
William D. BANKS, Ahmet M. GÜLOĞLU et Robert C. VAUGHAN
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Waring’s problem for Beatty sequences
and a local to global principle

par William D. BANKS, Ahmet M. GÜLOĞLU
et Robert C. VAUGHAN

Résumé. Nous examinons de façons diverses la représentation
d’un grand nombre entier N comme somme de s entiers posi-
tifs qui sont tous des puissances k-ième de termes d’une suite de
Beatty donnée. Entre autres, une forme très générale du principe
local-global est établie dans la théorie additive des nombres. La
démonstration est courte mais elle utilise un théorème profond de
M. Kneser.

Abstract. We investigate in various ways the representation
of a large natural number N as a sum of s positive k-th powers
of numbers from a fixed Beatty sequence. Inter alia, a very gen-
eral form of the local to global principle is established in additive
number theory. Although the proof is very short, it depends on a
deep theorem of M. Kneser.

1. Introduction

The initial motivation for the work described in this memoir was the
investigation of a variant of Waring’s problem for Beatty sequences. In the
process, however, a fundamental version of the local to global principle was
established.

Given a set A of positive integers, the lower asymptotic density of A is
the quantity

d(A) = lim inf
X→∞

#A(X)
X

,

where A(X) = A ∩ [1, X]. For any natural number s, we denote the s-fold
sumset of A by

sA = A+ · · ·+A︸ ︷︷ ︸
s copies

=
{
a1 + · · ·+ as : a1, . . . , as ∈ A

}
.

The following very general form of the local to global principle has many
applications in additive number theory.

Manuscrit reçu le 16 mars 2012, accepté le 16 avril 2013.
Classification math. 11P05.
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Theorem 1.1. Suppose that there are numbers s1, s2 such that
(i) For all s > s1 and m,n ∈ N, the sumset sA has at least one element

in the arithmetic progression n mod m;
(ii) The sumset s2A has positive lower asymptotic density: d(s2A) > 0.

Then, there is a number s0 with the property that for any s > s0 the sumset
sA contains all but finitely many natural numbers.

Although the proof of Theorem 1.1 is very short (see §2 below), it relies
on a deep and remarkable theorem of M. Kneser; see Halberstam and Roth
[4, Chapter I, Theorem 18].

Theorem 1.1 has several interesting consequences. The following result
(proved in §3) provides an affirmative answer in many instances to the
question as to whether a given set of primes P is an asymptotic additive
basis for N.
Theorem 1.2. Let P be a set of prime numbers with

lim inf
X→∞

#P(X)
X/ logX > 0.

Suppose that there is a number s1 such that for all s > s1 and m,n ∈ N,
the congruence

p1 + · · ·+ ps ≡ n (mod m)
has a solution with p1, . . . , ps ∈ P. Then, there is a number s0 with the
property that for any s > s0 the equation

p1 + · · ·+ ps = N

has a solution with p1, . . . , ps ∈ P for all but finitely many N ∈ N.
In 1770, Waring [17] asserted without proof that every natural number

is the sum of at most four squares, nine cubes, nineteen biquadrates, and
so on. In 1909, Hilbert [5] proved the existence of an s0(k) such that for
all s > s0(k) every natural number is the sum of at most s0(k) positive
k-th powers. The following result (proved in §3), which we deduce from
Theorem 1.1, can be used to obtain many variants of the Hilbert–Waring
theorem.
Theorem 1.3. Let k ∈ N, and let B be a set of natural numbers with
d(B) > 0. Suppose that there is a number s1 such that for all s > s1 and
m,n ∈ N, the congruence

bk1 + · · ·+ bks ≡ n (mod m)
has a solution with b1, . . . , bs ∈ B. Then, there is a number s0 with the
property that for any s > s0 the equation

bk1 + · · ·+ bks = N

has a solution with b1, . . . , bs ∈ B for all but finitely many N ∈ N.
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Our work in the present paper was originally motivated by a desire to
establish a variant of the Hilbert–Waring theorem with numbers from a
fixed Beatty sequence. More precisely, for fixed α, β ∈ R with α > 1, we
studied the problem of representing every sufficiently large natural number
N as a sum of s positive k-th powers chosen from the non-homogeneous
Beatty sequence defined by

Bα,β =
{
n ∈ N : n = bαm+ βc for some m ∈ Z

}
.

