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Delaunay polytopes derived from
the Leech lattice

par MATHIEU DUTOUR SIKIRIC et KONSTANTIN RYBNIKOV

RESUME. Un polytope de Delaunay dans un réseau L est parfait
si les transformations affine qui préservent sa propriété d’étre De-
launay sont des compositions d’homothéties et d’isométries. Les
polytopes de Delaunay parfaits sont rares en petite dimension et
ici nous considérons ceux qui apparaissent dans des sections du
réseau de Leech.

Par ce moyen, nous trouvons des réeaux ayant plusieurs orbites
de polytopes de Delaunay parfaits. Nous exhibons aussi des poly-
topes de Delaunay parfait qui restent Delaunay dans des super-
réseaux. Aussi nous trouvons des polytopes de Delaunay par-
fait ayant des groupes d’automorphismes relativement petit par
rapport a leurs réseaux. Nous prouvons aussi que certains poly-
topes de Delaunay parfaits ont un nombre de lamination égal a 5
alors que les polytopes de Delaunay précédemment connus ont un
nombre de lamination égal a 3.

Une construction bien connu de polytopes de Delaunay cen-
tralement symmeétriques utilise des polytope de Delaunay parfait
antisymmeétriques. Nous classifions complétement les types de po-
lytopes de Delaunay parfaits qui peuvent apparaitrent dans cette
construction.

Enfin, nous prouvons une borne supérieure sur le rayon de re-
couvrement du réseau Agy(v)* qui généralise la borne de Smith.
Nous prouvons que cette borne est atteinte seulement pour A3,
qui est le meilleur recouvrement de R2® connu.

ABSTRACT. A Delaunay polytope in a lattice L is perfect if
any affine transformation that preserve its Delaunay property is
a composite of an homothety and an isometry. Perfect Delaunay
polytopes are rare in low dimension and here we consider the ones
that one can get in lattice that are sections of the Leech lattice.
By doing so we are able to find lattices with several orbits of
perfect Delaunay polytopes. Also we exhibit Delaunay polytopes
which remain Delaunay in some superlattices. We found perfect
Delaunay polytopes with small automorphism group relative to

Manuscrit recu le 10 avril 2012, révisé le 18 juin 2013, accepté le 9 juillet 2013.
Classification math. 11H31, 11H55.



86

the automorphism group of the lattice. And we prove that some
perfect Delaunay polytopes have lamination number 5, which is
higher than previously known 3.

A well known construction of centrally symmetric perfect De-
launay polytopes uses a laminated construction from an antisym-
metric perfect Delaunay polytope. We fully classify the types of
perfect Delaunay polytopes that can occur.

Finally, we derived an upper bound for the covering radius of
A24(v)*, which generalizes the Smith bound and we prove that
this bound is met only by A3,, the best known lattice covering in
R23,

1. Introduction

Given an n-lattice L C R", a sphere S = S(c,r) of center ¢ € R"
and radius r is called an empty sphere for L if there is no v € L such that
|lv—c|| < r. A polytope D = Dr,(c) in R (not necessarily of full dimension)
is called a Delaunay polytope in L if the set of its vertices vert D is SN L
where S is an empty sphere for L centered at ¢. An n-dimensional Delaunay
polytope D in L is perfect with respect to L (or, extreme, as in [10]) if
every linear bijective transformation ¢ of R™ that maps D onto a Delaunay
polytope in ¢(L) is a composition of a homothety and an isometry. Perfect
Delaunay polytopes were introduced in [10, 9, 20, 21] and their theory is
closely related to the second Voronoi decomposition [35].

Up to similarity the unit interval in Z' and the Gosset polytope 29 in
the root lattice Eg are the only perfect Delaunay polytopes in dimension
n < 6 [8]. In an upcoming work, we have classified the 7-dimensional perfect
Delaunay polytopes and found 2 polytopes [17]: the polytope 321 in the root
lattice E; and a 35 vertex perfect Delaunay polytope [22]. Classification in
dimension 8 seems much harder to obtain, a list of 27 8-dimensional perfect
Delaunay polytopes is given in [15] and it is likely that the list is complete.
The enumeration is obtained by application of the method of [18]; the same
method partially applied in dimension 9 gives 100000 perfect Delaunay
polytopes. In [24, 25, 11] several infinite series are built that proves the
existence of perfect Delaunay polytopes for any dimension n > 6.

It is expected that very few general structural properties of perfect De-
launay polytopes are true in general and therefore we searched for specific
examples. The problem is that the dimensions where we can do full or par-
tial enumeration are too low for interesting phenomena to occur. Therefore,
following [9], we try another route by looking for the polytopes obtained by
sections of the Leech lattice Asy. More precisely, given v € Agy we define
As4(v) to be the lattice of vectors of Agy orthogonal to v. In Theorem 3,
we prove an upper bound on the covering radius of Agy(v)* and we prove
that this upper bound is met only for vectors v of norm 4, which gives the
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covering density of Aj;, the lattice holding the covering density record in
dimension 23 [32, Table 3].

