1(N)/Q of the

modular curves X1(N)/Q (cf. theorem 8.2).

Theorem. Let N be an odd and squarefree integer of the form N = N
′
qr >

0 with q and r relative prime integers satisfying q, r ≥ 4. Then, we have

hFal
(
J1(N)

)
= gN

4 log(N) + o
(
gN log(N)

)
.

We also obtain an asymptotic formula for the admissible self-intersection
number of the relative dualizing sheaf ω2

a,N in the sense of the theory of
Zhang in [33]. From this we can deduce, for large N , an effective version of
Bogomolov’s conjecture for the modular curve X1(N)/Q: Let hNT be the
Néron-Tate height on the Jacobian J1(N)/Q, and let ϕD : X1(N)/Q −→
J1(N)/Q be the embedding of the modular curve X1(N)/Q into its Jaco-
bian with respect to a divisor D ∈ Div (X1(N)) of degree one. With this
notation we prove the following (cf. theorem 8.7):

Theorem. Let N be an odd and squarefree positive integer of the form
N = N

′
qr with q and r relative prime integers satisfying q, r ≥ 4. Then,

for any ε > 0, there is a sufficiently large N such that the set of algebraic
points {

x ∈ X1(N)(Q)
∣∣hNT

(
ϕD(x)

)
<

(3
4 − ε

)
log(N)

}
is finite, and the set of algebraic points{

x ∈ X1(N)(Q)
∣∣hNT

(
ϕD(x)

)
≤
(3

2 + ε

)
log(N)

}
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is infinite, if the class [OX1(N)
(
KX1(N)− (2gN − 2)D

)
] is a torsion element

in J1(N)/Q, where KX1(N) is the canonical divisor on X1(N)/Q.

1.3. Outline. The main structure of this article derives from proposition
7.6 providing us with the formula

ω2
N = 4gN (gN − 1)gcan(0,∞) + 1

ϕ(N)
gN + 1
gN − 1 (V0, V∞)fin ,

where V0, V∞ are explicit vertical divisors on X1(N)/Z[ζN ]. To achieve our
main theorem, we first compute the analytic part 4gN (gN − 1)gcan(0,∞)
following the strategy of [1] using results of [16]. Afterwards we deter-
mine the geometric part 1

ϕ(N)
gN+1
gN−1 (V0, V∞)fin of the stable arithmetic self-

intersection number ω2
N .

In section two we recall some basic facts of the (compactified) modular
curves and present the spectral expansion of the automorphic kernels of
weight 0 and 2. We conclude this section by observing that the arithmetic
average

F (z) := 1
gN

gN∑
j=1

y2|fj(z)|2 (z = x+ iy ∈ H)

of an orthonormal basis {fj}gNj=1 of holomorphic cusp forms of weight 2
with respect to the congruence subgroup Γ1(N) appears in the spectral
expansions of the automorphic kernels mentioned above. In section three
we obtain a formula which connects gcan(0,∞) with the constant term CF
in the Laurent expansion at s = 1 of the Rankin-Selberg transform RF (s),
s ∈ C, of the function F (z). In section four we determine the Rankin-
Selberg transform of the hyperbolic part of the automorphic kernels. In
section five we analyze the Rankin-Selberg transform of the parabolic part
of the automorphic kernels and their spectral expansions. Subsequently we
obtain a first expression for CF (cf. remark 3.9). In section six we may
finally determine the analytic part purely in terms of N . In section seven
we obtain our main theorem after having computed the geometric part
of the stable arithmetic self-intersection number ω2

N . In section eight we
deduce the arithmetic applications mentioned above. In the appendix we
finally study an Epstein zeta function that appears in section four.

1.4. Acknowledgement. The results of this article are essentially those of my
thesis [21]. I am much indebted to my advisor Jürg Kramer for his support
and very valuable comments on this work. Without his help this article
would not have appeared. I want to thank Bas Edixhoven who pointed out
two mistakes in a preliminary version of this article. To Anna von Pippich I
am very grateful for discussions concerning the analytic part of this article.
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2. Background Material
Let us collect some basic material of modular curves X

(
Γ1(N)

)
and their

spectral theory. Our main references are [6], [13], and [26, 27]. The spec-
tral theory in [13] and [26, 27] is formulated in a more general framework,
namely for Fuchsian subgroups of the first kind. In order to keep this expo-
sition short, we restrict the discussion to the congruence subgroup Γ1(N).

2.1. The upper half-plane. Let H := {z = x + iy ∈ C | Im(z) = y > 0} be
the upper half-plane equipped with the hyperbolic metric

ds2
hyp(z) := dx2 + dy2

y2(2.1)

giving H the structure of a 2-dimensional Riemannian manifold of constant
negative curvature equal to −1. The hyperbolic metric (2.1) induces the
distance function ρ on H defined by cosh

(
ρ(z, w)

)
= 1 + 2u(z, w), where

u(z, w) = | z − w |2

4Im(z)Im(w) (z, w ∈ H),(2.2)

and the hyperbolic volume form on H given by µhyp(z) := dx∧dy
y2 .

2.2. Modular curves X
(
Γ1(N)

)
. Let N ≥ 1 be a positive integer and

Γ1(N) ⊆ SL2(Z) the congruence subgroup defined by

Γ1(N) :=
{
γ =

(
a b
c d

)
∈ SL2(Z) | a ≡ d ≡ 1 mod N, c ≡ 0 mod N

}
acting by fractional linear transformation z 7→ γz := az+b

cz+d , γ =
(
a b
c d

)
∈

Γ1(N), on the upper half-plane H. The quotient space Γ1(N)\H is denoted
by Y

(
Γ1(N)

)
. Letting Γ1(N) act on the projective line P1

Q by γ(s : t) :=
(as+bt : cs+dt), (s : t) ∈ P1

Q, the (compactified) modular curve X
(
Γ1(N)

)
associated to Γ1(N) is defined as the quotient space

X
(
Γ1(N)

)
:= Γ1(N)\

(
H ∪ P1

Q
)
,

which can be endowed with a natural topology making the quotient space
into a compact Riemann surface (see [6], chap. 2.4).
The finite set PΓ1(N) := X

(
Γ1(N)

)
\Y
(
Γ1(N)

)
is called the set of (inequiv-

alent) cusps of Γ1(N) and is represented by the set of elements (a, c) of
(Z/NZ)2 of order N modulo the equivalence relation (a, c) ≡ (a′, c′) if and
only if (a′, c′) = (a + nc, c) for some n ∈ Z/NZ. Moreover, the hyperbolic
volume form µhyp descends to a volume form on X

(
Γ1(N)

)
(see [6], p. 181)

which we will denote again by µhyp. For the moduli interpretation of the
modular curve X

(
Γ1(N)

)
we refer the reader to section 7.
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2.3. Genus and volume formula. We assume N ≥ 5 to avoid elliptic fixed
points and to have uniform formulas for the following quantities. Let gN be
the genus and vN the hyperbolic volume of X

(
Γ1(N)

)
, then we have

gN = 1 + 1
24ϕ(N)N

∏
p|N

(
1 + 1

p

)
− 1

4
∑
d|N

ϕ(d)ϕ(N/d)(2.3)

and

vN = π

6ϕ(N)N
∏
p|N

(
1 + 1

p

)
,(2.4)

where ϕ( · ) is Euler’s phi function (see [6], theorem 3.1.1, p. 68 and formula
(5.15), p. 182). In particular, we have gN ≥ 1 for N = 11 or N ≥ 13.

2.4. The Hilbert space L2(Γ1(N)\H, k
)
. Recall that a function f : H −→ C

is called automorphic of weight k, k ∈ N, with respect to Γ1(N), if it satis-
fies f(γz) = jk,γ(z)f(z) for all γ =

(
a b
c d

)
∈ Γ1(N), where jk,γ(z) := (cz+d)k

|cz+d|k .
We denote by L2(Γ1(N)\H, k

)
the Hilbert space of square-integrable auto-

morphic functions of weight k with respect to Γ1(N) with scalar product
given by

〈f, g〉 :=
∫

Γ1(N)\H
f(z)g(z)µhyp(z)

(
f, g ∈ L2(Γ1(N)\H, k

))
.

The hyperbolic Laplacian of weight k

∆k := −y2
(
∂2

∂x2 + ∂2

∂y2

)
+ iky

∂

∂x
,(2.5)

acting as a non-negative self-adjoint operator on L2(Γ1(N)\H, k
)
(in fact, it

is the unique self-adjoint extension of ∆k acting on the subspace of smooth
and compactly supported automorphic functions of weight k; see [26], pp.
309–310), gives rise to the spectral decomposition

L2(Γ1(N)\H, k
)
=L2(Γ1(N)\H, k

)
0⊕L

2(Γ1(N)\H, k
)
r⊕L

2(Γ1(N)\H, k
)
c;

here L2(Γ1(N)\H, k
)
0 is the space of cusp forms of weight k, i.e., of au-

tomorphic functions of weight k with vanishing 0-th Fourier coefficients in
its Fourier expansions with respect to the diverse cusps of Γ1(N), which
belongs to the discrete part of the spectrum, L2(Γ1(N)\H, k

)
r is the dis-

crete part of L2(Γ1(N)\H, k
)⊥
0 , given by residues of Eisenstein series, and

L2(Γ1(N)\H, k
)
c forms the continuous part of the spectrum, given by in-

tegrals of Eisenstein series.
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2.5. Eisenstein series and spectral expansion. Let a ∈ PΓ1(N) be a cusp of
Γ1(N) and σa ∈ SL2(R) a scaling matrix of a, i.e., σa∞ = a and

σ−1
a Γ1(N)a σa ∼=

{(
1 1
0 1

)m ∣∣m ∈ Z
}

for Γ1(N)a the stabilizer group of the cusp a. The Eisenstein series for the
cusp a of weight k with respect to Γ1(N) is defined by (cf. [27], p. 291)

Ea,k(z, s) :=
∑

γ∈Γ1(N)a\Γ1(N)
Im(σ−1

a γz)sjk,σ−1
a γ(z)−1 (s ∈ C,Re(s) > 1).

The Eisenstein series Ea,k(z, s) defines an holomorphic function for Re(s) >
1 and is in this range an automorphic function of weight k in the z-variable.
Moreover, it possesses a meromorphic continuation to the whole s-plane.
The meromorphically continued Eisenstein serie Ea,k(z, s) is holomorphic
for Re(s) = 1

2 , and the poles at s with Re(s) > 1
2 lie all in the interval

(1/2, 1] (cf. [27], Satz 10.3, Satz 10.4, and Satz 11.2).
If {uj}∞j=0 is an orthonormal basis of the discrete part of L2(Γ1(N)\H, k

)
,

i.e., ∆kuj = λjuj , 0 = λ0 < λ1 ≤ λ2, . . ., then every f ∈ L2(Γ1(N)\H, k
)

has the spectral expansion

f(z) =
∞∑
j=0
〈f, uj〉uj(z)+(2.6)

∑
a∈PΓ1(N)

1
4π

∫ +∞

−∞

〈
f,Ea,k

(
·, 1

2 + ir
)〉
Ea,k

(
z, 1

2 + ir
)
dr,

which converges in the norm topology. If furthermore, f is smooth and
bounded, then the sums in (2.6) are uniformly convergent on compacta of
H (see [27], Satz 7.2, Satz 12.2, and Satz 12.3).

2.6. Shifting operator and eigenspaces of λ0 = 0. Noting that ∆0 and ∆2
have the same eigenvalues (see [26], lemma 3.2), we define L2

λj

(
Γ1(N)\H, k

)
,

k = 0, 2, to be the eigenspace corresponding to the eigenvalue λj . The
differential operator (loc. cit. denoted by K0)

Λ0 := iy
∂

∂x
+ y

∂

∂y
: L2

λj

(
Γ1(N)\H, 0

)
−→ L2

λj

(
Γ1(N)\H, 2

)
(2.7)

induces for λj 6= 0 a bijection satisfying

〈Λ0(f),Λ0(g)〉 = λj〈f, g〉
(
f, g ∈ L2

λj

(
Γ1(N)\H, 0

))
.(2.8)

(see [26], lemma 6.1). For λj = 0 and k = 0, we have that L2
0
(
Γ1(N)\H, 0

)
is one dimensional generated by the only residue of the Eisenstein series at
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s = 1 given by v−1
N (see [13], theorem 11.3). For λj = 0 and k = 2, we have

an isometry

L2
0
(
Γ1(N)\H, 2

)
−→ S2

(
Γ1(N)

)
(2.9)

by sending f 7→ y−1f(see [26], Satz 6.3), where S2
(
Γ1(N)

)
denotes the

space of holomorphic cusp forms of weight 2 for Γ1(N). For later purposes
we mention (see [27], p. 292, equation (10.8))

Λ0
(
Ea,0(z, s)

)
= sEa,2(z, s).(2.10)

2.7. Automorphic kernels of weight 0 and 2. Let h : R −→ C be a test
function, i.e., an even function satisfying for an A ∈R, A > 1:

(i) h(r) can be extended holomorphically to the strip |Im(r)| < A
2

(ii) h(r) << (|r|+ 1)−2−A−1
2 for |Im(r)| < A

2 .
The inverse Selberg transform k0 of h of weight 0 is given by the following
three equations (see [13], p. 32):

g(w) = 1
2π

∫ +∞

−∞
h(r) exp(−iwr)dr (w ∈ R),

q
(
ev + e−v − 2

)
= g(v) (v ∈ R),

k0(u) = − 1
π

∫ +∞

−∞
q′(u+ v2)dv (u ≥ 0).

The inverse Selberg transform k2 of h of weight 2 is given in the similar
way with the only change in the last step (see [11], p. 402 and p. 455):

k2(u) :=− 1
π

∫ +∞

−∞
q′(u+ v2)

√
u+ 4 + v2 − v√
u+ 4 + v2 + v

dv (u ≥ 0).

The automorphic kernel of weight 0 with respect to Γ1(N) on H × H is
defined by

K0(z, w) :=
∑

γ∈Γ1(N)
k0
(
u(z, γw)

)
,(2.11)

which is an automorphic function of weight 0 in the z-variable; here the
function u is defined as in (2.2). Similarly, the automorphic kernel of weight
2 with respect to Γ1(N) on H×H is defined by

K2(z, w) :=
∑

γ∈Γ1(N)
k2
(
u(z, γw)

) γw − z
z − γw

j2,γ(w),(2.12)

which is an automorphic function of weight 2 in the z-variable.