Beatty sequences appear in a variety of apparently unrelated mathematical
settings, and the arithmetic properties of these sequences have been exten-
sively explored in the literature. In the case that α is irrational, the Beatty
sequence Bα,β is distributed evenly over the congruence classes of any fixed
modulus. As the congruence

xk1 + · · ·+ xks ≡ n (mod m)
admits an integer solution for all m,n ∈ N provided that s is large enough
(this follows from the Hilbert–Waring theorem but can be proved directly
using Lemmas 2.13 and 2.15 of Vaughan [11] and the Chinese Remainder
Theorem; see also Davenport [2, Chapter 5]), it follows that the congruence
condition of Theorem 1.3 is easily satisfied. Since d(Bα,β) = α−1 > 0,
Theorem 1.3 yields the following corollary.

Corollary 1.1. Fix α, β ∈ R with α > 1, and suppose that α is irrational.
Then, there is a number s0 with the property that for any s > s0 the equation

bk1 + · · ·+ bks = N

has a solution with b1, . . . , bs ∈ Bα,β for all but finitely many N ∈ N.

Of course, the value of s0 depends on α and a priori could be inordinately
large for general α. However, by utilising the power of the Hardy–Littlewood
method we obtain the asymptotic formula for the number of solutions and
show the existence of some solutions for a reasonably small value of s0 that
depends only on k.

Theorem 1.4. Fix α, β ∈ R with α > 1, and suppose that α is irrational.
Suppose further that k > 2 and that

s >


2k + 1 if 2 6 k 6 5,
57 if k = 6,
2k2 + 2k − 1 if k > 7.

Then, the number R(N) of representations of N as a sum of s positive k-th
powers of members of the Beatty sequence Bα,β satisfies

R(N) ∼ α−sΓ(1 + 1/k)sΓ(s/k)−1S(N)N s/k−1 (N →∞),
where S(N) is the singular series in the classical Waring’s problem.
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By [11, Theorems 4.3 and 4.6] the singular series S satisfies S(N) � 1
for the permissible values of s in the theorem.

The lower bound demands on s can be significantly reduced by asking
only for the existence of solutions for all large N .

Theorem 1.5. Fix α, β ∈ R with α > 1, and suppose that α is irrational.
Then, there is a function H(k) which satisfies

H(k) ∼ k log k (k →∞)
such that if k > 2 and s > H(k), then every sufficiently large N can be
represented as a sum of s positive k-th powers of members of the Beatty
sequence Bα,β.

In the interests of clarity of exposition, we have made no effort to opti-
mise the methods employed. Certainly many refinements are possible. For
instance, in the range 5 6 k 6 20 it would be possible to give explicit values
for the function H(k) by extracting the relevant bounds for Lemma 4.2 be-
low from Vaughan and Wooley [13, 14, 15, 16], and doubtless the exponent
4k of S(ϑ) can be replaced by 2 with some reasonable effort.

1.1. Notation. The notation ‖x‖ is used to denote the distance from the
real number x to the nearest integer, that is,

‖x‖ = min
n∈Z
|x− n| (x ∈ R).

We denote by {x} the fractional part of x. We put e(x) = e2πix for all x ∈ R.
Throughout the paper, we assume that k and n are natural numbers with
k > 2.

For any finite set S, we denote by #S the number of elements in S.
In what follows, any implied constants in the symbols � and O may

depend on the parameters α, β, k, s, ε, η but are absolute otherwise. We
recall that for functions F and G with G > 0 the notations F � G and
F = O(G) are equivalent to the statement that the inequality |F | 6 cG
holds for some constant c > 0. If F > 0 also, then F � G is equivalent to
G� F . We also write F � G to indicate that F � G and G� F .

