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Perfect unary forms over real quadratic fields

par DAN YASAKI

RESUME.  Soit F' = Q(v/d) un corps quadratique réel avec an-
neau d’entiers . Dans cet article, nous analysons le nombre hy
de GL1(O)-orbites de classes d’homothétie des formes parfaites
unaires sur I’ en fonction de d. Nous calculons hy exactement
pour d < 200000, sans carré. En reliant les formes parfaites aux
fractions continues, nous donnons des bornes sur hy et répondons
a certaines questions de Watanabe, Yano et Hayashi.

ABSTRACT. Let F = Q(v/d) be a real quadratic field with ring
of integers O. In this paper we analyze the number hg of GL1(O)-
orbits of homothety classes of perfect unary forms over F as a
function of d. We compute hy exactly for square-free d < 200000.
By relating perfect forms to continued fractions, we give bounds
on hg and address some questions raised by Watanabe, Yano, and
Hayashi.

1. Introduction

The study of n-ary quadratic forms over the rational numbers is classical.
Work of Minkowski and Voronoi brought a more geometric viewpoint, and
the study of arithmetic minima of quadratic forms could be viewed as a
study of lattice sphere packings. Perfect forms are a special class of positive
definite quadratic forms that are uniquely determined by their minimal
vectors and minimum. The natural action of GLy,(Z) on the space of positive
definite quadratic forms preserves the set of perfect forms, and one wishes
to understand the equivalence classes of perfect forms. For a nice survey of
the literature, we refer the reader to [10].

These ideas have natural generalizations to number fields. Let F' be a
totally real number field of degree d. Then F' has d real embeddings. Identify
the infinite places of F' with its embeddings. For each infinite place v of F,
let V,, be the real vector space of n x n symmetric matrices Sym,, (R).
Let C, C V, be the corresponding cone of positive definite matrices. Set
V =11,V and C =[], Cy, where the products are taken over the infinite
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Mots clefs. quadratic forms, perfect forms, continued fractions, real quadratic fields.
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places of F'. If a € F', let «,, denote its image in F},. We extend this notation
to matrices and vectors with coefficients in F'.

One can think of V' as the space of positive definite n-ary quadratic forms
over F' and the cone C' as the space of positive definite forms. Namely,
if A= (A,) € V and x € F", then A determines a quadratic form on

Qa: F" — Q by

(1.1) Qalx) = Zacf)Avxv.

Note that if A € Sym,,(F') is identified with its image (A,) € V, then

Qa(z) = TrF/Q(a:tAx).

Work of Koecher [4] generalizing Voronoi [12], allows one to compute
perfect forms in this setting. Outside of explicit computation, however, not
much is known about the number of perfect forms in n-variables, even for
F = Q. For F a real quadratic field and n = 2, examples of perfect forms
has been computed in [2,5,7]. For F' a cyclotomic field and n = 1, many
computations have been done in [11]. Related ideas in a different context
have been investigated in [1]. For a more general treatment of Voronoi
reduction for GL(Ag), where Ay is a projective O-module, we refer the
reader to [8] and a recent preprint of Watanabe, Yano, and Hayashi [13] for
additional details and references.

In this paper, we consider perhaps the simplest non-trivial case where
F' is a real quadratic field and Ag = O. The main result given in The-
orem 5.1, bounds the number of unary forms over F' in terms of period
lengths of continued fractions by relating perfect forms with well-rounded
binary quadratic forms. This gives an efficient method for computing per-
fect unary forms over F.

That paper is organized as follows. In Section 2, we set notation and given
background on perfect unary forms over real quadratic fields. In Section 3,
we recall some results about well-rounded quadratic forms and relate perfect
unary forms over F' to well-rounded forms over Q. In Section 4, we collect
some data plots of our computations of perfect unary forms for F = Q(v/d)
for positive squarefree integers d < 200000. This consists of 10,732,735
perfect forms divided among 121,580 fields. Finally, in Section 5, we give
the main bound on the number of perfect forms by relating it to certain
continued fractions and address some questions raised by Watanabe, Yano,
and Hayashi [13].