2.8. Spectral expansion of automorphic kernels. From the orthogonal pro-
jections 〈K0(z, w), uj(z)〉 = h0(rj)uj(w) and 〈K0(z, w), Ea,0(z, 1

2 + ir)〉 =
h0(r)Ea,0(w, 1

2 + ir) (see [13], theorem 7.4), using the convention to write
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an eigenvalue λj as λj = 1
4 +r2

j with rj ∈ C, we find from (2.6) the following
spectral expansion

K0(z, w) =
h( i2)
vN

+
∞∑
j=1

h(rj)uj(z)uj(w)+

1
4π

∑
a∈PΓ1(N)

∫ +∞

−∞
h0(r)Ea,0(z, 1

2 + ir)Ea,0(w, 1
2 + ir)dr.(2.13)

Noting that 〈K2(z, w), uj(z)〉 = h2(rj)uj(w) and 〈K2(z, w), Ea,2(z, 1
2 +ir)〉=

h2(r)Ea,2(w, 1
2 + ir) (cf. [1], lemma 3.1.1), we find from (2.6) and observa-

tions (2.8) and (2.9) the following spectral expansion

K2(z, w)=h( i2)
gN∑
j=1

Im(z)fj(z)Im(w)f j(w)+
∞∑
j=1

h(rj)
λj

Λ0(uj)(z)Λ0(uj)(w)+

1
4π

∑
a∈PΓ1(N)

∫ +∞

−∞
h(r)Ea,2(z, 1

2 + ir)Ea,2(w, 1
2 + ir)dr,(2.14)

where {f1, . . . , fgN } is an orthonormal basis of S2
(
Γ1(N)

)
.

2.9. Let h(t, r) := exp
(
−t
(

1
4 + r2

))
be the test function with parameter

t ∈ R>0. The inverse Selberg transform of h(t, r) of weight 0 defines the
function k0(t, u) for u ≥ 0; for a fixed γ ∈ Γ1(N), we set

K0,γ(t, z) := k0
(
t, u(z, γz)

)
(z ∈ H) .

Similarly, the inverse Selberg transform of h(t, r) of weight 2 defines the
function k2(t, u) for u ≥ 0; for a fixed γ ∈ Γ1(N), we set

K2,γ(t, z) := k2
(
t, u(z, γz)

)γz − z
z − γz

j2,γ(z) (z ∈ H) .

2.10. Lemma. Let be l ∈ Z. With the above notation the following series∑
γ∈Γ1(N)
tr(γ)=l

K0,γ(t, z) and
∑

γ∈Γ1(N)
tr(γ)=l

K2,γ(t, z) (z ∈ H)

are automorphic functions of weight 0 with respect to Γ1(N).

Proof. This follows from the fact that Kk,γ(t, δz) = Kk,δ−1γδ(t, z) for k =
0, 2 and any δ =

(
a b
c d

)
∈ Γ1(N). �

2.11. Notation. We define for t > 0, k = 0, 2, and l ∈ Z with |l| > 2

Hk,l(t, z) :=
∑

γ∈Γ1(N)
tr(γ)=l

Kk,γ(t, z), Hk(t, z) :=
∑
l∈Z
|l|>2

Hk,l(t, z),(2.15)
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Pk(t, z) :=
∑

γ∈Γ1(N)
|tr(γ)|=2

Kk,γ(t, z),(2.16)

Ck(t, z) := − 1
4π

∑
a∈PΓ1(N)

∫ +∞

−∞
h(t, r)|Ea,k(z, 1

2 + ir)|2dr − 2− k
2

1
vN

,

(2.17)

and

D0(t, z) :=
∞∑
j=1

h(t, rj)|uj(z)|2, D2(t, z) :=
∞∑
j=1

h(t, rj)
λj

|Λ0(uj)(z)|2.(2.18)

2.12. Basic formula. We assume that N = 11 or N ≥ 13. We define the
Γ1(N)-invariant functions (cf. lemma 2.10)

H(t, z) := H2(t, z)−H0(t, z) P (t, z) := P2(t, z)− P0(t, z)(2.19)
C(t, z) := C2(t, z)− C0(t, z) D(t, z) := D2(t, z)−D0(t, z),

such that observations (2.13) and (2.14), taking the difference of K2(t, z)
and K0(t, z), imply

gNF (z) +D(t, z) = H(t, z) + P (t, z) + C(t, z),(2.20)

where

F (z) := 1
gN

gN∑
j=1

y2|fj(z)|2(2.21)

with {fj}gNj=1 an orthonormal basis of S2
(
Γ1(N)

)
. Note that we have h(t, i2) =

1 and that there is no elliptic contribution, i.e., there is no γ ∈ Γ1(N) with
|tr(γ)| < 2.

3. Green’s function on cusps
In this section we recall the definition of the canonical Green’s function

and derive a formula for its evaluation on cusps essentially in terms of the
function defined in (2.21). Our formula follows from previous work of A.
Abbes and E. Ullmo in [1] and J. Jorgenson and J. Kramer in [16]. In the
sequel we assume gN ≥ 1, i.e., that N = 11 or N ≥ 13.

3.1. Canonical volume. Let S2
(
Γ1(N)

)
be the space of holomorphic cusp

forms of weight 2 with respect to Γ1(N) equipped with the Petersson inner
product

〈f, g〉Pet,2 :=
∫
X(Γ1(N))

f(z)g(z)Im(z)2µhyp(z)
(
f, g ∈ S2

(
Γ1(N)

))
.
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Choosing an orthonormal basis {f1, . . . , fgN } of S2
(
Γ1(N)

)
, the canonical

volume form on X
(
Γ1(N)

)
is given by

µcan(z) := i

2gN

gN∑
j=1
|fj(z)|2dz ∧ dz = F (z)µhyp(z),

where F (z) is defined by (2.21). Note that this volume form becomes under
the ismomophism S

(
Γ1(N)

) ∼= H0(X(Γ1(N)
)
,Ω1

X(Γ1(N))
)
given by f(z) 7→

f(z)dz the one considered in [2].

3.2. Canonical Green’s function. The canonical Green’s function gcan is the
unique smooth function on X

(
Γ1(N)

)
× X

(
Γ1(N)

)
\ ∆X(Γ1(N)), denoting

by ∆X(Γ1(N)) the diagonal, which satisfies:

(i) 1
πi

∂2

∂z∂zgcan(z, w) + δw(z) = µcan(z),
(ii)

∫
X(Γ1(N))

gcan(z, w)µcan(z) = 0 ∀w ∈ X
(
Γ1(N)

)
,

where δw(z) is the Dirac delta distribution.

3.3. To state the formula for the canonical Green’s function on cusps from
[1], we recall that, for a, b ∈ PΓ1(N) cusps of Γ1(N), the Eisenstein series
Ea,0(z, s) of weight zero with respect to Γ1(N) admits at the cusp b the
Fourier expansion Ea,0(σbz, s) =

∑
n∈Z an(y, s; ab) exp(2πinx) with

a0(y, s; ab) = δaby
s + ϕab(s)y1−s,

where

ϕab(s) =
√
π

Γ
(
s− 1

2

)
Γ(s)

1
N s

∑
c∈N>0

bab(c)
c2s(3.1)

with

bab(c) = #
{(

? ?
c ?

)
∈ g−1

a Γ1(N)a ga\g−1
a Γ1(N)gb/g−1

b Γ1(N)b gb
}

;(3.2)

here ga and gb denote elements of SL2(Z) mapping the standard cusp ∞ of
SL2(Z) with represantative (1 : 0) ∈ P1

Q to the cusps a and b, respectively.
Note that ϕab(s) is a meromorphic function with a simple pole at s = 1
and residue v−1

N (see [13]).

3.4. Proposition. Let N satisfy N = 11 or N ≥ 13. Let X
(
Γ1(N)

)
be

the modular curve associated to the congruence subgroup Γ1(N). Then, we
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have for two different cusps a, b ∈ PΓ1(N)

gcan(a, b) =

− 2π lim
s→1

(
ϕab(s)−

1
vN

1
s− 1

)
+ 2π lim

s→1

(∫
Γ1(N)\H

F (z)Ea,0(z, s)µhyp(z)+∫
Γ1(N)\H

F (w)Eb,0(w, s)µhyp(w)− 2
vN

1
s− 1

)
+O

( 1
gN

)
,

where the error term is independent of the cusps a and b.

Proof. This follows from proposition E in [1] in combination with the bound
on the hyperbolic Green’s function in [16], lemma 3.7 and proposition 4.7
with the universal constants for Γ1(N) given in lemma 5.3 (c) and lemma
5.9. �

3.5. Lemma. Let N satisfy N = 11 or N ≥ 13. Let X
(
Γ1(N)

)
be the

modular curve associated to the congruence subgroup Γ1(N) and 0,∞d,
d ∈ (Z/NZ)×, the cusps having representatives (0 : 1) and (d : 0) in P1

Q,
respectively. With the notation ∞ =∞1, we have∫

Γ1(N)\H
F (z)E0,0(z, s)µhyp(z) =

∫
Γ1(N)\H

F (z)E∞,0(z, s)µhyp(z)(3.3)

and ∫
Γ1(N)\H

F (z)E∞d,0(z, s)µhyp(z) =
∫

Γ1(N)\H
F (z)E∞,0(z, s)µhyp(z).(3.4)

Proof. We choose σ−1
0 = 1√

N
WN ∈ SL2(R) with WN =

( 0 1
−N 0

)
the Atkin-

Lehner involution and σ−1
d =

(
a b
c d

)
∈ SL2(Z) with c ≡ 0 mod N . Then,

σ0 and σd are scaling matrices of the cusps 0 and ∞d, respectively, i.e.,
we have σ0∞ = 0 as well as σ−1

0 Γ1(N)σ0 = Γ1(N) and σ−1
0 Γ1(N)0 σ0 =

Γ1(N)∞ and the same for σd. Hence it follows from the definitions that
E0,0(z, s) = E∞,0(σ−1

0 z, s) and E∞d,0(z, s) = E∞,0(σ−1
d z, s). Therefore, it

suffices for the proof of equations (3.3) and (3.4) to show F (z) = F (σ−1
0 z)

and F (z) = F (σ−1
d z), which we do now starting with the first equality.

The Atkin-Lehner involution WN acts on the space S2(Γ1(N)) of holomor-
phic cusp forms of weight 2 with respect to Γ1(N) by

f |WN
(z) := det(WN )(−Nz)−2f(WNz) = N(Nz)−2f(WNz),

f ∈ S2
(
Γ1(N)

)
, and we have |f |WN

|WN
| = |f | for f ∈ S2

(
Γ1(N)

)
(see [3],

proposition 1.1), from which we can deduce that {fj |WN
}gNj=1 remains an

orthonormal basis, and so
gN∑
j=1
|fj(z)|2 =

gN∑
j=1
|fj |WN

(z)|2.(3.5)
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Using equation (3.5) we calculate

F (σ−1
0 z) = 1

gN

gN∑
j=1

Im(WNz)2|fj(WNz)|2 = 1
gN

N2

|Nz|4
gN∑
j=1

y2|fj(WNz)|2

= 1
gN

gN∑
j=1

y2|fj |WN
(z)|2 = 1

gN

gN∑
j=1

y2|fj(z)|2 = F (z).

This proves the first equality. For the second equality, note that the space
S2
(
Γ1(N)

)
of cusp forms of weight 2 decomposes in

S2
(
Γ1(N)

)
=
⊕
ε

S2
(
Γ1(N), ε

)
,

where ε runs through all Dirichlet characters mod N (see [6]). Thereby, we
define
S2
(
Γ1(N), ε

)
:=
{
f ∈ S2

(
Γ1(N)

) ∣∣ f |2〈d〉 = ε(d)f for all d ∈ (Z/NZ)×
}

denoting by 〈d〉 the diamond operator given by f |2〈d〉(z) := 1
(cz+d)2 f(γz)

for some γ =
(
a b
c d′

)
∈ Γ0(N) with d′ ≡ d mod N . But since fj |2〈d〉 =

ε(d)fj for some Dirichlet character ε, the set {fj |2〈d〉}gNj=1 remains an or-
thonormal basis of S2

(
Γ1(N)

)
. Further, we have Im(σ−1

d z)2|fj(σ−1
d z)|2 =

Im(z)2|fj(z)|2 showing F (σ−1
d z) = F (z). This completes the proof of the

lemma. �

3.6. Lemma. Let N satisfy N = 11 or N ≥ 13. Let X
(
Γ1(N)

)
be the

modular curve associated to the congruence subgroup Γ1(N) and 0,∞d,
d ∈ (Z/NZ)× the cusps having representatives (0 : 1) and (d : 0) in P1

Q,
respectively. With the notation ∞ = ∞1, we then have that ϕ0∞d

(s) =
ϕ0∞(s) holds for all d ∈ (Z/NZ)×.

Proof. Noting that g−1
0 Γ1(N)∞ g0 =

〈( 1 N
0 1

)〉
and g−1

d Γ1(N)∞ gd = 〈( 1 1
0 1 )〉

with g0 =
( 0 −1

1 0
)
and gd =

(
a b
N d

)
∈ SL2(Z), we have to show by formula

(3.1) that the number of elements of the sets

Sd(c) :=
{(

α β
c δ

)
∈
〈(

1 N
0 1

)〉∖
g−1

0 Γ1(N)gd
/〈(1 1

0 1

)〉}
is independent of d. To this end, we consider the map ψ : Sd(c) −→ (Z/cZ)×

induced by mapping
(
α β
c δ

)
7→ δ mod c. Since (c, δ) = 1 and the right

action by 〈( 1 1
0 1 )〉 changes δ only by mod c, the map ψ is well-defined. We

now show that ψ is bijective starting from showing that ψ is injective. This
will prove the lemma.
Let

(
α1 β1
c δ1

)
and

(
α2 β2
c δ2

)
be two representatives of elements of Sd(c) such

that δ1 ≡ δ2 mod c, i.e., δ2 = δ1 +nc for some n ∈ Z. By the right action of
( 1 n

0 1 ) on
(
α1 β1
c δ1

)
, we obtain

(
α1 β1
c δ1

)
( 1 n

0 1 ) =
( α1 ?
c δ2

)
. From this we conclude
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α1δ1 ≡ α2δ2 mod c, i.e., c|(α2−α1). Furthermore, being elements of Sd(c),
we have N |α1 and N |α2; since (c,N) = 1, we find that cN |(α2−α1), which
shows α2 = α1 + mcN for some m ∈ Z. By the left action of

( 1 mN
0 1

)
on( α1 ?

c δ2

)
, we obtain

( 1 mN
0 1

) ( α1 ?
c δ2

)
=
( α2 ?
c δ2

)
, which proves the injectivity

of ψ.
We now show the surjectivity of ψ. Let δ mod c be given in (Z/cZ)×; we
let δ ∈ Z be a representative satisfying (c, δ) = 1. We have to find α, β ∈ Z
such that the representative

(
α β
c δ

)
satisfies α ≡ 0 mod N , β ≡ d mod N ,

and αδ − βc = 1, which, in fact, implies g0
(
α β
c δ

)
g−1
d ∈ Γ1(N), as desired.