Then, in Section 4 we define the notion of main Delaunay polytopes for
lattices L with Ags(v) C L C Aga(v)*. For 16 vectors of smallest norm in
the Leech lattice, Table 4.1 gives the corresponding 23-dimensional per-
fect main Delaunay polytopes. We found 13 lattices having several orbits
of perfect Delaunay polytopes. Furthermore the table shows 2 perfect De-
launay polytopes which admit extensions to a superlattice with the same
vertex set and 4 perfect Delaunay polytopes which admit extension with
twice the vertex set (see Theorem 4.2 for details). This phenomenon has
a direct analog in the theory of perfect lattice packings [28]. The analogy
between perfect lattice packings and perfect Delaunay polytopes was first
considered in [16].

Due to its rigidity property, a perfect Delaunay polytope uniquely de-
fines the lattice in which it is contained. In Theorem 4.1 we give a perfect
Delaunay polytope D of Ass for which the size of the automorphism group
is one sixth of the size of the automorphism group of the lattice. The value
of the quotient in size of the previously known example was always 1 or 2.

The lamination number of a n-dimensional polytope D is the minimum
number of (n — 1)-dimensional lattice layer that needs to be used in order
to cover the vertex-set of D. In Theorem 4.3 we give two perfect Delaunay
polytopes with lamination number 5, while all the previously known ones
had lamination number 3, i.e. the minimum possible for perfect Delaunay
polytopes [15, Theorem 10]. It is conjectured [1] that a n-dimensional poly-
tope, whose vertices belong to a lattice L and is free of lattice point in its
interior, has lamination number at most n + 1. [26] inquired about the pos-
sible lamination number of Delaunay polytopes and conjectured that they
cannot have large lamination number. We expect that there exist Delaunay
polytopes with arbitrarily high lamination number.

From an antisymmetric n-dimensional perfect Delaunay polytope D em-
bedded in R™*!, it is always possible to get a centrally symmetric Delaunay
polytope by stacking D and v — D for a suitably chosen vector v ¢ L ® R.
An interesting question is whether or not by varying the distance between
L®R and v+ L®R we can get a perfect Delaunay polytope. This question
was solved in [10, Lemma 15.3.7] by assuming that there is an additional
vertex in the interior of the cylinder defined by D and v — D. In Theorem
5.1 we classify the two possible scenario that can occur, i.e. empty cylinder
or perfect Delaunay polytope. In Theorem 5.2 the structure of the cylinder
obtained in the first case is elucidated. Corollary 5.1 gives some sufficient
conditions for being in first or second case and this allows to find empty
cylinder, which were unknown before.
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There are many open questions on perfect Delaunay polytopes. One of
them concerns the property of being a t-design. Very few Delaunay poly-
topes with t > 4 are known and we do not have any technique for doing
their enumeration. Table 4.1 gives 6 such polytopes. A n-dimensional De-
launay polytope D in a lattice L is called basic if there are n + 1 vertices
Vg, V1, ..., U, of D such that for every vertex v of D there exists \; € Z
such that v = 331, \jv; and 1 = >°1" y A\;. Non-basic Delaunay polytopes
exist [13] but it is unknown whether non-basic perfect Delaunay polytopes
exist.

The paper is organized as follows. Section 2 introduces basic notions on
lattices, Delaunay polytopes in lattices, Leech lattice and spherical designs.
In Section 3 we define the lattices Agq(v) and Agy(v,d). Then we prove an
upper bound on the covering radius of Agy(v)* and determine the covering
radius of Aj;. In Section 4 we define the main Delaunay polytopes of the
lattices Ag4(v, d) and prove the announced existence results. In Section 5 we
fully determine the Delaunay polytopes that one can obtain by lamination
over an antisymmetric Delaunay polytope.

2. Definitions

2.1. Lattices. A lattice L is a subgroup of the vector space R" of the form
Zvi + - - -+ Zwy, where v, ..., v, are independent vectors. The determinant
det L is defined as the k-dimensional volume of the parallelepiped

{x1v1+---+xkvk : ngiglforalli}.

For K = R or Q we denote by L ® K the set Kv; + --- + Kvg. A lattice
of rank k is called a k-dimensional lattice or simply a k-lattice. If L is a
sublattice of L', then L’ is called a superlattice of L. The pair L C L', where
both lattices are of the same rank, is called a centering of L.

If L C R™ is a lattice then the dual lattice L* is defined as follows:

L* = {x € L ® R such that for all y € L we have (z,y) € Z}.

A lattice is called integral if (z,y) € Z for z,y € L, i.e. if L C L*. A lattice
is called unimodular if det L = 1. A lattice is self-dual, that is L = L*, if
and only if it is integral and unimodular.