Acknowledgments. I thank P. Gunnells and T. Watanabe for helpful
discussions. I also thank the referee for many useful suggestions.
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2. Background and notation
In this section we fix notation for the real quadratic field F' and recall

the notion of perfect unary forms in this case.

2.1. Real quadratic fields. Let O be ring of integers of the real quadratic
field F' = Q(v/d), where d > 0 is a square-free integer. Let F* C F denote
the totally positive elements of F'. The fundamental discriminant of F' is
D— 4d if d =2,3 mod 4,
~|d  ifd=1mod4.

The ring of integers is O = Z[w], where

Vid if d = 2,3 mod 4,

(2.1) w=
L+vd if d =1 mod 4.

Then F' has two real embeddings vy, vs.

2.2. Unary forms and perfection. Let V = R?, and let C C V be the
open cone C' = R2>0- Define trace Tr: V — R by

Tr((A17A2)> = Ay + As.

Define addition and multiplication on V componentwise. Using the real
embeddings of F', we identify a point = € F' with its image (v1(z),v2(x)) €
V. By doing so, the arithmetic on V is compatible with the arithmetic on
F, and trace restricted to F'is just Trg/q.

As described in Section 1, we view a point in C as a positive definite
quadratic form on F' = F!. Specifically, A = (A1, A3) € C determines a
unary quadratic form F' — R by

Qa(z) = Tr(Az?) = Ayvy(2?) + Agva(2?).

We will write A[x] for Q(z).
The left action of GL1(O) = O* on V is given by

(2.2) g-A=gAg' = g*A,

where g € GL1(O) and A € V. Note that since g € GL1(0), g = g* and
multiplication is commutative. This action preserves C C V and F'* C C.

Definition. Let A € C be a positive definite unary form over F. The
minimum of A, denoted m(a), is

= inf .
m(A) a;egl\{o}A[x]

An element a € O is a minimal vector of A if Ala] = m(A).
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Since O is discrete in V, for each A, the minimum m(A) is attained by
finitely many minimal vectors. Let M (A) denote the set of minimal vectors
for A.

Endow V with the standard inner product (-,-) on R2. Define a map
q: O =V by q(z) = 22 = (v1(2?), v2(2?)). Then for A € C and z € O,

(2.3) Alz] = (A, q(z)) .
In particular, each z € O gives rise to a linear functional ¢(x) on V.

Definition. A positive definite form A € C is perfect if
spang{q(v) |z € M(A)} =V.

From the definition, it is clear that a form is perfect if and only if it is
uniquely determined by its minimum and its minimal vectors.
The following proposition is immediate from the definitions.

Proposition 2.1. Let A € C be a perfect form, and let A € R~g. Then
(1) m(AA) = Am(A)
(2) M(AA) = M(A)

In particular, if A is perfect, then \A is perfect.

Thus to classify perfect unary forms over F', it suffices to consider homo-
thety classes of forms. Specializing work of Koecher [4] and Okuda-Yano [§]
to this case, we get the following.

Proposition 2.2 ( [4,8]).
(1) There are finitely many GL1(O)-inequivalent homothety classes of

perfect forms.
(2) If A € C is perfect, then there exists A € R~q such that NA € FT.

Let hg denote the number of GL;(O)-orbits of homothety classes of per-
fect unary forms. From Proposition 2.2, we know that hg < oo for all d,
and we wish to understand how hg behaves as we vary d.

3. Unary forms over F' and binary forms over R

In this section, we reinterpret unary forms over F' as binary forms over
R. By doing so, we are able to identify the set perfect unary forms over F
as the intersection between a certain geodesic in the upper half plane h and
the trivalent tree W of well-rounded forms shown in Figure (3.1).