2. The proof of Theorem 1.1

Let δs = d(sA) for each s. Note that hypothesis (ii) implies that δs > 0
for all s > s2. We now suppose that s = max(s1, s2) and appeal to Kneser’s
theorem in the form given in [4, §1, Theorem 18]; we conclude that for each
t = 1, 2, . . . , either (case 1) δts > t δs or (case 2) there is a set of integers A′
which is worse than Ats and degenerate mod g′ for some positive integer
g′ (here, worse means that Ats ⊂ A′ and that the sets Ats and A′ coincide
from some point onwards, and degenerate mod g′ means that A′ is a union
of residue classes to some modulus g′). Since δs > 0 and δts 6 1 it follows
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that case 2 must occur if t is large enough. Let t be fixed with this property.
As ts > ts1 > s1, from the definition of s1 we see that for arbitrary h, m
and n the residue class h+mg′ mod ng′ intersects Ats. By a judicious choice
of m and n there will be a sufficiently large element of Ats in the residue
class h + mg′ mod ng′, and this element will also lie in A′. Clearly, this
element also lies in the residue class h mod g′. Since h is arbitrary and A′
is degenerate mod g′, it follows that A′ = Z. But Ats and A′ coincide from
some point onwards, and therefore, Ats contains every sufficiently large
positive integer.

3. The proofs of Theorems 1.2 and 1.3

For any set S ⊂ N, let Rs(n;S) be the number of s-tuples (a1, . . . , as)
with entries in S for which a1 + · · ·+ as = n.

To prove Theorem 1.3 we specialise the set A in Theorem 1.1 to be the
set of k-th powers of elements of B. Let A∗ denote the set of k-th powers
of all natural numbers, and suppose that s > 2k. Using Theorem 2.6 and
(2.19) of [11] we have

Rs(n;A) 6 Rs(n;A∗)� ns/k−1.

Also, the hypothesis d(B) > 0 implies that

#A(N/s) = #B((N/s)1/k)� (N/s)1/k � N1/k

provided that (N/s)1/k is no smaller than the least element of B. Thus, if
we write As(N) = #(sA ∩ [1, N ]), then for such N we have

N s/k � (#A(N/s))s 6
N∑
n=1

Rs(n;A)� As(N)N s/k−1.

We can conclude the proof by observing that the congruence condition in
Theorem 1.1 is immediate from that in Theorem 1.3.

Theorem 1.2 can be established in the same way. It suffices to show that
if P∗ is the set of all primes, then for some s we have

Rs(n;P∗)� ns−1(log 2n)−s (n ∈ N).

When s = 3 this is immediate from Theorem 3 and (3.15) in Chapter 3
of [11], and it would also follow rather easily from a standard application
of sieve theory, although none of the standard texts establish the required
result explicitly. Alternatively, the standard sieve bound

R2(n;P∗)� n2

ϕ(n)(log 2n)2 (n ∈ N)

(which follows from Halberstam and Richert [3, Corollary 2.3.5], for exam-
ple) and a simple application of Cauchy’s inequality show that d(2P) > 0.
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4. The generating functions

The rest of this memoir is devoted to the study of the special case of sums
of k-th powers of members of a Beatty sequence via the Hardy–Littlewood
method. Let

B(P ) =
{
n ∈ Bα,β : n 6 P

}
,

A(P,R) =
{
n 6 P : p | n =⇒ p 6 R

}
,

and put

S(ϑ) =
∑

n∈B(P )
e(ϑnk), T (ϑ) =

∑
n6P

e(ϑnk),

U(ϑ) =
∑

n∈A(P,R)∩B(P )
e(ϑnk), V (ϑ) =

∑
n∈A(P,R)

e(ϑnk),

Lemma 4.1. Suppose that t satisfies

t >


3 if k = 2,
2k−1 if 3 6 k 6 5,
56 if k = 6,
2k2 + 2k − 2 if k > 7.