The first and second condition forces us to choose α and β of the form
α = xN and β = d + yN with x, y ∈ Z; we have to verify that there are
x, y ∈ Z such that also the third condition is satisfied. The three conditions
imply −dc ≡ 1 mod N ; hence, we find v ∈ Z with vN −dc = 1. Now, since
(c, δ) = 1, there are x, y ∈ Z such that xd − yc = v. With this choice for
x, y ∈ Z, we find αδ − βc = 1. This completes the proof of the lemma. �
3.7. Rankin-Selberg transform. Let f be a Γ1(N)-invariant function of rapid
decay at the cusp a, i.e., the 0-th Fourier coefficient a0(y; a) of the Fourier
expansion f(σaz) =

∑
n∈Z an(y; a) exp(2πinx) of f at the cusp a satisfies

a0(y; a) = O(y−M ) for all M > 0 as y → ∞. Then, the Rankin-Selberg
transform Rf,a(s) of f at the cusp a is defined by

Rf,a(s) :=
∫

Γ1(N)\H
f(σaz)Ea,0(z, s)µhyp(z) =

∫ +∞

0
a0(y; a)ys−2dy

for Re(s) > 1. The Rankin-Selberg transform Rf,a(s) of f at the cusp a can
be continued meromorphically to the whole s-plane and has simple poles
at s = 0, 1 with residue at s = 1 given by

ress=1
(
Rf,a(s)

)
= 1
vN

∫
Γ1(N)\H

f(z)µhyp(z).

(see, e.g., [10], p. 9). Applying the Rankin-Selberg transform to the function
F (z) defined in (2.21), which is of rapid decay at all cusps, we have the
Laurent expansion at s = 1, writing RF (s) := RF,∞(s),

RF (s) = 1
vN

1
s− 1 + CF +O(s− 1),(3.6)

denoting by CF the constant term of this expansion.
3.8. Proposition. Let N satisfy N = 11 or N ≥ 13. Let X

(
Γ1(N)

)
be the

modular curve associated to the congruence subgroup Γ1(N) and 0,∞d, d ∈
(Z/NZ)×, the cusps having representatives (0 : 1) and (d : 0), respectively.
Then, we have

gcan(0,∞d) = 4πCF − 2π lim
s→1

(
ϕ0∞(s)− 1

vN

1
s− 1

)
+O

( 1
gN

)
,



Self-intersection of dualizing sheaf 125

where the error term is independent of d.

Proof. This follows from proposition 3.4, lemma 3.5, and lemma 3.6, using
the notation of 3.7. �

3.9. Remark. In the next section we follow a strategy to determine the
constant CF which was carried out by A. Abbes and E. Ullmo for the
modular curve X0(N), N squarefree and not divisible by 2 and 3 in [1]
based on ideas of D. Zagier’s proof of the Selberg trace formula in [31]: we
will compute the Rankin-Selberg transforms, denoted by

RH(t, s), RP (t, s), RC(t, s), RD(t, s)(3.7)

of all terms displayed in (2.19) and determine their constant terms in their
Laurent expansions at s = 1. Letting t tend to infinity, the contribution of
the discrete part RD(t, s) will vanish, and so we obtain the constant CF by
formula (2.20).
It might be interesting to look at the problem to determine CF from the
adelic point of view starting with [14].

4. Contribution of Rankin-Selberg: hyperbolic part
In this section we calculate the contribution of the Rankin-Selberg trans-

form RH(t, s) in terms of the Selberg zeta function.

4.1. Rankin-Selberg of hyperbolic part. We begin with calculating
the Rankin-Selberg transforms of the Γ1(N)-invariant functions (see (2.15)
at the end of section 3.5)

Hk,l(t, z) =
∑

γ∈Γ1(N)
tr(γ)=l

Kk,γ(t, z) (t > 0; k = 0, 2)

for l ∈ Z with |l| > 2.
We first note that the Rankin-Selberg transforms of these functions exist
for s ∈ C with 1 < Re(s) < 1 + A and A as in 2.7. This can be shown
mutatis mutandis as in [1], proposition 3.2.1: one can reduce the question
to show ∑

|l|>2

∫ +∞

2

∫ 1/2

−1/2

∑
γ∈Γ1(N)
tr(γ)=l

|K0,γ(t, z)|yRe(s)−2dxdy <∞

for 1 < Re(s) < 1 +A, and the claim follows then from [1], lemma 3.2.1.

4.1.1. Elements of Γ1(N) give rise to quadratic forms. Let us briefly discuss
this link. Therefore, we use the convention to write [a, b, c] for an (integral
binary) quadratic form q(X,Y ) = aX2 + bXY + cY 2 ∈ Z[X,Y ]. Let Ql be
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the set of quadratic forms with discriminant disc(q) = l2− 4. The modular
group SL2(Z) = Γ1(1) acts on the set of quadratic forms Ql via

SL2(Z)×Ql −→ Ql

(δ, q) 7→ q ◦ δ,

where (q ◦ δ)(X,Y ) := q
(
(X,Y )δt

)
with δt the transpose of δ. For q =

[a, b, c] ∈ Ql and δ = ( x yz t ) ∈ SL2(Z) the quadratic form q ◦ δ is explicitly
given by

q ◦ δ = [q(x, z), b(xt+ yz) + 2(axy + czt), q(y, t)].(4.1)

4.1.2. Definition. For a positive integer N and l ∈ Z with |l| > 2, we
define

Ql(N) :=
{
q = [aN, bN, c] | a, b, c ∈ Z; disc(q) = l2 − 4

}
⊆ Ql

and

Γ1,l(N) =
{
γ ∈ Γ1(N) | tr(γ) = l

}
⊆ Γ1(N).

4.1.3. Let N be a positive integer and l ∈ Z with |l| > 2 and l ≡ 2 mod N .
We have a map ψ : Γ1,l(N) −→ Ql(N) defined by

γ =
(

1 + aN b
cN 1 + dN

)
7→ qγ := [cN, (d− a)N,−b].(4.2)

Supposed that N is odd, the map ψ defines a bijection between the sets
Γ1,l(N) and Ql(N) as one verifies that the map ψ′ : Ql(N) −→ Γ1,l(N)
given by

q = [aN, bN, c] 7→ γq :=
(
l−bN

2 −c
aN l+bN

2

)
is well-defined. Once this is shown one easily verifies that the two maps ψ
and ψ′ are inverse to each other, which establishes the claimed bijection.

4.1.4. The congruence subgroup Γ1(N) acts on the sets Ql(N) and Γ1,l(N)
as follows: The action of Γ1(N) on Ql(N) is given by

Γ1(N)×Ql(N) −→ Ql(N)(4.3)
(δ, q) 7→ q ◦ δ,

where equation (4.1) shows that this action is well-defined; the action of
Γ1(N) on Γ1,l(N) is given by conjugation

Γ1(N)× Γ1,l(N) −→ Γ1,l(N)(4.4)
(δ, γ) 7→ δ · γ := δ−1γδ.
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Let N be an odd positive integer and l ∈ Z with |l| > 2 and l ≡ 2 mod N .
Then the diagram

Γ1(N)× Γ1,l(N) //

id×ψ
��

Γ1,l(N)

ψ

��
Γ1(N)×Ql(N) // Ql(N)

commutes, where the horizontal maps are the group actions (4.3), (4.4),
and the vertical map ψ is given by (4.2). In particular, we have a bijection

Γ1,l(N)/Γ1(N) ∼= Ql(N)/Γ1(N).

4.1.5. Let N be an odd positive integer. For 0 < u < N with (u,N) = 1,
we set

Mu(N) :=
{
(m,n) ∈ Z2 | (m,n) ≡ (0, u) modN

}
.

Note that the congruence subgroup Γ1(N) acts on Mu(N) by
Γ1(N)×Mu(N) −→Mu(N)

(δ, (m,n)) 7→ (m,n)δ.
Furthermore, for l ∈ Z with |l| > 2 and l ≡ 2 mod N , we set ∆u

l (N) :=
Γ1,l(N)×Mu(N) and define

∆u±
l (N) :=

{(
γ, (m,n)

)
∈ ∆u

l (N) | qγ(n,−m) ≷ 0
}
.

Note that ∆u
l (N) = ∆u+

l (N) ∪̇∆u−
l (N), and that there is an action of the

congruence subgroup Γ1(N) on ∆u
l (N) defined by

Γ1(N)×∆u
l (N) −→ ∆u

l (N)(
δ,
(
γ, (m,n)

))
7→ δ ·

(
γ, (m,n)

)
:=
(
δ−1γδ, (m,n)δ

)
,

which preserves the subsets ∆u+
l (N),∆u−

l (N) ⊆ ∆u
l (N). Observing that

(q ◦ δ) · ((m,n)δ) = q · (m,n)
using the notation q · (m,n) := q(n,−m) as in [30], we make the following

4.1.6. Definition. Let N be an odd positive integer and l ∈ Z with |l| > 2
and l ≡ 2 mod N . For 0 < u < N with (u,N) = 1, we define for s ∈ C,
Re(s) > 1, the zeta function

ζu,N (s, l) =
∑

(γ,(m,n))∈∆u+
l

(N)/Γ1(N)

1
qγ(n,−m)s .(4.5)

We show in the appendix that this zeta function is well-defined for
Re(s) > 1. Finally, we denote for any l ∈ Z by γl the matrix γl :=(

l
2
l2
4 −1

1 l
2

)
∈ SL2(R).
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4.1.7. Proposition. Let N be an odd positive integer and l ∈ Z with |l| > 2
and l ≡ 2 mod N . For s ∈ C satisfying 1 < Re(s) < 1 + A, where A is as
in 2.7, and t > 0, we have∫

Γ1(N)\H
Hk,l(t, z)E∞,0(z, s)µhyp(z) = Ik,l(t, s)

∑
0<u<N
(u,N)=1

cu(s)ζu,N (s, l),

where we set

Ik,l(t, s) :=
∫
H
Kk,γl(t, z)y

sµhyp(z) +
∫
H
Kk,γ−l(t, z)y

sµhyp(z) (k = 0, 2)

and cu(s) :=
∑
d>0

du≡1 mod N

µ(d)
d2s denoting by µ(d) the Moebius function.

Proof. First note that

E∞,0(z, s) =
∑

Γ1(N)∞\Γ1(N)
Im(γz)s =

∑
( ∗ ∗m n )∈Γ1(N)

ys

|mz + n|2s

=
∑

(m,n)≡(0,1) mod N
(m,n)=1

ys

|mz + n|2s
.

In order to write the Eisenstein series without the coprimality condition,
we define ζN (s) :=

∑
d>0

(d,N)=1

1
ds

, Re(s) > 1, and observe that

ζN (2s)
∑

(m,n)≡(0,1) mod N
(m,n)=1

ys

|mz + n|2s
=

∑
d>0

(d,N)=1

∑
(m,n)≡(0,1) mod N

(m,n)=1

ys

|dmz + dn|2s
=

∑
d>0

(d,N)=1

∑
(m′,n′)≡(0,d) mod N

(m′,n′)=d

ys

|m′z + n′|2s
=

∑
0<u<N
(u,N)=1

∑
(m′,n′)∈Z2

(m′,n′)≡(0,u) mod N

ys

|m′z + n′|2s
.

Multiplying by ζN (2s)−1 =
∑

d>0
(d,N)=1

µ(d)
d2s and writing (m,n) instead of

(m′, n′) yields

E∞,0(z, s) =
∑

0<u<N
(u,N)=1

cu(s)
∑

(m,n)∈Z2

(m,n)≡(0,u) mod N

ys

|mz + n|2s
.
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Now, since Γ1(N) acts freely on ∆u
l (N) and ∆u

l (N) = ∆u+
l (N) ∪̇∆u−

l (N),
we obtain ∫

Γ1(N)\H
Hk,l(t, z)E∞,0(z, s)µhyp(z) =(4.6)

∑
0<u<N
(u,N)=1

cu(s)
∑

(γ,(m,n))∈∆u
l

(N)/Γ1(N)

∫
H
Kk,γ(t, z) ys

|mz + n|2s
µhyp(z) =

∑
0<u<N
(u,N)=1

cu(s)
( ∑

(γ,(m,n))∈∆u+
l

(N)/Γ1(N)

∫
H
Kk,γ(t, z) ys

|mz + n|2s
µhyp(z)+

∑
(γ,(m,n))∈∆u−

l
(N)/Γ1(N)

∫
H
Kk,γ(t, z) ys

|mz + n|2s
µhyp(z)

)
.

For (γ, (m,n)) ∈ ∆u+
l (N) with γ =

(
1+aN b
cN 1+dN

)
, we define the matrix

M := 1
qγ(n,−m)

1
2

(
n −(d− a)N n

2 − bm
−m cNn− (d− a)N m

2

)
∈ SL2(R).

One computes Im(Mz)s
|mMz+n|2s = ys

qγ(n,−m)s (see [30], p. 127) and an elementary
calculation proves the equality M−1γM = γl. Recalling that Kk,γ(t, δz) =
Kk,δ−1γδ(t, z) (k = 0, 2) for any δ ∈ SL2(R), we obtain by the change of
variable z 7→Mz∫

H
Kk,γ(t, z) ys

|mz + n|2s
µhyp(z) = 1

qγ(n,−m)s
∫
H
Kk,γl(t, z)y

sµhyp(z),

and hence ∑
∆u+
l

(N)/Γ1(N)

∫
H
Kk,γ(t, z) ys

|mz + n|2s
µhyp(z) =(4.7)

ζu,N (s, l)
∫
H
Kk,γl(t, z)y

sµhyp(z).

For (γ, (m,n)) ∈ ∆u−
l (N) we define the matrix

M ′ := 1
q−γ(n,−m)

1
2

(
n (d− a)N n

2 + bm
−m −cNn+ (d− a)N m

2

)
∈ SL2(R)

and one verifies again Im(M ′z)s
|mM ′z+n|2s = ys

q−γ(n,−m)s as well as M ′−1(−γ)M ′ =
γ−l. Since we have Kk,γ(t, z) = Kk,−γ(t, z), the change of variable z 7→M ′z
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implies∫
H
Kk,γ(t, z) ys

|mz + n|2s
µhyp(z) =

∫
H
Kk,−γ(t, z) ys

|mz + n|2s
µhyp(z)

= 1
q−γ(n,−m)s

∫
H
Kk,γ−l(t, z)y

sµhyp(z).

Observing that q−γ = qγ−1 and qγ−1 = −qγ , we find∑
(γ,(m,n))∈∆u−

l
(N)/Γ1(N)

∫
H
Kk,γ(t, z) ys

|mz + n|2s
µhyp(z) =(4.8)

∑
(γ,(m,n))∈∆u−

l
(N)/Γ1(N)

1
qγ−1(n,−m)s

∫
H
Kk,γ−l(t, z)y

sµhyp(z) =

∑
(γ,(m,n))∈∆u+

l
(N)/Γ1(N)

1
qγ(n,−m)s

∫
H
Kk,γ−l(t, z)y

sµhyp(z) =

ζu,N (s, l)
∫
H
Kk,γ−l(t, z)y

sµhyp(z).