If B™ is the n-dimensional unit ball centered at the origin and L is an
n-dimensional lattice, then the covering radius also called inhomogeneous
minimum cov L is defined as follows:

covlL =min{y : L+ puB"™ covers R"}.

It is easy to see (see, e.g. [5, Section 2.1.3]) that cov L is equal to the
maximum circumradius of the Delaunay polytopes of L.
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The group O, (R) is the group of isometries of R™ preserving the origin.
The automorphism group Aut L of a lattice L C R™ is defined as

Aut L = {f € On(R) s.t. f(L)=L}.

In [30] a practical algorithm for computing Aut L is given. The full affine
isometry group of a lattice L is denoted by Iso L.

A n-dimensional lattice admits 2 — 1 sublattices of index 2. For the
dimensions that we are considering the most practical method is to enu-
merate directly all 2 — 1 possibilities and then use Aut L for reducing by
isomorphism. Note that we can also get the index 2 superlattices by this
method.

A (n—1)-dimensional lattice L’ of L is called primitive if (L'@R)NL = L'.
A lamination of an n-dimensional lattice L is a partition of L of the form
Ukez(L' +kv), where L' is a primitive (n— 1)-dimensional sublattice L' C L
and v is a vector in L\ L. Set Ag = Z". A laminated n-lattice A,, is defined,
up to similarity, as the densest n-lattice that has a lamination Ugez (L' +kv),
with L’ isometric to A,_1. For n < 8, the A,, are root lattices and are
the best lattice packings in their dimensions. The laminated lattices are
uniquely defined for n € {9,10,15,...,24}. See [5, Chapter 6] for more
details on their construction and other properties.

2.2. Delaunay Polytopes in Lattices. Given a lattice L C R™ a point
x € R™ defines a (not necessarily full dimensional) Delaunay polytope Dy, (x)
by

D (x) = conv {U €L:|zr—v|]|=minl|z— wH} .
weL

The polytope Dy (z) can be computed easily from = and L by using imple-
mentations of the Closest Vector Problem, which is generally feasible in the
dimensions considered here. Given a full dimensional Delaunay polytope D
denote by ¢(D) its center and by L(D) the lattice it affinely generates, i.e.
the lattice generated by the difference between vertices of D.

Let us define E3(n) to be the space of polynomial functions of degree at
most 2 on R™. If D is a Delaunay polytope with empty sphere S(c,r) for
L =Zwvy + -+ + Zv, (rank L = n) then the function

fo:Z" = R
r=(21,...,2,) — ||3", 20 —c|® —1r?
is a polynomial of degree 2 such that fp(x) > 0forallx € Z™ and fp(z) =0

if and only if Y"1 z;v; is a vertex of D.

Definition. Let D be a n-dimensional Delaunay polytope in a lattice L =
Zvi + -+ Zvy,.
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(i) We define the cone of quadratic function

o f€Eyn) : f(x) >0forall z € Z" and f(x) =0
b= if and only if > x;v; is a vertex of D

(ii) The dimension of Cp is called the perfection rank and denoted by
perfrank D.
(iii) D is perfect if and only if perfrank D = 1.

The perfection rank of D can be computed easily by linear algebra com-
putations. Let (w’);<j<p the coordinates of the vertex set of D in the
basis (v;)1<i<n. Then perfrank D is the dimension of the solution space of
the vector space

{f € Ea(n) st. f(w')=0,..., f(w™) =0}

As a consequence a n-dimensional perfect Delaunay polytopes has at least
w — 1 vertices. The above notion of perfection is computable but is
not immediately equivalent to the geometric notion given at the beginning
of this paper. For a proof of the equivalence, see for example [21] or for a
different viewpoint [10].

The isometry group of a Delaunay polytope D = Dy (c) is denoted by
Isor, D. The subgroup Auty D is the group of isometries of L preserving
D. Tt can happen that Auty D # Isor, D but if L(D) = L then we have

equality.

Definition. Let D be a n-dimensional Delaunay polytope in a lattice L.
(i) For a (n — 1)-dimensional primitive sublattice L’ of L, the non-empty
sections of vert D by hyperplanes L' + kv are called laminae.
(ii) The lamination number of D is the minimum number of laminae over
all primitive (n — 1)-dimensional sublattices L’ of L.

We do not know any systematic method for computing the lamination
number of a polytope. However, it is easy to enumeration the 2-laminations
if any exist: one takes n + 1 independent vertices S = {vg,...,v,}, iterate
over all 2" — 1 2-laminations of S and keeps the ones that extends to 2-
laminations of D.

Definition. Given a vector v € L ®Q, denote by den(v) the least common
denominator of its coordinate, i.e. the smallest integer d > 0 such that
dv e L.