3.1. Unary forms and h. A Z-basis for O is given by B = {1,w}, where
w is defined in (2.1). In terms of this basis, A € V' can be viewed as a binary
quadratic form corresponding to the symmetric matrix

Tr(4) Tr(Aw)

(3.1) Sa = Tr(Aw) Tr(Aw?)|"
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i

We wish to study the forms up to real homothety (real positive scaling).
If we scale A so that Tr(A) = 1, then the corresponding matrix S4 of the
unary form A has a particularly nice form. A straightforward computation
shows the following.

Proposition 3.1. Let A = s+ tw € C with Tr(A) = 1. Let S4 denote the
real 2 X 2 symmetric matriz corresponding to A. Then
1 2dt
2dt d
1 (14dt)/2
(1+dt)/2 (1+d+2dt)/4

We can identify the complex upper half-plane h with positive definite
symmetric matrices by

Specifically, for z = a + bw,
A[l‘] = [a b] SA

if d = 2,3 mod 4,
(3.2) Sy =

] if d =1 mod 4.

. 1 —x

Up to scaling by positive homothety, this is consistent with the identifica-
tion

(3.4) g-i (99",

where g € SLa(Z).

Let X denote the image of C' modulo scaling in h using Proposition 3.1,
(3.1), and (3.3). Then a simple computation shows the following.

Proposition 3.2. The set X is the geodesic in b defined by

2?4+t =d if d = 2,3 mod 4,
1\?2 d
(x—i—z) +y2:1 if d =1 mod 4.

3.2. Well-rounded binary forms. The well-rounded retract W C b is
the infinite trivalent tree shown in Figure 3.1. The tree W represents the
positive definite binary quadratic forms over R that are well-rounded. Recall
that well-rounded forms are those binary quadratic forms whose minimal
vectors span R2.

The well-rounded binary quadratic forms are completely understood. We
collect some known facts about well-rounded forms. Let P*(Q) = QU {0},
with the usual convention that the cusp at oo is 1/0.

Theorem 3.1. Identify the space of homothety classes of binary quadratic
forms with b using (3.4). Let W C b denote the space of well-rounded forms.
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FiGURE 3.1. Well-rounded binary quadratic forms W C §

(1) There is a decomposition of b into a disjoint union of sets
h =WUu I_I H(Oé),
a€PH(Q)

parameterized by points of P1(Q). A binary form ¢ is in H(a) if

and only if M(¢) = {[ﬂ }, where a = p/q.
(2) For a € PL(Q), let W(a) C W denote the boundary of H(c). Then
W = Uae]}n(Q)W(a).

A binary form ¢ € W is in W(«) if and only if Fqg] € M(¢), where
a=p/q.

(3) Let ¢ € W. If ¢ is perfect then ¢ is a vertex of W, and ¢ is GLo(Z)-
equivalent to a binary form ¢ with

M(gb,) = {61, €2,€1 + 62} .
Otherwise, ¢ is GLa(Z)-equivalent to a binary form ¢' with

M(¢') = {e1, e}

Remark. The term perfect in Theorem 3.1 refers to perfection of ¢ as a
binary form over Q. This is not to be confused with perfect unary forms
over F'. In particular, a perfect unary form over F' is not necessarily perfect
as a binary form over Q.

We now give a different characterization of perfect unary forms over F'
by relating them to well-rounded binary forms.

Theorem 3.2. Let A € C be a unary form. Then A is perfect if and only
if Sa is well-rounded.

Proof. First suppose A € C' is perfect. Then there exists «, 5 € M(A) such
that {a?, 8%} is linearly independent in V. It follows that {«, 3} is linearly
independent, and hence S4 is well-rounded.
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Now suppose Sj is well-rounded. Then A has minimal vectors v and
such that {a, 8} is linearly independent in V. We wish to show that {a?, 3}
is linearly independent. Suppose not. Then there exists A € R such that
3% = Aa?. Then A[f] = AA[a]. Since o and 3 are minimal vectors of A, we
have

Ala] = A[f] = m(A).
Then A = 1 and so 8 = +«, which gives the desired contradiction. O

Since the well-rounded binary forms over R have either two or three
minimal vectors (up to sign), we immediately get the following.

Corollary 3.1. A perfect unary form over F has either two or three (up
to sign) minimal vectors.