If F is one of S, U or V , then∫ 1

0
|F (ϑ)|2t dϑ 6

∫ 1

0
|T (ϑ)|2t dϑ� P 2t−k.

Proof. When k = 2 the bound on
∫ 1

0 |T (ϑ)|2t dϑ follows from a standard
application of the Hardy–Littlewood method, when k = 3 from Vaughan
[8, Theorem 2], when k = 4 or 5 from Vaughan [9], when k = 6 from Boklan
[1], and when k > 7 from Wooley [18, Corollary 4] and a routine application
of the Hardy–Littlewood method. The proof is completed by interpreting
each integral as the number of solutions of the diophantine equation

xk1 + · · ·+ xkt = xkt+1 + · · ·+ xk2t

with the xj lying in B(P ), N∩[1, P ],A(P,R)∩B(P ) orA(P,R), respectively.
�

Lemma 4.2. There is a number η > 0 and a function H1(k) such that

H1(k) ∼ k log k (k →∞)

with the property that whenever 2t > H1(k) and R = P η we have∫ 1

0
|S(ϑ)4kU(ϑ)2t| dϑ 6

∫ 1

0
|T (ϑ)4kV (ϑ)2t| dϑ� P 2t+3k.
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Proof. In view of Lemma 4.1, it can be supposed that k > k0 for a suitable
k0. According to [11, Theorem 12.4] we have∫ 1

0
|V (ϑ)|2s dϑ� P λs+ε,

where
λs = 2s− k + k exp(1− 2s/k).

Let m denote the set of numbers ϑ ∈ [0, 1] such that if |ϑ−a/q| 6 q−1P 3/4−k

and (a, q) = 1, then q > P 3/4; let M = [0, 1]\m. Then, by [10, Theorem 1.8]
we have

sup
ϑ∈m
|V (ϑ)| � P 1−σk+ε,

where
σk = max

n∈N
n>2

1
4n
(
1− (k − 2)(1− 1/k)n−2).

Note that
σk ∼

1
4k log k (k →∞).

We now put
s = b1

2k log k + k log log kc+ 1 and t = s+ k.

Then, ∫
m
|V (ϑ)|2t dϑ� P 2t−k+µk+ε,

where
µk = k exp(1− 2s/k)− 2kσk < e(log k)−2 − 2kσk < 0

provided that k > k0. Hence∫
m
|T (ϑ)4kV (ϑ)2t| dϑ� P 2t+3k.

By the methods of [11, Chapter 4] we also have∫
M
|T (ϑ)4kV (ϑ)2t| dϑ� P 2t

∫
M
|T (ϑ)|4k dϑ� P 2t+3k,

and the lemma is proved. �

In what follows, we denote

S(q, a) =
q∑

m=1
e(amk/q) and I(φ) =

∫ P

0
e(φxk) dx.

Lemma 4.3. Suppose that α is irrational. Then, for every real number
P > 1 there is a number Q = Q(P ) such that

(i) Q 6 P 1/2;
(ii) Q→∞ as P →∞;
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(iii) Let m denote the set of real numbers ϑ with the property that q > Q
whenever the inequality |ϑ− a/q| 6 Qq−1P−k holds with (a, q) = 1.
Then,

S(ϑ)� PQ−1/k (ϑ ∈ m);
(iv) If q 6 Q, |ϑ− a/q| 6 Qq−1P−k, and (a, q) = 1, then

S(ϑ) = α−1q−1S(q, a)I(ϑ− a/q) +O(PQ−1/k).

Proof. Since α 6∈ Q, there is at most one pair of integers m,n such that
n = αm+β and at most one pair such that n = αm+β− 1. For any other
value of n we have
n = bαm+ βc for some m ⇐⇒ 1− α−1 < {α−1(n− β)} < 1.