A Delaunay polytope D is either centrally-symmetric with respect to its
circumcenter ¢, or antisymmetric, in which case for any v € vert D we have
2¢ — v ¢ vert D. Note that den(c(D)) = 2 if and only if D is centrally
symmetric.
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2.3. The Leech lattice and related lattices. The lattice Agy is known
as the Leech lattice. The Leech lattice is integral and unimodular and there-
fore self-dual. Every vector v € Asy has even norm and the norm of non-zero
vectors is at least 4. There are 196560 such minimal vectors, which is the
maximal possible number in dimension 24 [5, Chapter 14]. It is known that
the Leech lattice is the best lattice packing in dimension 24 [3].

The symmetry group Aut Agy is the Conway group Cog, which is a dou-
ble cover of the simple group Co;. The list of all 307 orbits of Delaunay
polytopes of Agy is known and among them 23 orbits have the largest possi-
ble circumradius, i.e. v/2. Those Delaunay polytopes are described by affine
root systems; full details are in [4], [5, Chapter 25]. It is expected that the
Leech lattice is the best lattice covering in dimension 24.

The lattices Aa3, A35 have 93150, respectively 4600, minimal vectors of
norm 4, respectively 3. The 4600 minimal vectors of Aj; generate an index
2 sublattice called Os3. The self-dual lattice Og3 is known as the shorter
Leech lattice, as it was constructed by John Leech from the 23-dimensional
Golay code (after O’Connor and Pall’s work [29]). The lattice Agg is an
index 2 sublattice of Og3; thus, As3 is an index 4 sublattice of A3;. More
precisely, Ajs/Agz = Z/4Z. The automorphism group of these three lattices
is Zs x Cos and the corresponding three integral representations exhaust
the list of 23-dimensional integral representations of C'oo enumerated in
[31].

2.4. Spherical designs. We say that a finite, nonempty subset X in R"
carries a spherical t-design (see [7] for details on spherical designs) if there
is a similarity transformation mapping X to points on the unit sphere

Sl = {x € R": ||z|| = 1} so that for the spherical measure dw on S™~1
and for all polynomials f € R[z1,...,z,] up to degree t we have
1 1
— = d .
7] 200 = o [ F@e)

The maximal possible t is called the strength of the design. A Delaunay
polytope of center ¢ and radius r defines a spherical t-design if and only if
for all k <t we have the following identity

1 0, for all odd k&

[p——] (@ —c,y—o)f = { 13 (k=1) ok
\Vert D‘ z,yEXV:ertD m’r fOI‘ all even k.

This characterization is computationally easier and the proof of equivalence
is done in [7], where the notion of spherical design was introduced and their
harmonic analysis developped. A Delaunay polytope defines a 0-design on
its empty sphere and it is a 1-design if and only if its circumcenter is equal
to its isobarycenter. In [16] it is proved that if a Delaunay polytope D
defines a 4-design, then D is perfect. This is the counterpart of a similar
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theorem for perfect forms [34]. Almost nothing is known on the enumeration
of perfect Delaunay polytope with defines ¢ designs of strength ¢ > 4.

All the computation of this paper were realized using the polyhedral
package [37].

3. The lattices A24(v,d) and the covering density of AJ,

Let v be a primitive vector of the Leech lattice Aoy, i.e. one such that
g ¢ Aoy for all natural number d > 1. Then, we define

A24(v) = {x € Agy such that (z,v) = 0}.
By the appendix of [28] we have
K21(0)/Aa () = Zf o P2
Any d € N dividing ||v||? determines uniquely a lattice Aoy (v, d) with
Aog(v) C A2a(v,d) C Agg(v)* and  [Aaa(v,d) : Aas(v)] = d.
We have Agy(v,1) = Agyg(v) and Agy(v, ||v||?) = Aos(v)*.

Theorem 3.1. Let v be a primitive vector of the Leech lattice and define

1
T’(U)ZMQ—W.

(i) The covering radius of the lattice Aoy(v)* is at most r(v);

(it) the only lattice Aaa(v)* with covering radius r(v) is As; = Aga(v)*
for v a vector of norm 4.
The Delaunay polytopes of mazimal circumradius of A3s belong to a single
orbit of Delaunay polytopes, whose representatives have 64 vertices and 2688
symmetries.