By varying d, we see that both types of perfect unary forms arise. See
Examples 5.4 and 5.4.

Voronoi’s algorithm allows us to compute explicit representatives of the
GL; (O)-equivalence classes of perfect unary forms given an initial input of
a perfect unary form. From the explicit description of X and W, one can
explicitly compute an initial perfect form.

Define ¢4 to be

Vid if d = 2,3 mod 4,

(3.5) ca=1{ —-1++d
2

It is easy to see that the geodesic Xp intersects the real axis at cq.

if d =1 mod 4.

Proposition 3.3. Let g = min {X (|cq]), X (|ca] + 1)}, where
n?+d-1
2n
X(n) =
(n) 4n*+d—5
4+ 8n
Let ng € {|cal, |ca] + 1} satisfy zg = X(ng). Define A € C to be
1 x9
- — — ifd=2 4
5 2dw ifd ,3 mod 4,
d+142xy 2z0+1 g
¥ g v if d =1 mod 4.
Then A is a perfect unary form with {1,n9 +w} C M(A).

if d = 2,3 mod 4,

if d =1 mod 4.

Proof. The form A is one of the intersection points of Xp with the top
crenellation W(oo) C W consisting of portions of semicircles of radius 1,
centered at (k,0) for k € Z.

From Proposition 3.2, we see that Xz is a semicircle with center on the
real axis and radius strictly larger than 1. It follows that Xp intersects
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W (o0) exactly twice. We compute explicitly the intersection xg + iyp € b
with zg > 0.
One can check that Xp intersects the semicircles

(z—n)>+y* =1,

for n = |cq) and |eq] + 1. Choose ng € {|cd], |ca] + 1} such that the a-
coordinate of the intersection x4+ iyg is smaller. This is the intersection of
Xp with W(c0).

For d = 2,3 mod 4, we compute the z-coordinate of the intersection of
2?2 +y?=dand (z —no)? +y? =1 to be

nd+d—1

o =
2n0

From (3.3) and Proposition 3.1, we see that this intersection point corre-
sponds to the perfect form A = s + tw with s = 1/2 and ¢t = —z¢/(2d) as
desired.

Similarly, for d = 1 mod 4, the z-coordinate of the intersection of (x +
1/2)2 +y?=d/4 and (z —no)? +y?> =11is

4nd+d—5
rp = ———7T—
0 44 8nyg

From (3.3) and Proposition 3.1, we see that this intersection point corre-
sponds to the perfect form A = s + tw with s = (d + 1 + 2z9)/(2d) and
t = —(2x¢+ 1)/d as desired.

From Theorem 3.1, W (co) N W (ng) is the set of well-rounded forms with
e1 and ngej + eg as a minimal vector. Converting this to minimal vectors of
the unary form A, we see that 1 and ng + w are minimal vectors of A. [

Note that the perfect form A constructed above may have more than just
1 and ng +w as minimal vectors. Specifically, when there are two integers n
such that X (n) = xg, this gives rise to an additional minimal vector for A.
In terms of the well-rounded tree, such a situation occurs when the geodesic
Xp goes through a vertex of W.

Proposition 3.4. Let u € O*. Then there are exactly two homothety
classes of perfect unary forms over F' that have u as a minimal vector.

Proof. Note that the action of v € GL;(O) = O* on a quadratic unary
form A is given by

u-A=u’A.

It follows that the minimal vectors change by a factor of u~!. Specifically,

M(u-A):{u_1$|:EEM(A)}.
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Number of perfect forms over real quadratic fields
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800 - B
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FIGURE 4.1. Number of GL;(O)-equivalence classes of per-
fect unary forms parameterized by discriminant of F

The construction in Proposition 3.3 shows there are exactly two perfect
unary forms with 1 as a minimal vector. Acting on these forms with GL;(O)
gives the desired result. (]

4. Data

In this section, we collect some data plots of our computations of perfect
unary forms. We explain these results by relating unary forms to continued
fractions in Section 5.