Let Ψ(x) = x − bxc − 1
2 for all x ∈ R; then Ψ is periodic with period one,

and for x ∈ [0, 1) we have

α−1 + Ψ(x)−Ψ(x+ α−1) =


1 if 1− α−1 < x < 1,
0 if 0 < x < 1− α−1,
1
2 if x = 0 or x = 1− α−1.

Consequently,

S(ϑ) = α−1T (ϑ)+
∑
n6P

(
Ψ(α−1(n− β))−Ψ(α−1(n− β + 1))

)
e(ϑnk)+O(1).

Now let
(4.1) T (ϑ, φ) =

∑
n6P

e(ϑnk + φn)

and
W (φ) =

∑
n6P

min
{
1, H−1‖α−1n− φ‖−1},

where H is a positive parameter to be determined below. By Montgomery
and Vaughan [6, Lemma D.1] we have

S(ϑ) = α−1T (ϑ)−
∑

0<|h|6H

e(α−1(1− β)h)− e(−α−1βh)
2πih T (ϑ, α−1h)

+O
(
1 +W (α−1β) +W (α−1(β − 1))

)
.

Choose r = r(P ) maximal and b so that

(4.2) (b, r) = 1, |α−1−b/r| 6 r−2 and r2|α−1−b/r|−1 6 P 1/4.

This is possible if P is large enough. Indeed, by Dirichlet’s theorem on
diophantine approximation, or by the theory of continued fractions, there
are infinitely many coprime pairs b, r that satisfy the first inequality, and
at least one of the pairs will satisfy the second inequality if P is sufficiently
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large. Moreover, the two inequalities together imply that r 6 P 1/16, so the
maximal r exists. Note that r = r(P ) tends to infinity as P → ∞ since
α is irrational. Let ξ = α−1r2 − br, choose c so that |φr − c| 6 1

2 , put
η = φr − c, and for every n 6 P write n = ur + v with −r/2 < v 6 r/2
and 0 6 u 6 1 + P/r. For any given u, let w be an integer closest to uξ,
and put κ = uξ − w. Then,

W (φ) =
∑
u,v

min
{
1, H−1‖α−1(ur + v)− φ‖−1}.

Moreover,

α−1(ur + v)− φ = ub+ vb+ w − c
r

+ κ

r
+ vξ

r2 −
η

r
,

and for any given u we have∥∥∥α−1(ur + v)− φ
∥∥∥ > ∥∥∥∥vb+ w − c

r

∥∥∥∥− 3
2r .

Hence the contribution to W from any fixed u is

� 1 +H−1r log r,

and so summing over all u we derive the bound

W (φ)� Pr−1 + PH−1 log r.

The choice H = r1/3 leads to

S(ϑ) = α−1T (ϑ)−
∑

0<|h|6r1/3

e(α−1(1− β)h)− e(−α−1βh)
2πih T (ϑ, α−1h)

+O
(
Pr−1/4).

(4.3)

The error term here is acceptable provided that Q 6 r1/4.
Next, we show that the sum over h is � PQ−1 provided that Q =

Q(P ) grows sufficiently slowly. Choose a, q with (a, q) = 1 such that the
inequalities |ϑ− a/q| 6 q−1P

1
2−k and q 6 P k−

1
2 hold. By [11, Lemma 2.4],

whenever q > P 1/2 there is a δ = δ(k) > 0 such that

T (ϑ, φ)� P 1−δ (φ ∈ R).

Since T (ϑ) = T (ϑ, 0) and r 6 P 1/16, we derive the bound

S(ϑ)� P 1−δ logP + Pr−1/4 � PQ−1

provided that Q 6 min
{
P δ/ logP, r1/4}, and we are done in this case.
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Now suppose that q 6 P 1/2. We have

T (ϑ, α−1h) =
q∑

m=1
e(amk/q)

∑
n6P

n≡m (mod q)

e((ϑ− a/q)nk + α−1hn)

= q−1 ∑
hq
α
− q2<`6

hq
α

+ q
2

S(q, a, `)
∑
n6P

e
(
(ϑ− a/q)nk + (α−1h− `/q)n

)
,

where

S(q, a, `) =
q∑

m=1
e(amk/q + `m/q).