Proof. Denote by p, the orthogonal projection operator of Agq onto Agy(v)®
R. The dual lattice Agq(v)* is equal to the projection p,(Azs) of Agg. We
suppose that the covering radius of Agy(v)* is strictly greater than r(v), that
is that there exists a vector w € Ass(v) ® R such that for every x € Aga(v)*
we have ||z — w|| > r(v). Define v/ = Wv and w' = w + $v’. For every
(TS Aoy set

hy=y—w =p,(y—w)+av =(p,(y) —w) + o',

where . .
a= <U7hy> = _5 + <U7y> S 5 + Z.
Thus we get
2 _ a2 20[,,/112
) Iyl2 = lIpo(y) = wll? + a2]

> r(v)? + 2|2 > 2.
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The inequality ||hy||? > 2 contradicts the fact that the covering radius of
A24 is \/§

Suppose now that D is a Delaunay polytope of Agsq(v)* of center ¢ and
circumradius 7(v). Define ¢ = ¢ 4+ 1v/. By an argument similar to (i) we
get that ||y —c/||? > 2 for every y € Agy. Thus ¢ is the center of a Delaunay
polytope D’ of Aay of circumradius v/2. Define f(z) = (x,v). We have
f(¢) =3 and f(v) € Z for v € vert D’ C Agy.

If v € vert D’ then we have

Crmae L (M)
o) el =2 = o (5= 1)

Thus in order for D to be a Delaunay polytope of circumradius r(v), it is
necessary that f(v) =0 or 1 for v € vert D’. So D’ has lamination number
2 and the vector v is defined up to a scalar multiple by the corresponding
2-lamination. For a n-dimensional polytope P a 2-lamination in two layers
Lo, L1 corresponds to a partition of vert P in two subsets Py and P;. If S =
{v1,...,Unt1} is a set of n 4+ 1 independent vertices of P then the possible
partitions { Py, P } are determined by the intersections S N Py. Thus there
are at most 2"*! — 2 2-laminations on P and they can be enumerated by
considering all subsets of an independent set S of vert P and checking if they
correspond to a partition {Py, P1}. By Dy,,(c1), ..., Da,,(c23) we denote
representatives of the 23 orbits of Delaunay polytopes of circumradius /2.
Given a polytope Dy, (¢;) we enumerate its 2-laminations; determine the
possible vectors v; keep the ones such that the projection p,(c;) determines
a Delaunay polytope of Ags(v)* of circumradius r(v). It turns out that, up
to equivalence, only one such vector v satisfies the required conditions. This
vector is of norm 4 and so A34 is the only lattice meeting the bound. [

The upper bound of the above theorem was proved in [33] for the lattice
A%, which holds the record lattice covering in dimension 23. The Delaunay
polytope of Agy that determines the Delaunay polytope of Aj; of maximal
circumradius is named A§ [5, Chapter 23]. If one takes the Gram matrix
of Agg from [36] and apply a matrix inversion then the center of an empty
sphere of maximum radius is

1
4

The covering density of A3; is 15.3217885165555.

The only general method for computing the covering radius of a lattice is
to compute the full Delaunay tessellation. For Ass, respectively Osg, there
are 709, respectively 5, orbits of Delaunay polytopes [12]. For A3 the same
program yields several hundred thousands of orbits before the computation
could terminate.

(3,1,0,2,1,1,2,0,3,2,3,3,2,1,2,2,3,3,0,2,1,3,3) .
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4. The main Delaunay polytopes of Az4(v,d)

Let us say that a vector v € Aoy has type n if it is of norm 2n and has
type ngyp if it is also the sum of two vectors of types a and b. Aut Ayy is
transitive on the vectors of following types:

(4.1)
2,3,4,5,622,632,7,822,832,842,933,94,2, 1033, 104,2,105 2, 1143, 1152

and this exhausts the list of vectors of norm at most 22 (see [5, Section
10.3.3]). By vy, respectively vy,.q 5, we denote a vector of type n, respectively
Ng,b- Note that 2vs is of type 829. The lattice Aag(ve) is Ags. The lattice
Ag4(v2,2) is the shorter Leech lattice Oag.

Denote by Stab(v) the stabilizer of v € Agg under Aut Agy. Stab(v)
defines a subgroup of Aut Ags(v,d). The stabilizers of the 17 vectors vy,
Upsa,b are given in [5, Table 10.4] and many of them involve sporadic simple
groups.

Definition. For a given vector v € Agy and « € Z, define:
(i) ¢(v, @) to be the projection of 0 on the hyperplane

{z e R" s.t. (v,z) = a}.
(ii) The Delaunay polytope
D(v,d,a) = DA24(v,d)(C(Ua a)).
(iii) The set of vectors
Miny o Agg = {z € MinAgy : (z,v) = a}.
The Delaunay polytopes D(v,d, ) contain Stab(v) in their stabilizer.

Proposition 4.1. Let us take a non-zero vector v € Aoy. We have:
(1) If Ming ,, Aog # 0 then Min Agy(v) = Ming ,, Aoa.
(71) If a # 0 and Ming ,, Aoy is 23-dimensional then

D(v,d, o) = Miny o A2a

and its covering radius is d(v,a) = /4 — ﬁ

Proof. By construction a non-zero vector v € Agy4(v) has norm at least 4.
So, if there is one such vector then the minimum is 4 and (i) holds.