We first plot the number of forms by discriminant. See Figure 4. Notice
that on average there are far fewer perfect forms for discriminants that
are D = 4d, where d = 2,3 mod 4. Because of this, we compute more
examples and parameterize by d. Indeed the different cases are much more
similar when viewed as functions of d. See Figure 4. The perfect forms
for F = Q(v/d) are computed for d < 200000. This consists of 10,732,735
perfect forms divided among 121,580 fields.

Next we sort the fields by the class number of the field. Specifically, we
plot hg for d < 200000 with class number hy < 20. The results are shown in
Figure 4.3. Notice that the fields with large class number tend to have small
number of perfect forms when compared to fields with small class number
and similar size d. It is possible that this discrepancy can be explained if
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Number of perfect forms over real quadratic fields
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FIGURE 4.2. Number of GL;(O)-equivalence classes of per-
fect unary forms parameterized by d
Numbers of perfect forms over real quadratic fields sorted by class number
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FIGURE 4.3. Number of perfect forms sorted by class number

one considers Ag-perfect forms, where Ay ranges over representatives of the
class group of F'. We hope to address this in a future project.



Perfect unary forms over real quadratic fields 769

5. Minimal vectors and continued fractions

In this section, we describe a relationship between the minimal vectors
of perfect unary forms and continued fractions. This yields a faster method
of computing perfect unary forms.

5.1. Continued fractions. We set notation and recall known facts about
continued fractions. A reference for the this material is [9].

Definition. A finite (simple) continued fraction is an expression of the

form
1
aq + )

ay +

az +

L4 -
1
ap—1+ —
Qap
where a; € Z for all ¢ and a; > 0 for ¢ > 0. We denote such an expression

lao; a1, -+, an].

Definition. The continued fraction t; = [ag;az,...,ax], where 0 < k <n
is called the kth convergent of the continued fraction [ag; a1, .. ., ay].

Using the Euclidean algorithm, one can see that every rational number
can be written as a finite simple continued fraction. One can extend this
theory to irrational numbers in the following way.

Proposition 5.1. Let ag,a1,... be an infinite sequence of integers with
a; > 0 fori > 0. Then the convergents t tend to a limit t, that is,
lim ¢ =t¢.
Foo F
In this case, t is called the value of the infinite simple continued fraction
[ap; ai,...], and we write t = [ag; aq,...].
Proposition 5.2. Let t = «g be an irrational number, and define the
sequence ag, i, az, ... recursively by
1
ap = |« Q] = ——
k= lar],  arp p—
fork=0,1,2,.... Thent = [ap;a1,as,...].
Proposition 5.3 ( [9, Theorems 12.10, 12.11, 12.21]). Let t be a real num-
ber with convergents ti, = px/qr in reduced form. Then
(1) tg >t for k odd and ti, <t for k even.

@)mx(Fip”l>e{iu.

qi  qdi+1
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(3) The continued fraction expansion of t is periodic if and only if t is
a quadratic irrational.

Remark. Let [ag;ai,...] be the continued fraction expansion of ¢ € R.
The convergents form a sequence of rational numbers converging to t. This
can be interpreted as giving a sequence of cusps in P'(Q), where p/q is
identified with the line through (p, q).

Proposition 5.4. Fiz a positive, square-free integer d. Let cq be defined
as in (3.5), and let w be defined as in (2.1). Let {4 denote the period of the
continued fraction for cq. Then p+ qw is the fundamental unit for Q(v/d),
where p/q is the ({4 — 1)-th convergent of cq, written in reduced form.

5.2. Minimal vectors of perfect unary forms. Let A; denote the per-
fect form from Proposition 3.3 with minimal vectors including 1 and n + w.
From Proposition 3.4, there are two perfect forms with minimal vector 1.
Continuing along the geodesic away from the other perfect form, we come
to another intersection with W. Hence we obtain another perfect form As.
We continue in this manner until we find a form A, 1 € {€2Ay,e 24},
where € is the fundamental unit of O. Then {A;,---, A, } form a complete
set of representatives for the GLj(O)-conjugacy classes of perfect forms
over F.