Let g be the polynomial
g(x) = (ϑ− a/q)xk + (α−1h− `/q)x.

For 0 6 x 6 P and hq
α −

q
2 < ` 6 hq

α + q
2 it is easy to verify that

|g′(x)| 6 kq−1P−1/2 + 1
2 <

3
4

if P is large enough. Hence, by Titchmarsh [7, Lemma 4.8] we see that

(4.4)
∑
n6P

e
(
(ϑ− a/q)nk + (α−1h− `/q)n

)
=
∫ P

0
e(g(x))dx+O(1).

In the case that |α−1h− `/q| > 1/(2q), we have

|g′(x)| > |α−1h− `/q| − kq−1P−1/2 � |α−1h− `/q|,
and therefore by [7, Lemma 4.2] the integral in (4.4) is

� |α−1h− `/q|−1.

Also, we have trivially |S(q, a, `)| 6 q. Thus, the total contribution to
T (ϑ, α−1h) from the numbers ` with |α−1h− `/q| > 1/(2q) is

�
∑
`

|α−1h−`/q|>1/(2q)

|α−1h− `/q|−1 � q log q,

and summing over h with 0 < |h| 6 r1/3 the overall contribution to the
sum in (4.3) is

� q log q · log r � P 3/4,

which is acceptable.
Next, let ` be a number for which |α−1h− `/q| < 1/(2q); note that there

is at most one such ` for each h. Since (a, q) = 1, by [11, Theorem 7.1] we
have that S(q, a, `)� q1−1/k+ε. Hence the total contribution to the sum in
(4.3) from such an ` is � q−1/k+εP log r. When q > r1/3 this is sufficient
provided that Q 6 r1/4. Now suppose that q 6 r1/3. Since α is irrational
and r is large, we have b 6= 0 by (4.2), and we claim that hb/r 6= `/q.
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Indeed, suppose on the contrary that hbq = r`. Then b | `, and we can
write ` = mb, and hq = rm. Since h 6= 0, it follows that m 6= 0. But this is
impossible since |h|q 6 r2/3, and the claim is proved. Therefore, using (4.2)
again, we have

|α−1h− `/q| =
∣∣hb/r − `/q + h(α−1 − b/r)

∣∣
>
∣∣hb/r − `/q∣∣− |h|r−2 > (rq)−1 − r−5/3 � (rq)−1.

Arguing as before, we see that |g′(x)| � (rq)−1, the integral in (4.4) is
� rq, and therefore T (ϑ, α−1h) � q1−1/k+εr for each h associated with
such an `; hence the total contribution to the sum in (4.3) is

� q1−1/k+εr log r � r4/3 6 P 1/12.

It remains only to deal with the single term
α−1T (ϑ).

By [11, Theorem 4.1] we have

α−1T (ϑ) = α−1q−1S(q, a)I(ϑ− a/q) +O(q),

and since q 6 P 1/2 the error term here is acceptable. By [11, Lemma 2.8],

I(ϑ− a/q)� min(P, |ϑ− a/q|−1/k)
and by [11, Theorem 4.2] we have

S(q, a)� q1−1/k.

Hence, if q > Q or |ϑ− a/q| > Q/(qP k) we see that

α−1T (ϑ)� PQ−1/k.