Since c(v, «) is orthogonal to the hyperplane {z € R" s.t. (z,v) = a} we
obtain that all elements of Min, , A24 are at equal distance from c(v, ).
Furthermore, if there were a vector at closer distance then it would define
a non-zero vector of norm smaller than 4, which is impossible. O

We call a Delaunay polytopes D(v,d,«) with covering radius d(v, «)
main. In the following, we will use the main Delaunay polytopes D(v,d, «)
as a source of example of polytopes with specific properties. We will be
chiefly interested in the case d = 1 and see how the Delaunay polytopes
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Type of v Main Delaunay polytopes
2 D(v,1,1);(47104,4,7,1), D(v,2,1);(94208,2,7,1)
(1},1,2)7 (4600,2,7,1)
3 D(v,1,1); (48600, 6,5, 1)
D(v,1,2);(11178,3,5,1), D(v,2,2); (11 7 8,3,5,2)
D(v,1,3); (552,2,5, 1), D(v,3,3); (552,2,5,3)
4 D(v,1,1);(47104,8,3,1)
D(v,1,2);(16192,4,3,1), D(v,2 2),(32384 2,3,1)
5 D(v,1,1);(45100,10,1,1) \ D(v,1,2); (19450, 5,1,1)
62,2 D(v,1,2);(22518,6,1,1)
632 D(v,1,1);(43056,12,2,1)
D(v,1,2); (21528, 6,2 1)
D(v,1,3);(6072,4,2,1), (v,2,3),(12144,2,3, 1)
7 D(v,1,1);(41152,14,0 ,1) D(v,1,2);(22825,7,0,1)
D(v,1,3);(7900,14,0,1)
83,2 D(v,1,2); (24576, 8 0,1), D(v,2,2);(47104,4,7,1),
D(v,4,2);(94208,2,7,1)
84,2 D(v,1,1);(39424,16,1,1)
(v,1,2),(23608 8,1,1)
D(v,1,3); (9472, 16 1,1)
D(v,1,4);(2268,4,1,1), D(v,2,4);(4536,2,1,1)
93,3 D(v,1,1);(37908,18,1,1) (v,l, 2);(24057,9,1,1)
D(v,1,3);(10758,6,1,1) | D(v,1,4);(3159,9,1,1)
94,2 (v,l, ) (37743, 18 0 1)
D(v,1,2);(24035,9,0,1)
D(v,1,3);(10879,6,0,1), D(v,3,3);(32384,2,3,1)
103.3 D(v,1,2);(25300,10,1,1) D(v,l, 4);(4325,5,1,1)
1042 D(v,1,2); (25036, 10 0,1) D(v,1,4);(3489,5,0,1)
105.2 D(v,1,1);(36454,20,0,1) | D(v,1,2); (24266, 10,0, 1)
D(v,1,3);(11882,20,0,1) | D(v,1,4);(3993,5,0,1)
1143 D(v,1,1);(35200,22,0,1) | D(v,1,2);(24332,11,0,1)
D(v,1,3);(12760,22,0,1) | D(v,1,4);(4832,11,0,1)
1152 D(v,1,1);(34782,22,0,1) | D(v,1,2);(24200,11,0,1)
D(v,1,3); (13122,22,0,1)

TABLE 4.1. First column gives the 17 types of vector of
Ag4 of norm at most 22 except 82 2. The entries “D(v,d,a):
(N,den, s,ind)” in second column correspond to the 23-
dimensional main Delaunay polytope D(v,d, ) of Agy(v,d)
with N vertices, denominator of circumcenter den =
den(c(D)), strength s of t-design and index ind of L(D)
in A24(U s d)

95



96 Mathieu DUTOUR SIKIRIC, Konstantin RYBNIKOV

is extended for larger d. Since Min As4 has a finite number of elements,
there is a finite number of such main perfect Delaunay polytopes but we
are not able at this point to determine the complete list. Therefore we limit
ourselves to v from the first 17 types.

In Table 4.1 we give informations about the main perfect Delaunay poly-
topes associated to the vectors of norm at most 22, according to their types.
We omit 892 which is covered by type 2. For every perfect main Delaunay D
we give the number N of vertices, the denominator den = den(c(D)) of the
circumcenter ¢(D), the strength s of the spherical ¢-design and the index
ind of L(D) in Ag4(v,d) by the symbol “D(v,d,«); (N,den,s,ind)”. Two
additional 22-dimensional perfect Delaunay polytope occur as Min,, 4 Agg
and Minyg, , .4 A24. Their invariants are (275,5,4,1) and (891,3,5,1).