Equation (4.6) together with equations (4.7) and (4.8) proves the proposi-
tion. �

4.2. Hyperbolic contribution and Selberg zeta function. In this
section we compute the constant term in the Laurent expansion at s = 1
of the hyperbolic contribution RH(t, s), i.e., by proposition 4.1.7, of

RH(t, s) =
∑
|l|>2

l≡2 mod N

(
I2,l(t, s)− I0,l(t, s)

) ∑
0<u<N
(u,N)=1

cu(s)ζu,N (s, l) (t > 0).

4.2.1. Let N be an odd positive integer and l ∈ Z with |l| > 2 and l ≡ 2
mod N . We denote by hl(N) the cardinality of the set Ql(N)/Γ1(N). The
finiteness of hl(N) follows from the finiteness of the class number hl(1) of
properly equivalent quadratic forms with discriminant l2 − 4.
Note that for a quadratic form q = [aN, bN, c] ∈ Ql(N) the stabilizer
Γ1(N)q = SL2(Z)q∩Γ1(N) of q ∈ Ql(N) is an infinite cyclic group generated
by αq := αk0 , where α0 is the generator of SL2(Z)q and k is the least positive
integer such that αk0 ∈ Γ1(N). We denote by εq the eigenvalue of αq with
ε2
q > 1 which is, in fact, the k-th power of the fundamental unit ε0 in the real
quadratic field Q(

√
l2 − 4). In particular, εq is independent of the choice q in

Ql(N). Let us also mention that observation 4.1.4 implies Γ1(N)q = Z(γq),
where Z(γq) is the centralizer of γq in Γ1(N).

4.2.2. Proposition. Let N be an odd positive integer, l ∈ Z with |l| > 2
and l ≡ 2 mod N , and 0 < u < N with (u,N) = 1. Then, the zeta
function ζu,N (s, l) defines for Re(s) > 1 a holomorphic function and has a
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meromorphic continuation to the whole complex plane with a simple pole at
s = 1 with residue

ress=1ζu,N (s, l) =
∑

q∈Ql(N)/Γ1(N)

2
N2
√
l2 − 4

log(εq).

We prove this proposition in the appendix which is a slight variant of a
result of E. Landau in [20].

4.2.3. Corollary. Let N be an odd positive integer and l ∈ Z with |l| > 2
and l ≡ 2 mod N . Then the series∑

0<u<N
(u,N)=1

cu(s)ζu,N (s, l)

has a meromorphic continuation to the half plane Re(s) > 1/2 with a simple
pole at s = 1 and residue

ress=1
∑

0<u<N
(u,N)=1

cu(s)ζu,N (s, l) = 2
πvN

∑
q∈Ql(N)/Γ1(N)

log(εq)√
l2 − 4

.

Proof. Note that cu(s) with 0 < u < N and (u,N) = 1 is holomorphic
for Re(s) > 1/2. Therefore, by proposition 4.2.2, we have a meromorphic
continuation of

∑
0<u<N
(u,N)=1

cu(s)ζu,N (s, l) to the half plane Re(s) > 1/2 and

ress=1
∑

0<u<N
(u,N)=1

cu(s)ζu,N (s, l) =
∑

0<u<N
(u,N)=1

cu(1)
N2

∑
q∈Ql(N)/Γ1(N)

2√
l2 − 4

log(εq).

(4.9)

We have

∑
0<u<N
(u,N)=1

cu(1) =
∑
d>0

(d,N)=1

µ(d)
d2 = 1

ζN (2) = 1
ζ(2)

∏
p|N

1
1− 1

p2
= 6
π2

∏
p|N

1
1− 1

p2
.

(4.10)

Plugging equation (4.10) in (4.9) and taking the formula (2.4) into account,
the claim of the corollary follows immediately. �

Recall that we defined in section 3.3 the test function h(t, r) to be the
function h(t, r) = exp

(
−t
(

1
4 + r2

))
(t > 0, r ∈ R) with Fourier transform

given by

g(t, w) = 1√
4πt

exp
(
− t

4 −
w2

4t

)
(t > 0, w ∈ R).(4.11)
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4.2.4. Lemma. For any t > 0, we have the Laurent expansion

I2,l(t, s)− I0,l(t, s) = (s− 1)Al(t) +Ot
(
(s− 1)2

)
(s→ 1),

where

Al(t) := − π

2nl
+ 1

4

∫ +∞

−∞

h(t, r)
1
4 + r2 exp

(
− 2ir log(nl)

)
dr

with nl := l+
√
l2−4
2 and n−1

l the eigenvalues of γl. Furthermore, we have

|Al(t)| ≤
π

2(log(nl))2n
− log(nl)/t
l .

Proof. For the first statement see [1], proposition 3.2.2. For the second
statement, we first observe that

Al(t)=−π2nl
+ 1

4

∫ +∞

−∞

h(t, r)
1
4 + r2 exp

(
−2ir log(nl)

)
dr=−π2

∫ t

0
g(ξ, 2 log(nl))dξ.

(4.12)

By definition, we have

1
2

∫ t

0
g(ξ, 2 log(nl))dξ = 1

2

∫ t

0

1√
4πξ

exp
(
− ξ

4 −
(log(nl))2

ξ

)
dξ ∈ R>0,

and the change of variable x := 1
ξ yields then

Al(t) = −π2

∫ +∞

1/t

√
x√

4πx2 exp
(
− 1

4x − (log(nl))2x
)

dx.

Since
√
x√

4πx2 exp
(
− 1

4x

)
< 1 for x > 0, we find

0 ≥ Al(t) ≥
−π
2

∫ +∞

1/t
exp

(
−(log(nl))2x

)
dx = −π

2(log(nl))2n
− log(nl)/t
l ,

from which the claimed bound follows. �

4.2.5. Proposition. For any t > 0, the function RH(t, s) is holomorphic
at s = 1. Furthermore, we have with nl = l+

√
l2−4
2

RH(t, 1) = 1
πvN

∑
|l|>2

l≡2 mod N

∑
q∈Ql(N)/Γ1(N)

2√
l2 − 4

log(εq)×

(
− π

2nl
+ 1

4

∫ +∞

−∞

h(t, r)
1
4 + r2 exp

(
− 2ir log(nl)

)
dr
)
.
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Proof. It suffices to prove that RH(t, s) is bounded at s = 1. From corollary
4.2.3 and lemma 4.2.4 we find the inequality∣∣∣∣(I2,l(t, 1)− I0,l(t, 1)

) ∑
0<u<N,
(u,N)=1

cu(1)ζN,u(1, l)
∣∣∣∣ ≤ n

− log(nl)/t
l

2(log(nl))2
2hl(N) log(εq)
vN
√
l2 − 4

.

We first note that hl(N) can be bounded by the classical class number
hl(1) by hl(N) ≤ hl(1) [SL2(Z) : Γ1(N)] and that εk0 = εq holds for some
0 ≤ k ≤ ϕ(N). Since by Siegel’s theorem (see [32], p. 85)∑

0<D<l2−4

hD log(ε0)√
D

= O
(
l2
)

(l→∞),

we obtain

∣∣∣∣ ∑
|l|>2

l≡2 mod N

(
I2,l(t, 1)− I0,l(t, 1)

) ∑
0<u<N
(u,N)=1

cu(1)ζN,u(1, l)
∣∣∣∣ ≤ CN ∑

|l|>2

l2n
− log(nl)/t
l

2(log(nl))2

(4.13)

with CN some constant depending solely on N . As for l > exp(3t) we have

l2n
− log(nl)/t
l

2(log(nl))2 < l−1−ε

with ε > 0 small enough, the series on the right hand side of inequality
(4.13) converges, which proves the holomorphicity of RH(t, s) at s = 1.
The claimed value of RH(t, s) at s = 1 follows now from corollary 4.2.3 and
lemma 4.2.4. �

4.2.6. Definition. Let γ ∈ Γ1(N) be a hyperbolic element, i.e., |tr(γ)| > 2.
The norm N(γ) of γ is defined by N(γ) := v2, where v is the eigenvalue
of γ with v2 > 1. We denote by γ0 the generator of the centralizer Z(γ) of
γ, and call γ primitive if γ = γ0 holds.

4.2.7. The Selberg zeta function ZΓ1(N)(s) associated to Γ1(N) is defined
via the Euler product expansion

ZΓ1(N)(s) :=
∏

[γ]∈H(Γ1(N))
Zγ(s) (Re(s) > 1),

whereH
(
Γ1(N)

)
denotes the set of primitive conjugacy classes of hyperbolic

elements in Γ1(N) and the local factors Zγ(s) are given by

Zγ(s) :=
∞∏
n=0

(
1−N(γ)−(s+n)

)
.
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The Selberg zeta function ZΓ1(N)(s) is known to have a meromorphic con-
tinuation to all of C and satisfies a functional equation (cf. [13], section
10.8).

4.2.8. The hyperbolic contribution ΘΓ1(N)(t) in the Selberg trace formula
(cf. [13], theorem 10.2) is given by

ΘΓ1(N)(t) =
∑
[γ]

hyperbolic

log
(
N(γ0)

)
N(γ)1/2 −N(γ)−1/2 g

(
t, log

(
N(γ)

))
.

For γ ∈ Γ1,l(N), one easily verifies, using the fact tr(γ) = N(γ)1/2 +
N(γ)−1/2, the formulas

N(γ)1/2 −N(γ)−1/2 =
√
l2 − 4 and N(γ) =

(
l +
√
l2 − 4
2

)2

= n2
l .

Further, note that the primitive element γ0 associated to the hyperbolic
conjugacy class [γ] generates the centralizer Z(γ) = Z(γ0) (see [13], p.
137), and hence equals the generator αqγ of the stabilizer Γ1(N)qγ of qγ .
Therefore, we have

ΘΓ1(N)(t) =
∑
|l|>2

l≡2 mod N

∑
q∈Ql(N)/Γ1(N)

2 log
(
εq)√

l2 − 4
g
(
t, 2 log(nl)

)
.

For any t > 0, we have by formula (4.12)

RH(t, 1) = − 1
2vN

∫ t

0
ΘΓ1(N)(ξ)dξ.(4.14)

4.2.9. Proposition. The integral
∫ t

0 ΘΓ1(N)(ξ)dξ is asymptotically equiv-
alent to t for t→∞, i.e., ∫ t

0
ΘΓ1(N)(ξ)dξ ∼ t

holds. Furthermore, we have∫ +∞

0

(
ΘΓ1(N)(t)− 1

)
dt = lim

s→1

Z ′Γ1(N)(s)
ZΓ1(N)(s)

− 1
s− 1

− 1.

Proof. Having McKean’s formula (see [22], p. 239)

1
2s− 1

Z
′

Γ1(N)(s)
ZΓ1(N)(s)

=
∫ +∞

0
exp

(
− s(s− 1)t

)
ΘΓ1(N)(t)dt,

the proof is exactly the same as the proof in [1], proposition 3.3.3, for
Γ0(N). �
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4.2.10. Corollary. The hyperbolic contribution RH(t, 1) for t → ∞ is
given by

RH(t, 1) = − t

2vN
− 1

2vN
lim
s→1

Z ′Γ1(N)(s)
ZΓ1(N)(s)

− 1
s− 1

+ 1
2vN

+ o(1).

Proof. This follows now immediately from observation (4.14) and proposi-
tion 4.2.9. �

5. Contribution of Rankin-Selberg: spectral and parabolic part
In this section we determine the contribution of the Rankin-Selberg

transforms of the remaining Γ1(N)-invariant functions Pk(t, s), Ck(t, s),
and D(t, s) (k = 0, 2) of formula (2.20). The contribution of Pk(t, s) can
be taken from [1] which we cite at the end of the second section of this
chapter.
First observe that we have (for suitable s)∫

Γ1(N)\H
Pk(t, z)E∞,0(z, s)µhyp(z) =

∫ +∞

0
pk(t, y)ys−2dy (k = 0, 2),

and∫
Γ1(N)\H

Ck(t, z)E∞,0(z, s)µhyp(z) =
∫ +∞

0
ck(t, y)ys−2dy (k = 0, 2),

where pk(t, y) and ck(t, y) are the 0-th Fourier coefficients of Pk(t, z) and
Ck(t, z) with respect to the cusp ∞, respectively. Proceeding as in [1] we
provide a further decomposition of the sums pk(t, y) + ck(t, y), k = 0, 2.
Recall that the 0-th Fourier coefficient of the Eisenstein series Ea,0(z, s),
a ∈ PΓ1(N), is given by

a0(y, s; a∞, 0) = δa∞y
s + ϕa∞(s)y1−s,

where ϕa∞(s) is defined as in (3.1). Then, for s = 1
2 + ir ∈ C, we have∑

a∈PΓ1(N)

∣∣a0
(
y, 1

2 + ir; a∞, 0
) ∣∣2 =(5.1)

2y + ϕ∞∞
(

1
2 − ir

)
y1+2ir + ϕ∞∞

(
1
2 + ir

)
y1−2ir

since the scattering matrix Φ(s) =
(
ϕab(s)

)
a,b∈PΓ1(N)

is unitary for Re(s) =
1
2 (see [13], theorem 6.6). By observation (2.10), we find(

1
2 + ir

)
a0
(
y, 1

2 + ir; a∞, 2
)

= Λ0
(
a0
(
y, 1

2 + ir; a∞, 0
) )

=(
1
2 + ir

)
δa∞y

1
2 +ir + ϕa∞

(
1
2 + ir

) (
1
2 − ir

)
y

1
2−ir,
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which implies∑
a∈PΓ1(N)

∣∣a0
(
y, 1

2 + ir; a∞, 2
) ∣∣2 = 2y+ϕ∞∞

(
1
2 − ir

) 1
2 + ir
1
2 − ir

y1+2ir+(5.2)

ϕ∞∞
(

1
2 + ir

) 1
2 − ir
1
2 + ir

y1−2ir.

Let us define for k = 0, 2 the functions

pk,1(t, y) :=
∫ + 1

2

− 1
2

∑
γ∈Γ1(N)

|tr(γ)|=2,γ /∈Γ1(N)∞

Kk,γ(t, x+ iy)dx,

pk,2(t, y) :=
∫ + 1

2

− 1
2

∑
γ∈Γ1(N)∞

Kk,γ(t, x+ iy)dx− y

2π

∫ +∞

−∞
h(t, r)dr

and

ck,1(t, y) := − y

2π

∫ +∞

−∞
h(t, r)ϕ∞∞

(
1
2 − ir

)( 1
2 + ir
1
2 − ir

) k
2

y2irdr − 2− k
2

1
vN

,

ck,2(t, y) := − 1
4π

∑
a∈PΓ1(N)

∫ + 1
2

− 1
2

∫ +∞

−∞
h(t, r)

∣∣∣Ẽa,k

(
x+ iy, 1

2 + ir
)∣∣∣2 dr dx,

where Ẽa,k

(
x+ iy, 1

2 + ir
)

:= Ea,k

(
x+ iy, 1

2 + ir
)
− a0

(
y, 1

2 + ir; a∞, k
)
.