Adjacent forms A; and A;y1 share exactly one minimal vector. Thus
there is a well-defined sequence of elements of O associated to {A1,---, 4,}
given by the ordered list of minimal vectors, deleting repeats for the shared
minimal vectors. Each element s 4+ tw € O can be identified with a cusp
s/t € PY(Q). Thus there is a well-defined sequence of cusps associated
to each sequence of representative perfect forms. Each cusp a € PY(Q)
corresponds to a connected component H(«) as described in Theorem 3.1.
Other than the first cusp co, the remaining cusps can be identified with
elements of Q. It is this sequence of cusps that is related to convergents
of ¢q, where ¢4 is defined in (3.5). This relationship is made precise in the
proof of Theorem 5.1.

5.3. Bounding hgq.

Theorem 5.1. Let hy be the number of GL1(QO)-orbits of homothety classes
of perfect unary forms over F, and let {5 denote the period length of cq.
Then

%Shdsed.

Proof. We identify unary forms over F' with binary quadratic forms over
R and identify cusps with minimal vectors as described in Section 3. In



Perfect unary forms over real quadratic fields 771

particular, a cusp p/q € Q is identified with p + qw € O and [z } € 7%, and

the cusp oo is identified with 1 € O and B] c 72

From Theorem 3.2, it suffices to understand the intersection of the geo-
desic Xp defined in Proposition 3.2 and the well-rounded binary quadratic
forms W shown in Figure 3.1. To this end, we consider the Farey tessel-
lation [3]. This is a tessellation of b by ideal triangles that is dual to the
tree of well-rounded binary quadratic forms. For each vertex of W, there
is a triangle with vertices in P!(Q), and two triangles meet along an edge
if and only if there is an edge in W joining the corresponding vertices. See
Figure 5.1.

Let A be an ideal triangle of the tessellation with vertices {1, ag, as}.
Then W divides A into three regions, and we can write A as

(51) A=Ay UA; LAy U AS,

where Ay = ANW and A; = AN H(w) fori=1,2,3.

Starting with the initial perfect unary form A;, there is a sequence of
adjacent perfect unary forms {4i,---,A,} that form a complete set of
representatives for the GLj (O)-conjugacy classes. Let Ay denote the perfect
form that is adjacent to A; that shares the minimal vector 1. Let ¢t =
{tr}re_, denote the sequence of convergents of ¢4, identified with cusps and
minimal vectors as described above, where we set t_; = co. Let {1, as, as}
be a subsequence of consecutive elements of ¢, where a; corresponds to
a minimal vector shared by two adjacent unary forms Ay and Agi; in
{Ay, ..., A,}. For example, the minimal vector shared by Ag and A; is 1,
which corresponds to cusp co. Then a; = 0o, ag = £, and az = to. We will
show in general that {a1,a;} C M (Agyq) fori =2 ori=3.

Since a; corresponds to a minimal vector shared by Ay and Ay, the
geodesic Xp intersects A; of the decomposition in (5.1) non-trivially. Fur-
thermore, since ¢4 is between as and a3 and Xp terminates at ¢y, X5 must
intersect the geodesic joining s and ag. It follows that Xz intersects A;
non-trivially for ¢ = 2 or ¢ = 3. Since Xz is a continuous path, Xg must in-
tersect Ay . This intersection point Ay NXp corresponds to Ay 1, showing
that ag or ag is a minimal vector of Ag 1.

Therefore, the minimal vectors arising in the adjacent forms {A;,... A}
can be identified with a subsequence of the cusps t = {0, 1,12, ... } coming
from the convergents of c;. We are counting perfect forms up to the action
GL1(0O), which scales the minimal vectors of a perfect form by a unit. Thus
hq < {4. Furthermore, the argument above shows that this subsequence of
minimal vectors cannot miss two consecutive terms of t. Then ¢4 < 2hy,
and the result follows. O
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FIGURE 5.1. Well-rounded binary quadratic forms (black)
with dual tessellation by ideal triangles (green)

Watanabe, Yano, and Hayashi [13] pose two questions about the nature
of hd.