The remarkable centrally symmetric perfect Delaunay D(vs, 1,3) with
invariants (552, 2,5,1) was first identified in [9], it defines 276 equiangular
lines [27], it is universally optimal [2] and it gives the facet of maximal
incidence of the contact polytope of Ao [19]. It was noted in [10] that a 22-
dimensional antisymmetric perfect Delaunay with 275 vertices is included
in D(vs,1,3). This polytope is Min,, 4 A24. The polytopes D(vs,1,4) and
D(vs,1,3) define spherical t-design of strength 4, respectively 5 just like
Gosset’s 291 and 391, which are perfect Delaunay polytopes in Eg and E7.
The set Min Aggz(v3)* is equivalent to D(vs,1,3) and the set Min L3, is
equivalent to D(vs,1,3) U (2¢(D(vs,1,3)) — D(vs, 1,3)). Similarly 32 is
equivalent to Min E} and Min Ef is equivalent to 221 U (2¢(221) — 221).

Many lattices Ag4(v) have several orbits of perfect Delaunay polytopes.
No such example is known in dimension n < 9. It turns out that for a given
vector v of the 17 cases the strength of the spherical t-design is always
the same for all main full dimensional Delaunay polytopes. In particular,
for vectors of type 2, 3, 4, and 632 the main Delaunay polytopes P define
spherical t-designs for ¢t = 7, 5, 3 and 2. Our proof was obtained by direct
computation and it would be interesting to have a less computational proof,
for example, using modular forms in the spirit of the theory of strongly
perfect lattices explained in [34].

Theorem 4.1. Let D be the 22-dimensional Delaunay cell D(ve.22,1,4)
with 891 vertices.

(i) D affinely generates the 22-dimensional lattice Aga.
(ii) We have | Aut Ago| = 6| Aut D).

Proof. The lattice L(D) is computed by simple linear algebra computation.
Then the isomorphism with Ags is established by using the program ISOM
of Plesken and Souvignier [30].

The automorphism group of Aut Asgy is computed by the program AUTO
from the same package. The automorphism group of D is computed by the
algorithms explained in [12]. O
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For all other known perfect Delaunay polytopes D in a lattice L we have
| Aut L| = | Aut D| if D is centrally symmetric and | Aut L| = 2| Aut D] if
D is antisymmetric.

Theorem 4.2. (i) The perfect main Delaunay polytopes D(vs,1,2) and
D(vs,1,3) are still Delaunay polytopes in the superlattices Aag(vs,2) and
A24(vs, 3) of index 1 and 3.

(it) The polytopes D(v2,1,1), D(v4,1,2), D(ve;3,2,1,3) and D(vs.a2,1,4)
are antisymmetric, have den(c(D)) = 4 and admit a centrally symmetric
extension in a superlattice of index 2.

Proof. For each given example in (i) and (ii), we consider the corresponding
lattices and compute the closest vector problem. O

Note that in [14] we obtained Delaunay polytopes with the same property
by a different method. Above property (i), respectively (ii), is a direct
analog of the relation between the set of minimal vectors of the pair of
perfect lattices Ag C A2 with MinAg = MinA2 [6] and Dg C Eg with
Min Dg C Min Eg

Theorem 4.3. The polytopes D(vs,1,1) and D(vs,1,2) have lamination
number 5.

Proof. Let us assume that {(D) < 4 for D = D(vs,1,1) or D(vs,1,2). This
means that we can find a 22-dimensional sublattice L’ and four vectors wy,
wo, w3, wy such that the layers L; = w; + L’ cover vert D.

We checked with a computer that L(D) = Ag4(v3), i.e., the difference vec-
tors of vert D generate Agq(v3). There exists a linear function f on Agy(v3)
such that L' = ker f and f(A24(v3)) = Z. We define an index 2 sublattice

LYy = {w € Agy(vs) such that f(w) € 2Z}

of Agy(v3) and take w € Agy(v3) such that f(w) = 1. It is not possible for
LY or w + L to contain all four layers w; + L' since if it were so, then D
would not be generating. So, Ly N D or (w + L)) N D contains at most 2
layers. If one of them contains just one layer, then it is of dimension at most
22. By enumerating all index 2 sublattices of Agg(v3) we found that L, N D
and (w4 L5)N D are always 23-dimensional. So, L5ND and (w+ L5)ND are
contained in two layers and thus have lamination number 2. We enumerated
their 2-laminations by using the same method as in Theorem 3.1 and found
that each 2-lamination of L5 N D, respectively (w + L5) N D, induces a
lamination of (w + L5) N D, respectively L5 N D with at least three layers.
So, the lamination number of D is 5. O

5. Construction of Perfect Delaunay Polytopes by Lamination

In [10, Lemma 15.3.7], [25], [15], [23] a construction of centrally symmet-
ric Delaunay (n 4 1)-polytopes from antisymmetric Delaunay n-polytopes
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is considered. Here we reconsider this construction and completely classify
the types of Delaunay polytopes that one can obtain.