Using the above notation, observations (5.1) and (5.2) allow us to write

pk(t, y) + ck(t, y) = pk,1(t, y) + pk,2(t, y) + ck,1(t, y) + ck,2(t, y) (k = 0, 2).

Defining the integrals

RPk,j (t, s) :=
∫ +∞

0
pk,j(t, y)ys−2dy (k = 0, 2; j = 1, 2).

RCk,j (t, s) :=
∫ +∞

0
ck,j(t, y)ys−2dy (k = 0, 2; j = 1, 2)

we find

RP (t, s) =
(
RP2,1(t, s)−RP0,1(t, s)

)
+
(
RP2,2(t, s)−RP0,2(t, s)

)
(5.3)

and

RC(t, s) =
(
RC2,1(t, s)−RC0,1(t, s)

)
+
(
RC2,2(t, s)−RC0,2(t, s)

)
.(5.4)
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5.1. Rankin-Selberg of spectral part.

5.1.1. Lemma. For s ∈ C with 1 < Re(s) < A, where A is as in 2.7, and
t > 0, we have

RC0,1(t, s) = −1
2h
(
t, is2

)
ϕ∞∞

(
1+s

2

)
and

RC2,1(t, s) = −1
2h
(
t, is2

)
ϕ∞∞

(
1+s

2

) 1− s
1 + s

.

Proof. The proof is similar to the proof in [1], lemma 3.2.17 for the con-
gruence subgroup Γ0(N). Since loc. cit. there is no proof in the case k = 0,
we give for the convenience of the reader a proof here, and refer to [1] for
the case k = 2.
The idea is to apply Mellin’s inversion theorem. To this end, we consider,
for a fixed t > 0, the function h(t, r)ϕ∞∞

(
1
2 − ir

)
y2ir as a function in the

complex variable r. This function is holomorphic in the strip 0 < Im(r) < A
2

except for a simple pole at r = i
2 , as ϕ∞∞

(
1
2 − ir

)
has a simple pole there

with residue i
vN

. Furthermore, this function tends to 0 for Re(r) → ∞ by
the fact that ϕ∞∞

(
1
2 − ir

)
is uniformly bounded by [12], theorem 12.9.

Now, for c ∈ R such that 1
2 < c < A

2 , the residue theorem implies

− y

2π

∫ +∞

−∞
h(t, r)ϕ∞∞

(
1
2 − ir

)
y2irdr =

− y

2π

∫ +∞+ic

−∞+ic
h(t, r)ϕ∞∞

(
1
2 − ir

)
y2irdr−ih

(
t, i2

)
resr= i

2

(
ϕ∞∞

(
1
2 − ir

)))
=

− y

2π

∫ +∞+ic

−∞+ic
h(t, r)ϕ∞∞

(
1
2 − ir

)
y2irdr + 1

vN
.

Hence we have

c0,1(t, y) = − y

2π

∫ +∞+ic

−∞+ic
h(t, r)ϕ∞∞

(
1
2 − ir

)
y2irdr.

If we change the variable by s = −2ir, we obtain

c0,1(t, y) = − y

4πi

∫ 2c+i∞

2c−i∞
h
(
t, is2

)
ϕ∞∞

(
1+s

2

)
y−sds,

and from the inverse Mellin transform we deduce the claimed equation

RC0,1(t, s) =
∫ +∞

0
c0,1(t, y)ys−2dy = −1

2h
(
t, is2

)
ϕ∞∞

(
1+s

2

)
.

�
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5.1.2. Let f(z) be an automorphic function of weight 0 with respect to
Γ1(N) with eigenvalue λ and of rapid decay at the cusp ∞. Then, we have∫

Γ1(N)\H
|Λ0(f(z))|2E∞,0(z, s)µhyp(z) =(

λ+ s(s− 1)
2

)∫
Γ1(N)\H

|f(z)|2E∞,0(z, s)µhyp(z).

The proof is analogous to the proof of [1], lemma 3.2.18, where this claim
is formulated for the congruence subgroup Γ0(N). Namely, the Rankin-
Selberg method implies as in [1]∫

Γ1(N)\H
|Λ0f(z)|2E∞,0(z, s)µhyp(z) =(5.5)

−1
2

∫
Γ1(N)\H

∆0
(
|f(z)|2

)
E∞,0(z, s)µhyp(z)+λ

∫
Γ1(N)\H
|f(z)|2E∞,0(z, s)µhyp(z).

Since s(1−s) is the eigenvalue of E∞,0(z, s), Green’s second identity implies

− 1
2

∫
Γ1(N)\H

∆0
(
|f(z)|2

)
E∞,0(z, s)µhyp(z) =(5.6)

s(s− 1)
2

∫
Γ1(N)\H

|f(z)|2E∞,0(z, s)µhyp(z).

Plugging equation (5.6) in equation (5.5) the claim follows.

5.1.3. Lemma. For s ∈ C with Re(s) > 1 and t > 0 the integrals

RCk,2(t, s) =
∫ +∞

0
ck,2(t, y)ys−2dy (k = 0, 2)

exist and have a meromorphic continuation to the whole s-plane with a
simple pole at s = 1. Furthermore, we have

RC2,2(t, s) = RC0,2(t, s) + s(s− 1)
2

∫ +∞

0
c∗0,2(t, y)ys−2dy,

where c∗0,2(t, y) is defined as c0,2(t, y), but with the function h(t, r) replaced

by h∗(t, r) := h(t, r)
1
4 + r2 .

Proof. Recall that we have by definition∫ +∞

0
ck,2(t, y)ys−2dy =

− 1
4π

∫ +∞

0

 ∑
a∈PΓ1(N)

∫ +1/2

−1/2

∫ +∞

−∞
h(t, r)

∣∣∣Ẽa,k

(
x+ iy, 1

2 + ir
)∣∣∣2drdx

ys−2dy.
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Since Ẽa,0(x+ iy, 1
2 + ir) and also Ẽa,2(x+ iy, 1

2 + ir) are of rapid decay as
y →∞ by [27], lemma 10.2, we find that the expressions∑

a∈PΓ1(N)

∫ 1/2

−1/2

∫ +∞

−∞
h(t, r)

∣∣∣Ẽa,k

(
x+ iy, 1

2 + ir
)∣∣∣2 drdx (k = 0, 2)

satisfy the growth condition of 3.7, and the first statement of the lemma
follows.
For the second statement, note that we are allowed to interchange the
integrals for Re(s) > 1. Hence we have for k = 0, 2∫ +∞

0
ck,2(t, y)ys−2dy =(5.7)

− 1
4π

∫ +∞

−∞
h(t, r)

 ∑
a∈PΓ1(N)

∫
Γ1(N)\H

∣∣∣Ẽa,k

(
z, 1

2 + ir
)∣∣∣2E∞,0(z, s)µhyp(z)

dr.

Since we have
Λ0
(
Ẽa,0

(
z, 1

2 + ir
))

=
(

1
2 + ir

)
Ẽa,2

(
z, 1

2 + ir
)
,(5.8)

and as Ẽa,0
(
z, 1

2 + ir
)
is an eigenfunction of the hyperbolic Laplacian ∆0

with eigenvalue 1
4 + r2, which is of rapid decay at the cusp ∞, equation

(5.8) and observation 5.1.2 imply∑
a∈PΓ1(N)

∫
Γ1(N)\H

∣∣∣Ẽa,2
(
z, 1

2 + ir
)∣∣∣2E∞,0(z, s)µhyp(z) =

(
1 + s(s− 1)

2(1
4 + r2)

) ∑
a∈PΓ1(N)

∫
Γ1(N)\H

∣∣∣Ẽa,0
(
z, 1

2 + ir
)∣∣∣2E∞,0(z, s)µhyp(z).

Therefore, we have by equations (5.7)∫ +∞

0
c2,2(t, y)ys−2dy =

∫ +∞

0
c0,2(t, y)ys−2dy + s(s− 1)

2

∫ +∞

0
c∗0,2(t, y)ys−2dy,

where

c∗0,2(t, y) := − 1
4π

∑
a∈PΓ1(N)

∫ + 1
2

− 1
2

∫ +∞

−∞
h∗(t, r)

∣∣∣Ẽa,0
(
x+ iy, 1

2 + ir
)∣∣∣2 dr dx

with h∗(t, r) = h(t, r)
1
4 + r2 . This completes the proof of the lemma. �

5.1.4. Lemma. For s ∈ C with Re(s) > 1 and t > 0, we have

RD(t, s) = s(s− 1)
2

∞∑
j=1

h(t, rj)
λj

R|uj |2(s).
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Proof. Since the uj ’s are cusp forms they are of rapid decay at all cusps and
the Rankin-Selberg transforms exist for Re(s) > 1. By observation 5.1.2 we
find

R|Λ0(uj)|2(t, s) =
(
λj + s(s− 1)

2

)
R|uj |2(t, s)

which implies the claim of the lemma. �

5.2. Spectral and parabolic contribution.

5.2.1. Note that for an odd and squarefree positive integer N , we have by
[12], p. 566, proposition 6.3

ϕ∞∞(s) =2
√
π

Γ
(
s− 1

2

)
ζ(2s− 1)

Γ(s)ζ(2s) N−2s∏
p|N

1
1− p−2s

where ϕ∞∞(s) is the function in the constant term of the 0-th Fourier
expansion of the Eisenstein series E∞,0(z, s). (In the notation loc. cit. we
have to choose x1 = x2 = 1 and A1 = A2 = 1, which corresponds to the
cusp ∞). One easily computes its Laurent expansion to be

ϕ∞∞(s) = 1
vN

1
s− 1 + 1

vN

2γ + aπ

6 − 2
∑
p|N

p2 log(p)
p2 − 1

+O(s− 1),(5.9)

where γ is the Euler constant and a is the derivative of
√
π

Γ
(
s−1

2

)
Γ(s)ζ(2s) at s = 1.

5.2.2. Proposition. Let N be an odd and squarefree positive integer. For
any t > 0, we have the following Laurent expansion in a neighbourhood of
s = 1

RC2,1(t, s)−RC0,1(t, s) =

1
vN

1
s− 1 + t

2vN
+ 1

2vN

1 + 2γ + aπ

6 − 2
∑
p|N

p2 log(p)
p2 − 1

+O(s− 1).

Proof. By lemma 5.1.1, we have

RC2,1(t, s) = −1
2h
(
t, is2

)
ϕ∞∞

(1+s
2
)1− s
1 + s

,

which is holomorphic at s = 1. Then, since h(t, i2) = 1, we obtain by
observation (5.9) the Laurent expansion

RC2,1(t, s) = 1
2vN

+O(s− 1).(5.10)
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Again by lemma 5.1.1, we have

−RC0,1(t, s) = 1
2h
(
t, is2

)
ϕ∞∞

(1+s
2
)
,

which has a pole of order one at s = 1. Then, since
1
2h
(
t, is2

)
= 1

2 exp
(
− t

(
1
4 + ( is2 )2

) )
= 1

2 + 1
4 t(s− 1) +O

(
(s− 1)2

)
,

we obtain again by (5.9) the Laurent expansion

−RC0,1(t, s) =

1
vN

1
s− 1 + t

2vN
+ 1

2vN

2γ + aπ

6 − 2
∑
p|N

p2

p2 − 1 log p

+O(s− 1)

which implies with the Laurent expansion (5.10) the claim of the proposi-
tion. �

5.2.3. Proposition. For any t > 0, we have in a neighbourhood of s = 1
the following Laurent expansion

RC2,2(t, s)−RC0,2(t, s) = C4(t) +O(s− 1),

where the constant C4(t) tends to zero as t→∞.

Proof. By lemma 5.1.3 we have

RC2,2(t, s)−RC0,2(t, s) = s(s− 1)
2

∫ +∞

0
c∗0,2(t, y)ys−2dy,

where we set

c∗0,2(t, y) = − 1
4π

∑
a∈PΓ1(N)

∫ 1/2

−1/2

∫ +∞

−∞

h(t, r)
1
4 + r2

∣∣∣Ẽa,0(x+ iy, 1
2 + ir)

∣∣∣2 dr dx.

By means of 3.7 the integral∫ +∞

0
c∗0,2(t, y)ys−2dy

has a meromorphic continuation to the whole s-plane with a simple pole
at s = 1. Therefore RC2,2(t, s)−RC0,2(t, s) is holomorphic at s = 1 for any
t > 0. Since we have chosen h(t, r) = exp

(
− t(1

4 + r2)
)
the constant C4(t)

in the Laurent expansion tends to 0 as t→∞, as we claimed. �

5.2.4. Proposition. For any t > 0, we have in a neighbourhood of s = 1
the following Laurent expansion

RD(t, s) = 1
2vN

∞∑
j=1

h(t, rj)
λj

+O(s− 1).(5.11)
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Proof. By lemma 5.1.4 we have

RD(t, s) = s(s− 1)
2

∞∑
j=1

h(t, rj)
λj

R|uj |2(s).

We know from 3.7 that all R|uj |2(s) have a meromorphic continuation to
the whole s-plane with a simple pole at s = 1 with residue v−1

N . Hence the
summands

s(s− 1)
2

h(t, rj)
λj

R|uj |2(s)

are holomorphic at s = 1, and since the series RD(t, s) converges uniformly
in a neighbourhood of s = 1, the series is holomorphic at s = 1. From this
the Laurent expansion (5.11) follows immediately. �

We conclude this section by recalling some known results from [1]. Let
N be a positive integer. We denote by d(N) the number of positive divisors
of N and by σs(N) :=

∑
d|N

ds, s ∈ C, the divisor sum of N .

5.2.5. Proposition. For any t > 0, we have in a neighborhood of s = 1
the following Laurent expansion
RP2,1(t, s)−RP0,1(t, s) =(
− 1

2 + 1
4π

∫ +∞

−∞

h(t, r)
1
4 + r2 dr

)
ϕ(N)d(N)

vN

1
s− 1+

ϕ(N)d(N)C1(t)
vN

− ϕ(N)
vN

(
1
2 −

1
4π

∫ +∞

−∞

h(t, r)
1
4 + r2 dr

)
×

d(N)
(

3γ + aπ

6 −
∑
p|N

2p+ 1
p+ 1 log(p) +

(
1− 1

d(N)

)
σ−1(N)

)
+O(s− 1),

where a is the derivative of
√
π

Γ(s− 1
2 )

Γ(s)ζ(2s) at s = 1 and C1(t) is a function,
which converges for t→∞.