The only remaining ϑ to be considered are those for which there exist
coprime integers a, q with q 6 Q and |ϑ− a/q| 6 Qq−1P−k. Thus, we have
shown that for all ϑ in m the desired bound holds. For the remaining ϑ, we
have established that (iv) holds as required. �

For ϕ ∈ R and a parameter A > 1 at our disposal which will eventually
be chosen as a function of ε (only), define

f−(ϕ) = max
{
0, (A+ 1)(1− 2α‖1− 1

2α − ϕ‖)
}

−max
{
0, A− 2α(A+ 1)‖1− 1

2α − ϕ‖
}
,

f+(ϕ) = max
{
0, A+ 1− 2αA‖1− 1

2α − ϕ‖
}

−max
{
0, A(1− 2α‖1− 1

2α − ϕ‖)
}
.

Let
(4.5) S±(ϑ) =

∑
n6P

f±((n− β)/α)e(ϑn2).
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The functions f± respectively minorize and majorize the characteristic func-
tion of the set [1− 1/α, 1] mod 1. Thus, following the discussion in the first
paragraph of the proof of Lemma 4.3, with the choice P = N1/2 we have

(4.6)
∫ 1

0
S−(ϑ)se(−ϑN)dϑ 6 R(N) 6

∫ 1

0
S+(ϑ)se(−ϑN)dϑ

in the case that k = 2. The functions f± have Fourier expansions

(4.7) f±(ϕ) =
∞∑

h=−∞
c±(h)e(hϕ)

whose coefficients are given by

(4.8) c−(0) = α−1
(

1− 1
2(A+ 1)

)
, c+(0) = α−1

(
1 + 1

2A

)
,

and for any h 6= 0,

c−(h) =
e(1

2α
−1h)(A+ 1)α
π2h2

(
cos πα

−1hA

A+ 1 − cosπα−1h

)
,

c+(h) =
e(1

2α
−1h)Aα
π2h2

(
cosπα−1h− cos πα

−1h(A+ 1)
A

)
.

Note that

(4.9) c±(h)� h−2Aα (h 6= 0).

Lemma 4.4. Suppose that (a, q) = 1 and |ϑq − a| 6 P−1. Then

S±(ϑ)� Aα

(
P

(q + P 2|ϑq − a|)1/2 + q1/2
)
.

Proof. By (4.1), (4.5) and (4.7),

S±(ϑ) =
∞∑

h=−∞
c±(h)e(−hβ/α)T (ϑ, h/α).

The conclusion then follows from (4.9) and Vaughan [12, Theorem 5]. �

Lemma 4.5. Suppose that α is irrational. Then, for every real number
P > 1 there is a number Q = Q(P ) such that

(i) Q 6 P 1/2;
(ii) Q→∞ as P →∞;

(iii) For any coprime integers a, q with q 6 Q and |ϑ−a/q| 6 Qq−1P−2

we have

S±(ϑ) = c±(0)q−1S(q, a)I(ϑ− a/q) +O(PQ−1/2).

Proof. This can be established in the same way as Lemma 4.3. �
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5. The proofs of Theorems 1.4 and 1.5

When k > 2, Theorem 1.4 follows from Lemmas 4.1 and 4.3 by a routine
application of the Hardy–Littlewood method.

When k = 2, let Q be as in Lemma 4.5. Now define

M(q, a) = {ϑ : |ϑ− a/q| 6 Qq−1P−2}

and let M denote the union of the M(q, a) with 1 6 a 6 q 6 Q and
(a, q) = 1. Put m = [QP−2, 1 +QP−2]\M, so that m ⊂ [QP−2, 1−QP−2).
Now for any ϑ ∈ m we choose coprime integers a, q with 1 6 a 6 q 6 P
and |ϑ − a/q| 6 q−1P−1. Note that, by the definition of m, the inequality
|ϑ−a/q| > q−1P−1 holds if q 6 Q. By Lemma 4.4, whenever s > 5 we have∫

m
|S±(ϑ)|sdϑ�

∑
q6Q

q

∫ 1/(qP )

Qq−1P−2
(Aα)s

(
q−s/2ϕ−s/2 + qs/2

)
dϕ

+
∑

Q<q6P

q

∫ 1/(qP )

0
(Aα)s

(
P s(q + P 2qϕ)−s/2 + qs/2

)
dϕ

� (Aα)s
∑
q6Q

(
P s−2Q1−s/2 + P−1qs/2

)
+ (Aα)s

∑
Q<q6P

(
q1−s/2P s−2 + P−1qs/2

)
� (Aα)s

(
Q−1/2P s−2 + P s/2

)
� α−sP s−2Q−1/4.