Definition. Let D be a n-dimensional Delaunay polytope of circumcenter
c in a lattice L C R™t1,

Define e, 11 € R" s.t. ¢ — (epy1 — ¢) is orthogonal to L ® R and § is
the distance between L ® R and ep4+1 + L ® R.

Define L() = L + Zepy1.

We choose ¢ — (e,+1 — ¢) orthogonal to L ® R in order for vert D and
en+1 — vert D to lie on a common sphere. For § > 0 there are in fact two
possible choices for e,11 but they are actually isometrically equivalent.

Theorem 5.1. Let D be a Delaunay polytope in a n-dimensional lattice
L of center c. Fori € Z, define D; = Dr((1 — 2i)c) and denote by r; the
common distance between (1 — 2i)c and vertices of D;. Either:

(i) For all i, r; > ro. Then L(0) is an index 2 superlattice of L such
that D' = Dy 0)(c) is a centrally symmetric Delaunay n-polytope
containing D U (2¢ — D) with perfrank D" < perfrank D.

(ii) Or there exists i such that r; < 19. Then there exists 65 > 0
such that D' = Dy s,)(c') with ¢ = Sent1 is a centrally sym-
metric Delaunay (n + 1)-polytope containing D U (2¢' — D) with
perfrank D’ < perfrank D.

ri(9) = \/ri—{—é(i—;)Q
1

and ¢’ = je,41. The sphere circumscribing D and e,y1 — D is S(¢,70(9))
and we have rg(0) = r1(d). For i € Z, the set of closest points in layer
L+ e, to d is

Proof. Define

Si(c) = ieny1 + vert Dp((1 — 2i)c)

and the common distance to ¢ is 7;(§). If there exists an index i such that
r; < ro then there exists §; > 0 such that r;(6;) = ro(d;) and S;(c) is
outside of S(c,7¢(0)) if and only if 6 > ;. If one takes §; = max;cyz §; then
S(c/,ro(0)) is an empty sphere if and only if 6 > 05 and D" = S(¢,79(d)) N
L(9) has more than two layers if and only if § = ;. In that case L(d;) is
determined by L and thus perfrank D’ < perfrank D.

On the other hand, if for all i r; > 7 then ds = 0 and L(0) is actually an
n-dimensional superlattice of L. We have perfrank D’ < perfrank D since
D’ has more vertices than D. g

If a Delaunay polytope falls into case (i) then we say that this Delaunay
polytope is of the first type and otherwise it is of the second type.
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Theorem 5.2. Let D be a Delaunay polytope of the first type and define
for & > 0 the polyhedron

Dy = conv Vo with Ve = U (ient1 + vert D;),
i€Z 8.t. ri=ro

The following holds:

(i) Vi C L(5),

(it) Vey is contained in a cylinder C,

(iii) Ve is arithmetically equivalent to the product vert D' x Z where D’
is the n-dimensional Delaunay polytope of case (i) in Theorem 5.1.

Proof. (i) and (ii) are clear. Let us write L(J) = Zvy + - - - + Zv, 41 and take
a function f € Ez(n + 1) such that f(z) =0 if and only if >, x;v; € C and
f(z) > 0 for z ¢ L(5) NC. The quadratic form of f is positive semidefinite
and has a kernel of rank 1. By [21, Corollary 2.5] the set of z € Z"*!
such that f(z) = 0 is of the form R + L with L a lattice of dimension 1
and R affinely equivalent to a n-dimensional Delaunay polytope. So, V. is
arithmetically equivalent to vert Dy x Z with Dy a Delaunay polytope. By
projecting Dy on R™ we get actually D’ which proves (iii). O

Corollary 5.1. Take D a Delaunay polytope of a lattice L of center c.
(i) If den(c) = 2 or 4 then D s of first type.
(ii) If den(c) is odd then D is of second type.

Proof. If den(c) = 2 then D is centrally symmetric and thus of the first
type. If den(c) = 4, then D is antisymmetric and therefore —D is also a
Delaunay polytope. Thus when den(c) = 4 there is a Delaunay polytope
centered at 3c; r; = rg for all i € Z and by Theorem 5.1 D is of first type.
If den(c) is odd then there exists an index ¢ such that (1 — 2i)c € L and
thus r; = 0. So, by Theorem 5.1 D is of second type. O

Table 4.1 gives many perfect Delaunay polytopes D with den(c(D))
odd, and which are thus of second type. It was an interesting open ques-
tion whether there exist Delaunay polytopes of first type, which are anti-
symmetric. Theorem 4.2.(ii) gives four perfect Delaunay polytope D with
den(c(D)) = 4 which are thus of first type and antisymmetric.

Using the method of [18], we obtained 100000 perfect Delaunay polytopes
in dimension 9. All the ones of first type were centrally symmetric. All the
centrally symmetric ones were obtained by the construction of Theorem 5.1
but we think that this is not the case in a large enough dimension.
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