Proof. Every element γ ∈ Γ0(N) with |tr(γ)| = 2 lies already in Γ1(N) as
we can write γ =

(
1+a b
c 1−a

)
with a2 = −bc ≡ 0 mod N . Hence we can

just apply [1], p. 57, equation (28), and p. 60, lemma 3.3.10. �

5.2.6. Proposition. For any t > 0, we have in a neighborhood of s = 1
the following Laurent expansion
RP2,2(t, s)−RP0,2(t, s) =( 1

4π+ C2(t)
) 1
s− 1 +

(Γ′(2) + γ − log(4π)
4π + γC2(t) + C3(t)

)
+O(s− 1),
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where C2(t) and C3(t) are functions in t tending to 0 as t → ∞ and γ
denotes the Euler constant.

Proof. Also here, as every element γ ∈ Γ0(N) with |tr(γ)| = 2 lies already
in Γ1(N), we can apply [1], p. 57, equation (28) and p. 60 on the top. �

6. Analytic part of ω2
N

In this section we determine the analytic part of the stable arithmetic
self-intersection number of the relative dualizing sheaf, i.e., we obtain an
asymptotic formula in N for the Greens function evaluated at the cusps 0
and ∞d, d ∈ (Z/NZ)×, of Γ1(N).

6.1. Lemma. For an odd and squarefree positive integer N , we have

lim
s→1

(
ϕ0∞(s)− 1

vN

1
s− 1

)
= 1
vN

2γ + aπ

6 +
∑
p|N

−p2 + 2p+ 1
p2 − 1 log(p)

 ,
where γ is the Euler constant and a is the derivative of

√
π

Γ
(
s−1

2

)
Γ(s)ζ(2s) at s = 1.

Proof. From [19], Satz 1, p. iv, we have for any j

vj0b
Γ0(N)
0∞ (c) =

r∞∑
`=1

b0j∞`
(c);

here vj0 denotes the ramification index of the cusp 0j of Γ1(N) lying over
the cusp 0 of the congruence subgroup Γ0(N) contained in Γ1(N), r∞ refers
to the number of cusps ∞` lying over the cusp ∞ of Γ0(N), and, for c ∈ N,

b
Γ0(N)
0∞ (c) = #

{(
? ?
c ?

)
∈ g−1

0 Γ0(N)0 g0\g−1
0 Γ0(N)g∞/g−1

∞ Γ0(N)∞ g∞
}

with g0 =
( 0 −1

1 0
)
and g∞ = ( 1 0

0 1 ) of SL2(Z) mapping the standard cusp
∞ of SL2(Z) to the cusps 0 and ∞, respectively. The quantity b0j∞`

(c) is
defined by (3.2).
In the sequel we will choose for 0j the cusp 0 of Γ1(N) as the cusp lying over
the cusp 0 of Γ0(N); since we have Γ0(N)0 = Γ1(N)0, the cusp 0 of Γ1(N)
is unramified over the cusp 0 of Γ0(N), which shows vj0 = 1. Furthermore,
as the group Γ1(N) is normal in Γ0(N) and since again Γ0(N)∞ = Γ1(N)∞,
all the cusps ∞` lying over the cusp ∞ of Γ0(N) are unramified, whence

r∞ = [Γ0(N) : Γ1(N)] = ϕ(N).

Note that we have (in the obvious notation)

volhyp(Γ1(N)\H) = [Γ0(N) : Γ1(N)]volhyp(Γ0(N)\H) .
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Then, the lemma follows immediately from lemma 3.6 and the Laurent
expansion for odd and squarefree N (see [1], p. 67)

ϕ
Γ0(N)
0∞ (s) = 1

volhyp(Γ0(N)\H)
1

s− 1+

1
volhyp(Γ0(N)\H)

2γ + aπ

6 +
∑
p|N

−p2 + 2p+ 1
p2 − 1 log(p)

+O(s− 1).

�

6.2. Theorem. Let N be an odd and squarefree positive integer. Then the
constant term CF in the Laurent expansion of the Rankin-Selberg transform
RF (s) of F at s = 1 is given by

CF =− 1
2gNvN

lim
s→1

(
Z ′Γ1(N)(s)
ZΓ1(N)(s)

− 1
s− 1

)
+

1
2gNvN

(
2 + 2γ + aπ

6 − 2
∑
p|N

p2 log(p)
p2 − 1

)
+ Γ′(2) + γ − log(4π)

4πgN
+

ϕ(N)d(N)
2gNvN

(
2C1−3γ− aπ6 +

∑
p|N

2p+ 1
p+ 1 log(p)−

(
1− 1

d(N)

)
σ−1(N)

)
,

where γ is the Euler constant, a is the derivative of
√
π

Γ
(
s−1

2

)
Γ(s)ζ(2s) at s = 1,

and C1 is the limit C1 := limt→∞C1(t) (coming from proposition 5.2.5).

Proof. The idea of the proof is to use equation (2.20) and to determine the
constant terms in the Laurent expansions at s = 1 of the Rankin-Selberg
transforms on the right-hand side as t → ∞. This gives an expression of
CF , since by proposition 5.2.4, we have limt→∞RD(t, 1) = 0 showing that
on the left-hand side there is no contribution from the discrete part adding
to CF .
Now we determine the constants in the Laurent expansions of the Rankin-
Selberg transforms on the right-hand side of equation (2.20) as t → ∞
using the facts (5.3) and (5.4). From corollary 4.2.10 and proposition 5.2.2
we find

lim
t→∞

lim
s→1

(
RH(t, s) +

(
RC2,1(t, s)−RC0,1(t, s)

)
− 1
vN

1
s− 1

)
=(6.1)

− 1
2vN

lim
s→1

(
Z ′Γ1(N)(s)
ZΓ1(N)(s)

− 1
s− 1

)
+ 1

2vN

(
2 + 2γ + aπ

6 − 2
∑
p|N

p2 log(p)
p2 − 1

)
.
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Denoting by R1 the residue of RP2,1(t, s)−RP0,1(t, s) at s = 1, we find from
proposition 5.2.5

lim
t→∞

lim
s→1

(
RP2,1(t, s)−RP0,1(t, s)− R1

s− 1

)
=(6.2)

ϕ(N)d(N)
2vN

(
2C1−3γ− aπ6 +

∑
p|N

2p+ 1
p+ 1 log(p)−

(
1− 1

d(N)

)
σ−1(N)

)
,

where C1 is the limit C1 := limt→∞C1(t). From proposition 5.2.6 we find

lim
t→∞

lim
s→1

(
RP2,2(t, s)−RP0,2(t, s)−

( 1
4π + C2(t)

) 1
s− 1

)
=(6.3)

Γ′(2) + γ − log(4π)
4π ,

and proposition 5.2.3 implies

lim
t→∞

lim
s→1

(
RC2,2(t, s)−RC0,2(t, s)

)
= 0.(6.4)

Collecting all constants (6.1), (6.2), (6.3), and (6.4) and dividing them by
gN , proves the claim of the theorem. �

6.3. Corollary. Let N be an odd and squarefree positive integer satisfying
N = 11 or N ≥ 13. Let X(Γ1(N)) ∼= X1(N)(C) be the modular curve with
genus gN > 0. Then for the cusps 0,∞d ∈ X1(N)(C), d ∈ (Z/NZ)×, we
have

gcan(0,∞d) = − 2π
gNvN

lim
s→1

(
Z ′Γ1(N)(s)
ZΓ1(N)(s)

− 1
s− 1

)
+

2π
gNvN

(
2 + 2γ + aπ

6 − 2
∑
p|N

p2 log(p)
p2 − 1

)
+ Γ′(2) + γ − log(4π)

gN
+

2πϕ(N)d(N)
gNvN

(
2C1−3γ− aπ6 +

∑
p|N

2p+ 1
p+ 1 log(p)−

(
1− 1

d(N)

)
σ−1(N)

)
−

2π
vN

(
2γ + aπ

6 +
∑
p|N

−p2 + 2p+ 1
p2 − 1 log(p)

)
+O

( 1
gN

)
,

where γ is the Euler constant, a is the derivative of
√
π

Γ
(
s−1

2

)
Γ(s)ζ(2s) at s = 1

and C1 is the constant from theorem 6.2.

Proof. By proposition 3.8, we have

gcan(0,∞d) = 4πCF − 2π lim
s→1

(
ϕ0∞(s)− 1

vN

1
s− 1

)
+O

( 1
gN

)
.

Hence lemma 6.1 and theorem 6.2 imply the statement of the corollary. �
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6.4. A bound for the constant term in the Laurent expansion of the log-
arithmic derivative of the Selberg zeta function at s = 1 is provided by a
result of J. Jorgenson and J. Kramer in [15], p. 29, namely

lim
s→1

(
Z
′
Γ(s)

ZΓ(s) −
1

s− 1

)
= Oε(N ε),(6.5)

where the implied constant depends only on ε. There is the weaker bound
Oε
(
N

7
8 +ε) due to P. Michel and E. Ullmo in [23], corollary 1.4.

6.5. Theorem. Let N be an odd and squarefree positive integer satisfying
N = 11 or N ≥ 13. Let X(Γ1(N)) ∼= X1(N)(C) be the modular curve with
genus gN > 0. Then for the cusps 0,∞d ∈ X1(N)(C), d ∈ (Z/NZ)×, we
have

4gN (gN − 1)gcan(0,∞d) = 2gN log(N) + o
(
gN log(N)

)
.

Proof. From corollary 6.3, we deduce

4 gN (gN − 1)gcan(0,∞d) = −8π(gN − 1)
vN

lim
s→1

(
Z ′Γ1(N)(s)
ZΓ1(N)(s)

− 1
s− 1

)
+

(6.6)

8π(gN − 1)
vN

(
2 + 2γ + aπ

6 − 2
∑
p|N

p2 log(p)
p2 − 1

)
+ 4 (gN − 1)

(
Γ′(2) + γ−

log(4π)
)

+ 8πϕ(N)d(N)(gN−1)
vN

(
2C1−3γ− aπ6 +

∑
p|N

2p+ 1
p+ 1 log(p)−

(
1−

1
d(N)

)
σ−1(N)

)
− 8πgN (gN−1)

vN

(
2γ+ aπ

6 +
∑
p|N

−p2+2p+1
p2 − 1 log(p)

)
+O(gN ).

The asymptotic 24(gN−1)∏
p|N (p2−1) = 1 + o(1) together with vN = π

6
∏
p|N (p2 − 1)

imply

8π (gN − 1)
vN

= 48 (gN − 1)∏
p|N (p2 − 1) = 2 + o(1).(6.7)

Hence, since we have

2γ + aπ

6 +
∑
p|N

−p2 + 2p+ 1
p2 − 1 log(p) = log(N) +O

(
log log(N)

)
,
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we find with observation (6.7)

8πgN (gN − 1)
vN

(
2γ + aπ

6 +
∑
p|N

−p2 + 2p+ 1
p2 − 1 log(p)

)
=

2gN log(N) + o
(
gN log(N)

)
.

Noting that all other summands on the right-hand side of (6.6) vanish in
the little o-term (for the first summand we use the bound (6.5)) we obtain

4 gN (gN − 1)gcan(0,∞d) = 2gN log(N) + o
(
gN log(N)

)
.

�

7. Geometric part of ω2
N and main theorem

7.1. Let X1(N)/Q be the smooth projective algebraic curve over Q that
classifies elliptic curves equipped with a point of exact orderN . There exists
a canonical analytic isomorphism

j : X
(
Γ1(N)

)
= Γ1(N)\

(
H ∪ P1

Q
)
−→ X1(N)(C),

and we say that a K-rational point x ∈ X1(N)(K) is a cusp if x ∈
j(Γ1(N)\P1

Q). Note that the cusp 0 of X1(N)/Q is Q-rational and the cusp
∞ of X1(N)/Q is Q(ζN )-rational (see [25], proposition 1).

7.2. Let X1(N)/Q(ζN ) = X1(N)×Q Q(ζN ) be the modular curve over the
cyclotomic field Q(ζN ). Let X1(N)/Z[ζN ] be the minimal regular model of
X1(N)/Q(ζN ), i.e., a regular, projective, and flat Z[ζN ]-scheme with generic
fiber isomorphic to X1(N)/Q(ζN ). Under the assumption that gN ≥ 1,
minimality means by Castelnuovo’s criterion that the canonical divisor KN

corresponding to the relative dualizing sheaf is numerically effective, i.e.,
KN · V ≥ 0 holds for every vertical prime divisor V of X1(N)/Z[ζN ].
Integral models of modular curves were intensively studied by many people.
We collect in the following proposition some facts from [18].

7.3. Proposition. Let N be a squarefree positive integer of the form N =
N
′
qr with q and r two relative prime integers satisfying q, r ≥ 4. The

minimal regular model X1(N)/Z[ζN ] has smooth fibers over prime ideals p
of Z[ζN ] with p - N . For p|N the fiber of X1(N)/Z[ζN ] over p is the union
of two irreducible, smooth, and proper k(p)-curves C1,p and C2,p, k(p) the
residue field at p, intersecting transversally in

sp := p− 1
24 · ϕ(N/p)N

p

∏
q|N
p

(
1 + 1

q

)
(7.1)

k(p)-rational points. Moreover, the curves C1,p and C2,p are isomorphic.
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Proof. First we suppose that there is a regular model of X1(N)/Q(ζN )
with fibers as described in the proposition. Then, the adjunction formula
for arithmetic surfaces impliesKN ·V = 2pa(V )−2+sp ≥ 0 for every vertical
prime divisor V in the fiber over p|N , where pa(V ) denotes the arithmetic
genus of V . In the case of good reduction, we find KN ·V = 2gN − 2 ≥ 0 as
N ≥ 13. Hence the regular model is minimal. As a minimal regular model
is unique up to isomorphism, it suffices to find such a regular model.
Let M

(
Γ1(N)

)
/Z[ζN ] be the compactified coarse moduli scheme of canon-

ical balanced Γ1(N)-structures as described in [18], chap. 9, which exists
only ifN is a positive integer of the formN = N

′
qr with q and r two relative

prime integers satisfying q, r ≥ 4. It follows from the modular interpretation
thatM(Γ1(N))/Z[ζN ] is a model for X1(N)/Q(ζN ). ThatM

(
Γ1(N)

)
/Z[ζN ]

is a regular model having smooth fibers over p - N follows from [18], the-
orem 5.5.1, theorem 10.9.1, and the summarizing table on p. 305. For p|N
the fiber of X1(N)/Z[ζN ] over p is the union of two irreducible, smooth,
and proper k(p)-curves which are isomorphic and intersect transversally,
follows from [18], theorem 13.11.4. The formula for the intersection number
sp follows from [18], corollaries 5.5.3 and 12.9.4. �

7.4. Let 0,∞ ∈ X1(N)
(
Q(ζN )

)
be the cusps with representatives (0 : 1),

(1 : 0) in P1
Q, respectively. We letH0, H∞ be the horizontal divisors obtained

by taking the Zariski closure of 0,∞ in X1(N)/Z[ζN ], respectively. Note
that for m = 0,∞ there exists an open subscheme containing Hm, which is
smooth over Z[ζN ] (see [18], theorem 10.9.1).