Choosing P = N1/2, a routine application of Lemma 4.5 shows that∫
M
S±(ϑ)se(−Nϑ)dϑ

= c±(0)Γ(3/2)sΓ(s/2)−1S(N)N s/2−1 +O(N s/2−1Q−1/4).

Now suppose that A = 1/ε, where ε is positive but small. Then, by (4.6)
and (4.8) it follows that

R(N) = α−sΓ(3/2)sΓ(s/2)−1S(N)N s/2−1 +O(εN s/2−1) (N > N0(ε)),

and this completes the proof of Theorem 1.4.
To prove Theorem 1.5 we take P = N1/k, R and t as in Lemma 4.2 and

consider the number R(N) of representations of N in the form

N = xk1 + · · ·+ xk4k+1 + yk1 + · · ·+ yk2t

with x1, . . . , x4k+1 ∈ B(P ) and y1, . . . , y2t ∈ A(P,R) ∩ B(P ). Clearly,

R(N) =
∫ 1

0
S(ϑ)4k+1U(ϑ)2te(−Nϑ) dϑ.



14 William D. Banks, Ahmet M. Güloğlu, Robert C. Vaughan

Let M(q, a) denote the set of ϑ with |ϑ − a/q| 6 Qq−1P−k, let M be the
union of all such intervals with 1 6 a 6 q 6 Q and (a, q) = 1, and put
m = (QP−k, 1 +QP−k] \M. By Lemmas 4.2 and 4.3 we have∫

m
|S(ϑ)4k+1U(ϑ)2t| dϑ� P 3k+2t+1Q−1/k.

Let

Z(ϑ) =
{
α−1q−1S(q, a)I(ϑ− a/q) if ϑ ∈M(q, a),
0 if ϑ ∈ m.

Then, by (iv) of Lemma 4.3 and a routine argument we have∫
M
S(ϑ)4k+1U(ϑ)2te(−Nϑ) dϑ

=
∫ 1+QP−k

QP−k
Z(ϑ)4k+1U(ϑ)2te(−Nϑ) dϑ+O(P 3k+2t+1Q−1/k).

By the methods of [11, Chapter 4] we have∫ 1+QP−k

QP−k
Z(ϑ)4k+1e(−mϑ) dϑ

= α−4k−1 Γ(1 + 1/k)4k+1

Γ(4 + 1/k) m3+1/kS(m) +O(P 3k+1Q−1/k)

uniformly for 1 6 m 6 N , and∫ 1+QP−k

QP−k
Z(ϑ)4k+1e(−mϑ) dϑ� P 3k+1Q−1/k

uniformly for m 6 0. Here S is the usual singular series associated with
Waring’s problem; note thatS(m) � 1. Therefore, using ∆y1,...,y2t to denote
the quantity N − yk1 − · · · − yk2t we have∫ 1+QP−k

QP−k
Z(ϑ)4k+1U(ϑ)2te(−Nϑ) dϑ

=
∑

y1,...,y2t

α−4k−1 Γ(1 + 1/k)4k+1

Γ(4 + 1/k) (∆y1,...,y2t)3+1/kS(∆y1,...,y2t)

+O(P 3k+2t+1Q−1/k),

where the sum runs over y1, . . . , y2t ∈ B(P ) with (∆y1,...,y2t)3+1/k > 0. By
restricting to those y1, . . . , y2t that do not exceed P/(4t), one sees that

R(N)� N3+1/k+2t/k

if N is sufficiently large, and this completes the proof of Theorem 1.5.
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