(1) Are there infinitely many d such that hg = 1?7
(2) Is hg unbounded?

We answer both of these in the affirmative using our bounds in Theorem 5.1.

Corollary 5.1. There are infinitely many squarefree d > 1 such that
hqg = 1.

Proof. By Theorem 5.1, it suffices to find an infinite family of squarefree d
such that /4, = 1.
Let f(z) € Z[z] be an irreducible quadratic polynomial. Let

Ny = ged(f(0), (1), £(2))-

Nagel [6] shows that if Ny is squarefree, then there are infinitely many
integers n such that f(n) is squarefree.

Let f(x) = 22% + 2z + 1, and let S = {f(n) | n € Z, f(n) squarefree}.
One checks that Ny = 1, and so by Nagel’s result, .S contains infinitely many
integers. Furthermore, since S consists of odd integers, 7' = {2s | s € S} is
also infinite. The set T provides the desired family. Namely, for d € T, we
have d = 2 mod 4, and so ¢ = Vd. The continued fraction expansion of ¢
in this case is ¢y = [a, 2a], where a = |V/d]. Since £4 = 1 for every d € T,
Theorem 5.1 gives the desired result. O
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FIGURE 5.2. Geodesic Xp (blue) and well-rounded retract
W (black) for F = Q(+/19) with the sequence of geodesics
(green) associated to the continued fraction expansion of ¢jg

Remark. In our computations of the exact values of hy for squarefree
positive d < 200000, we found four disjoint families with hy = 1. They are

T = {n2 +1: n? 41 is square free and n is odd} ,

)
(5.3) T, = {n2 —1: n? — 1 is square free and n is even} ,
(5.4) T3 = {n2 +4: n? + 4 is square free and n is odd} , and
(5.5) T, = {n2 —4: n? — 4 is square free and n is odd, n > 3} :

The set T3 is the family given in the proof of Corollary 5.1.

We next consider the question about the unboundedness of hy. From the
lower bound in Theorem 5.1, to show that hy is unbounded, it suffices to
produce infinite families with £; unbounded. Indeed there are explicit infi-
nite families of d such that period length of the continued fraction expansion
of ¢4 grows without bound. Thus by Theorem 5.1, hy is unbounded.

5.4. Examples.

Example. Let F = Q(+/19), and let O C F be its ring of integers. Then
O = Z[w], where w = /19. Then F has class number 1 and narrow class
number 2. There are four GL; (O)-equivalence classes of perfect unary forms
{A1, Ay, A3, A4}. The minimal vectors are

M(Ay) ={1,w+4}

M(As) ={w+4,2w+9,3w + 13}
M(Az) = {3w + 13, 11w + 48, 14w + 61}
M(A4) = {14w + 61, 39w + 170}
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which gives rise to the sequence of cusps
1 4 9 13 48 61 170
07172 37117 14 39°
The continued fraction expansion of c¢j9 = /19 is
c19 =14;2,1,3,1,2,8].
The convergents are
9 13 48 61 170
72037110 147 397 T
In this case we see that the convergents of cj9 correspond exactly to the
minimal vectors of perfect unary forms over F' = Q(v/19).

Next we examine a case where the sequence of minimal vectors is a proper
subsequence of the convergents.

Example. Let F = Q(+/23), and let O C F be its ring of integers. Then
O = Z[w], where w = /23. Then F has class number 1 and narrow class
number 2. There are two GL;(O)-classes of perfect unary forms {A;, A2}
The minimal vectors of the form are

A ={1,w+5}
Ay = {w + 5, 5w + 24}

which gives rise to the sequence of cusps
1 5 24

015
We compute the continued fraction expansion of co3 = /23 and find

V23 = [4;1,3,1,3).

19 24
4,5, —, —, ...
757 47 5?

In this case, the sequence of cusps corresponding to minimal vectors is a
proper subsequence of the convergents.

The convergents are
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