7.5. Proposition. Let N be a squarefree positive integer of the form N =
N
′
qr with q and r two relative prime integers satisfying q, r ≥ 4. Then,

there exist vertical divisors Vm ∈ Div(X1(N))Q (m = 0,∞) satisfying

(
ωX1(N)/Z[ζN ] ⊗OX1(N)(Hm)⊗−(2gN−2) ⊗OX1(N)(Vm)

)
· OX1(N)(V ) = 0

(7.2)

for all vertical divisors V of X1(N)/Z[ζN ]. Furthermore, we have the fol-
lowing intersection numbers

(V0, V0)fin = (V∞, V∞)fin = −(V0, V∞)fin =

− ϕ(N) 24(gN − 1)2∏
p|N (p2 − 1)

∑
p|N

p+ 1
p− 1 log(p).

Proof. We start by considering a fiber over a closed point p ∈ Spec(Z[ζN ])
with p|N . The fiber consists by proposition 7.3 of the two irreducible com-
ponents C1,p and C2,p. The horizontal divisors H0 and H∞ intersect the
fiber in a smooth k(p)-rational point, and, by the cusp and component la-
beling in [18], p. 296, they do not intersect the same component. We denote
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by C0,p and C∞,p the component intersected by H0 and H∞, respectively.
Let us define the Q-divisors

V0,p := −gN − 1
sp

C0,p and V∞,p := −gN − 1
sp

C∞,p.

Then, we claim that

V0 :=
∑

p∈Spec(Z[ζN ])
p|N

V0,p and V∞ :=
∑

p∈Spec(Z[ζN ])
p|N

V∞,p

fulfill the conditions stated in (7.2). Noting that

KN · C0,p = degωC0,p/k(p) = degωC∞,p/k(p) = KN · C∞,p
and KN · (C0,p +C∞,p) = 2gN − 2, we find KN ·C0,p = KN ·C∞,p = gN − 1.
We have to consider the following three cases:

(i) V = Vp with p - N . In this case we calculate, using the adjunction
formula(

ωX1(N)/Z[ζN ] ⊗OX1(N)(Hm)⊗−(2gN−2) ⊗OX1(N)(Vm)
)
· OX1(N)(V ) =(

2gN − 2− (2gN − 2)
)

log
(
]k(p)

)
= 0.

(ii) V = Cm,p with p|N . In this case we calculate(
ωX1(N)/Z[ζN ] ⊗OX1(N)(Hm)⊗−(2gN−2) ⊗OX1(N)(Vm)

)
· OX1(N)(V ) =(

gN − 1− (2gN − 2) + gN − 1
)

log
(
]k(p)

)
= 0.

(iii) V = Cn,p with p|N , n ∈ {0,∞}, and n 6= m. In this case we calculate(
ωX1(N)/Z[ζN ] ⊗OX1(N)(Hm)⊗−(2gN−2) ⊗OX1(N)(Vm)

)
· OX1(N)(V ) =(

gN − 1− (gN − 1)
)

log
(
]k(p)

)
= 0.

This proves the first part of the proposition. Now, proposition 7.3 implies

(V0, V0)fin = (V∞, V∞)fin = −(V0, V∞)fin = −
∑
p|N

(gN − 1)2

s2
p

C0,p · C∞,p =

−
∑
p|N

(gN − 1)2 log
(
]k(p)

)
sp

= −24(gN − 1)2∑
p|N

1
p− 1

∑
p|p

log
(
]k(p)

)∏
q|N/p (q2 − 1) ,

which proves the proposition noting that
∑
p|p

log
(
]k(p)

)
= ϕ(N/p) log(p)

�

7.6. Proposition. Let N be a squarefree positive integer of the form N =
N
′
qr with q and r two relative prime integers satisfying q, r ≥ 4. Let 0,∞
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be the cusps of X
(
Γ1(N)

)
with representatives (0 : 1), (1 : 0) in P1

Q, respec-
tively, and let V0, V∞ be the vertical divisors of proposition 7.5. Then, we
have

ω2
N = 4gN (gN − 1)gcan(0,∞) + 1

ϕ(N)
gN + 1
gN − 1 (V0, V∞)fin .(7.3)

Proof. Formula (7.3) is analogous to the corresponding formula in propo-
sition D of [1] and, in the smooth case, the formula given in [29], p. 241.
We first claim that a multiple of the line bundle(
ωX1(N)/Z[ζN ]⊗OX1(N)(H0)⊗−(2gN−2)⊗OX1(N)(V0)

)∣∣
X1(N)∈ J1(N)

(
Q(ζN )

)
has support in the cusps. Since Γ1(N) has no elliptic points for N ≥ 4
(see [6], p. 107) the natural map X

(
Γ1(N)

)
−→ P1

C has constant ramifi-
cation index at points over the elliptic point of order two in P1

C and has
constant ramification index at points over the elliptic point of order 3 in
P1
C. Therefore, our first claim follows from [1], lemme 4.1.1. Hence a well-

known theorem of Manin and Drinfeld (see [7]) says, that this line bundle
is a torsion element in the Jacobian J1(N)/Q

(
ζN
)
. Now, as condition (7.2)

is satisfied, a theorem of Faltings and Hriljac (see [9], theorem 4), and the
fact that the Néron-Tate height vanishes at torsion points, imply as in [1]

ω2
X1(N)/Z[ζN ] =− 2gN (gN − 1)

(
OX1(N)(H0)2 +OX1(N)(H∞)2

)
+

1
2
(
OX1(N)(V0)2 +OX1(N)(V∞)2

)
.(7.4)

Now we consider the admissible metrized line bundle

OX1(N)(H∞)⊗OX1(N)(H0)⊗−1⊗
(
OX1(N)(V0)⊗OX1(N)(V∞)⊗−1

)⊗1/(2gN−2)

which is orthogonal to all vertical divisors V of X1(N) because of the con-
ditions (7.2) and has the generic fiber with support in the cusps. Then, a
similar argument as above shows
OX1(N)(H0)2 +OX1(N)(H∞)2 =2OX1(N)(H0) · OX1(N)(H∞)+

(V0, V0)fin − 2 (V0, V∞)fin + (V∞, V∞)fin
(2gN − 2)2 .(7.5)

Since by 7.4 the horizontal divisors H0 and H∞ do not intersect, lemma
7.5, substituting equation (7.5) into (7.4), implies

ω2
X1(N)/Z[ζN ] = 4gN (gN − 1)

∑
σ:Q(ζN )→C

gσcan
(
0,∞σ

)
+ gN + 1
gN − 1 (V0, V∞)fin .

(7.6)

Note that the modular curve X1(N)/Q is defined over Q, and hence the
Riemann surfaces X1(N)σ are in fact all equal to X(Γ1(N)). Moreover,
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proposition 3.8 implies gσcan
(
0,∞σ

)
= gσ

′
can
(
0,∞σ′

)
for any two embeddings

σ, σ′ : Q(ζN )→ C. Therefore, dividing both sides of equality (7.6) by ϕ(N),
we obtain formula (7.3). �

7.7. Theorem. Let N be an odd and squarefree positive integer of the
form N = N

′
qr with q and r two relative prime integers satisfying q, r ≥ 4.

Then, we have
ω2
N = 3gN log(N) + o

(
gN log(N)

)
.

Proof. By proposition 7.6, using theorem 6.5 and proposition 7.5, we have

ω2
N = 2gN log(N) + 24(gN + 1)(gN − 1)∏

p|N (p2 − 1)
∑
p|N

p+ 1
p− 1 log(p) + o

(
gN log(N)

)
.

Noting that 24(gN−1)∏
p|N (p2−1) = 1 + o(1), the claimed asymptotic follows. �

8. Arithmetic applications
8.1. Stable Faltings height. Let J1(N)/Q be the Jacobian variety of the
modular curve X1(N)/Q and let hFal

(
J1(N)

)
be the stable Faltings height

of J1(N)/Q. The arithmetic Noether formula (see [24], theorem 2.5) implies

12hFal
(
J1(N)

)
= ω2

N +
∑
p|N

sp
p− 1 log(p) + δFal

(
X
(
Γ1(N)

))
− 4gN log(2π),

(8.1)

where sp is given by the formula (7.1) and δFal
(
X
(
Γ1(N)

))
denotes the

Faltings’s delta invariant of X
(
Γ1(N)

)
(for the definition see [9], theorem

1, or, for another approach due to J.-B. Bost, see [28]). In [17] it is proved
(see loc. cit. theorem 5.3 and remark 5.8) that

δFal
(
X
(
Γ1(N)

))
= O(gN ).(8.2)

8.2. Theorem. Let N be an odd and squarefree positive integer of the
form N = N

′
qr with q and r two relative prime integers satisfying q, r ≥ 4.

Then, we have

hFal
(
J1(N)

)
= gN

4 log(N) + o
(
gN log(N)

)
.

Proof. Noting that
1
3
∑
p|N

sp
p− 1 log(p) = gN

3
∑
p|N

log(p)
p2 − 1 + ϕ(N)d(N)

12
∑
p|N

log(p)
p2 − 1 +O

(
log(N)

)
and

gN
3
∑
p|N

log(p)
p2 − 1 + ϕ(N)d(N)

12
∑
p|N

log(p)
p2 − 1 = o

(
gN log(N)

)
,
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we find

1
3
∑
p|N

sp
p− 1 log(p) = o

(
gN log(N)

)
.(8.3)

Hence observations (8.1) and (8.2) together with theorem 7.7 imply state-
ment of the theorem. �

8.3. Remark. In [8], p. 83, theorem 16.7, the authors found the bound

hFal
(
J1(pl)

)
= O

(
(pl)2 log(pl)

)
,

where p and l are distinct primes with l > 5. In theorem 8.2 the leading
term is explicit.
We note that theorem 8.2 might lead to a similar bound on the minimal
number of congruences of modular forms with respect to Γ1(N) as in [17],
remark 6.6, p. 37, in the case of Γ0(N).

8.4. Admissible self-intersection number. We assume that the reader is fa-
miliar with the theory of the admissible pairing in [33].

Let N be an odd and squarefree integer of the form N = N
′
qr with

q and r relative prime integeres satisfying q, r ≥ 4. The dual reduction
graph Gp of the fiber of X1(N)/Z[ζN ] over the prime ideal p of Z[ζN ] with
p - N consists by proposition 7.3 of two vertices which are connected by
sp = p−1

24 ·
ϕ(N/p)N

p

∏
q|N
p

(
1 + 1

q

)
edges of length 1. Hereby the two vertices

correpond to the irreducible components C0,p and C∞,p over p. Note that the
genera of the two components C0,p and C∞,p are the same by proposition
7.3, which we denote by gp. Then, we have gN = 2gp + sp − 1 and the
canonical divisor KGp on Gp (for the definition see [33], p. 175) is in this
case given by

KGp = (gN − 1)[0 +∞].

We set ap := sp
sp−1gp and lp := 2ap + sp, and the admissible measure with

respect to KGp on Gp (for the definition see [33], theorem 3.2) is given by

µp := ap
lp

(
δ0 + δ∞

)
+ 1
lp

dx.(8.4)

Recalling the notation from [1], we have for n = sp that the admissible
Green’s function gGp

µp with respect to µp of the graph Gp is given by (cf. [1],
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p. 65)

gGp
µp (xj , 0) = 1

2lp
x2
j −

ap + sp
splp

xj −
3ap + 2sp

6splp
,

gGp
µp (xj ,∞) = 1

2lp
(1− xj)2 − ap + sp

splp
(1− xj)−

3ap + 2sp
6splp

,

gGp
µp (xj , xj) =

(
1− 1

sp
− 1
lp

)
xj(1− xj)−

3ap + 2sp
6splp

,(8.5)

where 0 ≤ xj ≤ 1 (j = 1, . . . , sp) denotes the coordinate along an edge.
Note that for prime ideals p, p′ of Z[ζN ] with p|p and p′|p, we have Gp =
Gp′ , and we simply write Gp for this graph; further, we write in this case
also simply sp, ap, lp,KGp , µp for sp, ap, lp,KGp , µp, respectively. Let ωa,N be
the admissible metrized relative dualizing sheaf of the curve X1(N)/Q as
defined in [33], p. 181 and p. 188.

8.5. Theorem. Let N be an odd and squarefree integer of the form N =
N
′
qr with q and r relative prime integeres satisfying q, r ≥ 4. Then, we

have
ω2
a,N = 3gN log(N) + o

(
gN log(N)

)
.

Proof. By [33], theorem 5.5, we have

ω2
N − ω2

a,N = 1
ϕ(N)

∑
p|N

rp log
(
]k(p)

)
=
∑
p|N

rp
p− 1 log(p),

where

rp := rp :=
∫
Gp
gGpµp (x, x)

(
(2gN − 2)µp(x) + δKGp

)
.

Now we calculate (as in [1], p. 65) the value rp for the graph Gp with p|N .
The definition of rp and the formula for the admissible measure µp of (8.4)
yield

rp = −(gN − 1)(3gN + sp − 1)
3spgN

+ (gN − 1)2

3g2
N

sp −
(2sp − 1)(gN − 1)2

spg2
N

.

Noting that sp < gN and gN
sp

= p+ 1 +O(1) holds for p|N , we obtain

rp = −(p+ 1) + sp
3 +O(1).

Therefore, we have∑
p|N

rp
p− 1 log(p) =

∑
p|N

sp
3(p− 1) log(p) +O

(
log(N)

)
.

Then, theorem 7.7 and the asymptotic (8.3) imply
ω2
a,N = 3gN log(N) + o

(
gN log(N)

)
.
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This completes the proof of the theorem. �

8.6. Effective Bogomolov. Let X/K be a smooth projective and geometri-
cally connected curve over a number field K of genus gX > 1. For a divisor
D ∈ Div(X) of degree 1, let

ϕD : X −→ Jac(X)
be the embedding of the curve X/K into its Jacobian Jac(X)/K defined
by the mapping x 7→ [OX(x − D)]. Then there exists an ε > 0 such that
the set of algebraic points{

x ∈ X(K)
∣∣hNT

(
ϕD(x)

)
≤ ε

}
is finite, where hNT denotes the Néron-Tate height on Jac(X)/K (Bogo-
molov’s conjecture). The conjecture was proved by E. Ullmo in the case of
curves and by S.-W. Zhang, more general, for any non-torsion subvariety
X of an abelian variety A/K.

Due to L. Szpiro and S.-W. Zhang it is known (see [33], theorem 5.6)
that for every ε > 0 the set of algebraic points{

x ∈ X(K)
∣∣hNT

(
ϕD(x)

)
<

ω2
a

4(gX − 1) − ε
}

(8.6)

is finite, and that the set of algebraic points{
x ∈ X(K)

∣∣hNT
(
ϕD(x)

)
≤ ω2

a

2(gX − 1)

}
(8.7)

is infinite if [OX
(
KX − (2gX − 2)D

)
] is a torsion element in Jac(X)/K.

8.7. Theorem. Let N be an odd and squarefree positive integer of the form
N = N

′
qr with q and r relative prime integers satisfying q, r ≥ 4. Then,

for any ε > 0, there is a sufficiently large N such that the set of algebraic
points {

x ∈ X1(N)(Q)
∣∣hNT

(
ϕD(x)

)
<

(3
4 − ε

)
log(N)

}
is finite, and the set of algebraic points{

x ∈ X1(N)(Q)
∣∣hNT

(
ϕD(x)

)
≤
(3

2 + ε

)
log(N)

}
is infinite, if [OX1(N)

(
KX1(N)−(2gN−2)D

)
]is a torsion element in J1(N)/Q.

Proof. The first and second statement of the theorem follow immediately
from the height bounds (8.6) and (8.7) in conjunction with theorem 8.5. �

8.8. Remark. If D = [0] then [OX1(N)
(
KX1(N)− (2gN − 2)D

)
] is a torsion

element in J1(N)/Q, which gives an example for the second statement in
theorem 8.7.
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9. Appendix: Meromorphic Continuation
In this appendix we give a proof of proposition 4.2.2. Recall that for N

an odd positive integer and l ∈ Z with |l| > 2 and l ≡ 2 mod N , as well
as 0 < u < N with (u,N) = 1, we define the zeta function

ζu,N (s, l) =
∑

(γ,(m,n))∈∆u+
l

(N)/Γ1(N)

1
qγ(n,−m)s (s ∈ C, Re(s) > 1).

We will show that ζu,N (s, l) is well-defined and has a meromorphic contin-
uation to the whole s-plane. Furthermore, we will determine its residue at
s = 1.
Throughout this section we keep the above assumptions on N , l, and u.

9.1. Let q = [aN, bN, c] ∈ Ql(N) with r := gcd(aN, bN, c) the greatest
common divisor of the coefficients of q. We define the set
M q
u(N) :=

{
(m,n) ∈ Z2 | (m,n) ≡ (0, u) modN ; q(n,−m) > 0

}
⊆Mu(N).

Let us set θ := bN+
√
l2−4

2c and θ := bN−
√
l2−4

2c such that

q(n,−m) = c(m− θn)(m− θn).(9.1)

Further, we set (tq, uq) := (t0, u0
r ) with (t0, u0) the smallest positive solution

of Pell’s equation X2− disc(q)
r2 Y 2 = 4 such that tq−bNuq

2 ≡ 1 mod N . Then,
the generator αq of Γ1(N)q is explicitly given by (cf. [32], p. 63, Satz 2)

αq =
(
tq−bNuq

2 −cuq
aNuq

tq+bNuq
2

)
∈ Γ1(N),

and the power εq of the fundamental unit ε0 of 4.2.1 is of the form εq =
tq+uq

√
l2−4

2 . Therefore, for (m′, n′) = (m,n)αkq ∈Mu(N), k ∈ Z, we find (cf.
[32], p. 70)

m′ − θn′ = εkq (m− θn) and m′ − θn′ = εkq (m− θn),(9.2)

where εq := tq−uq
√
l2−4

2 is the conjugate of εq in the quadratic fieldQ(
√
l2−4).

As εqεq > 0, equations (9.1) and (9.2) imply q(n′,−m′) > 0; this gives a
well-defined action

Γ1(N)q ×M q
u(N) −→M q

u(N)(9.3)
(δ, (m,n)) 7→ (m,n)δ.

With the above notation and the isomorphy Γ1,l(N)/Γ1(N)∼=Ql(N)/Γ1(N)
in 4.1.4, we find

ζu,N (s, l) =
∑

q∈Ql(N)/Γ1(N)

∑
(m,n)∈Mq

u(N)/Γ1(N)q

1
q(n,−m)s .
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Finally, we set Eq := tq+bNuq
2cuq with (tq, uq) as above, and define the set

Rqu(N) :=
{

(m,n) ∈ Z2 | (m,n) ≡ (0, v) mod N ;n > 0,m ≥ Eqn
}
.

9.2. Remark. By observation (4.1) we may assume that the coefficients of
some representative q = [aN, bN, c] of an equivalence class of Ql(N)/Γ1(N)
satisfies aN > 0, bN < 0, and c > 0. We will exploit this fact in the sequel.

9.3. Lemma. Let N be an odd positive integer and l ∈ Z with |l| > 2
and l ≡ 2 mod N . Further, let 0 < u < N with (u,N) = 1 as well as
0 < u′ < N with u′ ≡ −u mod N . Then, we have for Re(s) > 1

ζu,N (s, l) =
∑

q∈Ql(N)/Γ1(N)

 ∑
(m,n)∈Rqu(N)

1
q(n,−m)s +

∑
(m,n)∈Rq

u′ (N)

1
q(n,−m)s

.
Proof. We prove that the zeta function is well-defined in 9.6. Let us define
for q = [aN, bN, c] ∈ Ql(N) with c > 0 (which we can assume) the sets

M q±
u (N) := {(m,n) ∈M q

u(N) |m− θn ≷ 0} .

This allows us to write M q
u(N) as a disjoint union M q

u(N) = M q+
u (N) ∪̇

M q−
u (N), which descends by observation (9.2) to

M q
u(N)/Γ1(N)q = M q+

u (N)/Γ1(N)q ∪̇M q−
u (N)/Γ1(N)q.

Now, we define a map ϕ+
u : M q+

u (N)/Γ1(N)q −→ Rqu(N) as well as a map
ϕ−u : M q−

u (N)/Γ1(N)q −→ Rqu′(N) which will turn out to be bijections.
This proves then the statement of the lemma.
To define the map ϕ+

u , let (m,n) ∈M q+
u (N). By observation (9.2) we find

for (m′, n′) = (m,n)αkq , k ∈ Z, the equation (cf. [32], p. 70)

m′ − θn′

m′ − θn′
=
(
εq
εq

)k
m− θn
m− θn

= (εq)−2k m− θn
m− θn

.

Hence in each orbit of M q+
u (N) by Γ1(N)q, there is an element (m′, n′)

which satisfies 1 < m′−θn′
m′−θn′ ≤ ε

2
q . We find

1 < m′ − θn′

m′ − θn′
⇐⇒ n′ > 0 and m′ − θn′

m′ − θn′
≤ ε2

q ⇐⇒ m′ ≥
ε2
qθ − θ
ε2
q − 1 n

′,

and a little computation shows ε2qθ−θ
ε2q−1 = Eq, from which we obtain a well-

defined map ϕ+
u : M q+

u (N)/Γ1(N)q −→ Rqu(N) given by (m,n) · Γ1(N)q 7→
(m′, n′). Now, we define the map (ϕ+

u )′ : Rqu(N) −→ M q+
u (N)/Γ1(N)q by

(m,n) 7→ (m,n)·Γ1(N)q. It is straightforward that this map is well-defined.
One easily verifies that the maps ϕ+

u and (ϕ+
u )′ are inverse to each other,

which proves that ϕ+
u is a bijection.
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To define the map ϕ−u , we let ϕ : M q−
u (N)/Γ1(N)q

∼−−→ M q+
u′ (N)/Γ1(N)q

be the bijection induced by mapping (m,n) 7→ (−m,−n). Defining the map
ϕ−u := ϕ+

u′ ◦ ϕ gives rise to a bijection ϕ−u : M q−
u (N)/Γ1(N)q −→ Rqu′(N).

Since ϕ+
u and ϕ−u are bijections, the statement of the lemma follows. �

9.4. Let N be an odd positive integer, l ∈ Z with |l| > 2 and l ≡ 2 mod N ,
0 < u < N with (u,N) = 1, and q ∈ Ql(N). Then, we define the theta
series ϑqu,N (t) by

ϑqu,N (t) :=
∑

(m,n)∈Rqu(N)
exp

(
− tq(n,−m)

)
(t ∈ R>0),(9.4)

which is a little variant of the theta series studied by E. Landau in [20]
defined as follows: Let E ∈ R \ {0} and LE be the lattice defined by

LE := Zω1 + Zω2

with ω1 = (1, 0) and ω2 := (E, 1). Let SE,P be the truncated and shifted
lattice defined by

SE,P :=
{

(x, y) ∈ R2 | (x, y) ∈ P + LE ; y > 0, x ≥ Ey
}
.

and P = (x0, y0) ∈ R2 lying inside the parallelogram determined by the
four points (0, 0), (1, 0), (E, 1), and (E + 1, 1). Let q = [a, b, c] ∈ Ql(1) be
a quadratic form with a > 0, b > 0, c > 0, and discriminant D = l2 − 4.
Then, E. Landau considers the theta series

ϑqE,P (t) :=
∑

(x,y)∈SE,P

exp
(
− t q(x, y)

)
(t ∈ R>0).

If E satisfies E > −b+
√
D

2a , then the theta series ϑqE,P (t) converges for t > 0,
and we have

ϑqE,P (t) = α−2
t

+ α−1

t
1
2

+ α0 + α1t
1
2 + . . .+ αkt

k
2 +Ok

(
t
k+1

2
)

(9.5)

as t → 0 with αj ∈ R, k ≥ −2, where all appearing constants depend on
the choice of E,P , and q. Furthermore, α−2 is given by

α−2 = 1
2
√
D

log 2aE + b+
√
D

2aE + b−
√
D

(9.6)

(see [20], Hilfssatz 11; note that in [20] the quadratic forms are of the
form q(X,Y ) = aX2 + 2bXY + cY 2 and the discriminant is defined by
disc(q) = b2 − ac. This causes the factor of 2 appearing in the expression
of α−2).

9.5. Lemma. Let N be an odd positive integer, l ∈ Z with |l| > 2 and
l ≡ 2 mod N , 0 < u < N with (u,N) = 1, and q = [aN, bN, c] ∈ Ql(N) a
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quadratic form with aN > 0, bN < 0, c > 0. Then, the theta series ϑqu,N (t)
converges for t > 0, and we have

ϑqu,N (t) = β−2
t

+ β−1

t
1
2

+ β0 + β1t
1
2 + . . .+ βkt

k
2 +Ok

(
t
k+1

2
)

(9.7)

as t→ 0 with βj ∈ R, k ≥ −2, where all appearing constants depend on the
choice of u,N, and q. Furthermore, β−2 is given by

β−2 = 1
N2
√
l2 − 4

log(εq).

Proof. We show that ϑqu,N (t) is a sum of Landau’s theta series ϑqE,P (t).
Let be L := cuqN . First note that the points (m,n) ≡ (0, u) mod N with
m ≥ Eqn and n > 0 do lie in the interior of the parallelograms of width and
height L of the cone defined by y > 0 and x ≥ Eqy. Now, let be ξ := x

L and
η := y

L . Then, we obtain c2u2
q points Ph = (xh, yh), h = 1, . . . , c2u2

q , in the
parallelogram now of width and height 1 with respect to the coordinates ξ
and η. We set

A := cL2, B := −bNL2, C := aNL2

and define q′ := [A,B,C] such that q(y,−x) = q′(ξ, η) and disc(q′) =
B2 − 4AC = disc(q)L4. By the definition of the theta series, we have

ϑqu,N (t) =
c2u2

q∑
h=1

ϑq
′

Eq ,Ph
(t).

Since

Eq = tq + bNuq
2cuq

>
bN +

√
l2 − 4

2c = −B +
√

disc(q′)
2A ,

we can apply Landau’s result and obtain∣∣∣∣∣∣
c2u2

q∑
h=1

(
ϑq
′

Eq ,Ph
(t)− α−2,h

t
− α−1,h

t
1
2
− α0,h − α1,ht

1
2 − . . .− αn,ht

k
2

)∣∣∣∣∣∣ < Ct
k+1

2

with C :=
c2u2

q∑
h=1

Ch, where the Ch are the implied constants of formula (9.5).

This implies with βj :=
c2u2

q∑
h=1

αj,h the claimed growth behaviour (9.7) of

ϑqu,N (t) as t→ 0.
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It remains to determine β−2. By formula (9.6) we have

β−2 =c2u2
q

1
2L2
√
l2 − 4

log 2cEq − bN +
√
l2 − 4

2cEq − bN −
√
l2 − 4

= 1
2N2
√
l2 − 4

log tq + uq
√
l2 − 4

tq − uq
√
l2 − 4

= 1
N2
√
l2 − 4

log tq + uq
√
l2 − 4

2 = 1
N2
√
l2 − 4

log(εq).

This finishes the proof of the lemma. �

9.6. Proof of proposition 4.2.2. Since q(n,−m) > 0 holds for (m,n) ∈
Rqu(N), we can use the well-known integral representation

(9.8)
∑

(m,n)∈Rqu(N)

1
q(n,−m)s = 1

Γ(s)

∫ +∞

0
ts−1ϑqu,N (t)dt (Re(s) > 1).

Using the asymptotics (9.7), we find
1

Γ(s)

∫ +∞

0
ts−1ϑqu,N (t)dt = 1

Γ(s)

∫ 1

0
ts−1

(
β−2
t

+ β−1

t
1
2

+ β0 + . . .+ βkt
k
2

)
dt+

1
Γ(s)

∫ 1

0
ts−1Rk(t)dt+ 1

Γ(s)

∫ +∞

1
ts−1ϑqu,N (t)dt(9.9)

with Rk(t) = Ok(t
k+1

2 ). For Re(s) > 1 the first term on the right hand side
is well-defined and is equal to

1
Γ(s)

(
β−2
s− 1 + β−1

s− 1/2 + β0
s

+ β1
s+ 1/2 + . . .+ βk

s+ k/2

)
,(9.10)

which extends to a meromorphic function on the whole complex plane. For
Re(s) > −k+1

2 with k ≥ 2 the integral of second term on the right hand
side converges absolutely and uniformly, since in this case we have

ts−1Rk(t) = O(t) (t→ 0).
The third integral converges absolutely and uniformly for any s ∈ C. So
we can deduce from equations (9.8) and (9.9), applied to u and u′, that
ζu,N (s, l) is well-defined for Re(s) > 1 and has a meromorphic continuation
to the half plane Re(s) > −k+1

2 with k ≥ 2. This finishes the proof of the
first part of the proposition as k can be arbitrarily large.
It remains to calculate the residue of ζu,N (s, l) at s = 1. We deduce from
equation (9.10) that ζu,N (s, l) has a simple pole at s = 1 with residue

ress=1ζu,N (s, l) = 2hl(N)β−2 = 2hl(N)
N2
√
l2 − 4

log(εq)

as β−2 does not depend on u and u′. This proves the proposition 4.2.2.
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