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Fields of moduli of three-point GG-covers with

cyclic p-Sylow, II

par ANDREW OBUS

RESUME. Nous poursuivons ’étude de la réduction stable et des
corps de modules des G-revétements galoisiens de la droite projec-
tive sur un corps discrétement valué de caractéristique mixte (0, p),
dans le cas ou G a un p-sous-groupe de Sylow cyclique d’ordre p”.
Supposons de plus que le normalisateur de P agit sur lui-méme via
une involution. Sous des hypotheses assez légeres, nous montrons
quesi f : Y — P! est un G-revétement galoisien ramifié au-dessus
de 3 points, défini sur Q, alors les n-iémes groupes de ramifica-
tion supérieure au-dessus de p, en numérotation supérieure, de (la
cloture galoisienne de) lextension K/Q sont triviaux, o K est le
corps des modules de f.

ABSTRACT. We continue the examination of the stable reduction
and fields of moduli of G-Galois covers of the projective line over
a complete discrete valuation field of mixed characteristic (0, p),
where G has a cyclic p-Sylow subgroup P of order p™. Suppose
further that the normalizer of P acts on P via an involution. Under
mild assumptions, if f : Y — P! is a three-point G-Galois cover
defined over Q, then the nth higher ramification groups above p
for the upper numbering of the (Galois closure of the) extension
K /Q vanish, where K is the field of moduli of f.

1. Introduction

1.1. Overview. This paper continues the work of the author in [12] about
ramification of primes of Q in fields of moduli of three-point G-Galois covers
of the Riemann sphere. We place bounds on the ramification of the prime p
when a p-Sylow subgroup P of G is cyclic of arbitrary order (Theorem 1.1).
This was done in [1] for P trivial, and in [23] for |P| = p. In [23], Wewers
used a detailed analysis of the stable reduction of the cover to characteristic
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p, inspired by results of Raynaud ([19]). However, many of the results on
stable reduction in the literature (particularly, those in the second half of
[19]) are only applicable when |P| = p.

In [15], the author generalized much of [19] to the case where P is cyclic
of any order. In [12], these results were applied under the additional as-
sumption that G is p-solvable (i.e., has no nonabelian simple composition
factors with order divisible by p) to place bounds on ramification of p in
the field of moduli of a three-point G-cover. In this paper, we drop the as-
sumption of p-solvability, but we assume that the normalizer of a p-Sylow
subgroup P acts on P via an involution. This hypothesis is satisfied for
many non-p-solvable groups (Remark 1.3 (1)), and was used as a simplify-
ing assumption in [2] (in the case where |P| = p) to examine the reduction
of four-point G-covers of P'. It will simplify matters in our situation as
well.

Let f:Y - X = IP’%: be a finite, connected, GG-Galois branched cover
of Riemann surfaces, branched only at Q-rational points. Such a cover can
always be defined over Q. If there are exactly three branch points (without
loss of generality, 0, 1, and o), such a cover is called a three-point cover.
The fixed field in Q of all elements of Aut(Q/Q) fixing the isomorphism
class of f as a G-cover (i.e., taking into account the G-action) is a number
field called the field of moduli of f (as a G-cover). By [3, Proposition 2.7],
it is also the intersection of all fields of definition of f (along with the
G-action). For more details, see, e.g., [3] or the introduction to [12].

Since a branched G-Galois cover f : Y — X of the Riemann sphere is
given entirely in terms of algebraic data (the branch locus C, the Galois
group G, and an element g; € G for each ¢; € C such that [[;¢9;, = 1 and
the g; generate ), it is reasonable to try to draw inferences about the field
of moduli of f based on these data. But this is a deep question, as the
relation between topology of covers and their defining equations is given by
[20], where the methods are non-constructive.

1.2. Main result. Let f: Y — X = P! be a three-point G-cover defined
over Q. If p1 |G|, then p is unramified in the field of moduli of f ([1]). If G
has a p-Sylow group of order p (thus cyclic), then p is tamely ramified in the
field of moduli of f ([23]). Furthermore, if G has a cyclic p-Sylow subgroup
of order p™ and is p-solvable (i.e., has no nonabelian simple composition
factors with order divisible by p), then the nth higher ramification groups
above p for the upper numbering of (the Galois closure of) K/Q vanish,
where K is the field of moduli of f ([12]). Our main result extends this to
many non-p-solvable groups.

If H is a subgroup of G, we write Ng(H) for the normalizer of H in G
and Zg(H) for the centralizer of H in G.
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Theorem 1.1. Let f : Y — X be a three-point G-Galois cover of the
Riemann sphere, and suppose that a p-Sylow subgroup P < G is cyclic of
order p". Suppose |Nq(P)/Zq(P)| = 2. Lastly, suppose that at least one of
the three branch points has prime-to-p branching index (if exzactly one, then
we require p # 3). If K/Q is the field of moduli of f, then the nth higher
ramification groups for the upper numbering of the Galois closure of K/Q
vanish.

Remark 1.2. By [12, Proposition 7.1], it suffices to prove Theorem 1.1 for
COVers over @, rather than Q, and for higher ramification groups over Q"
Here, and throughout, Q)" is the completion of the maximal unramified
extension of QQ,. This is the version we prove in §8. In fact, we prove even
more, i.e., that the stable model of f can be defined over an extension K/@;””
whose nth higher ramification groups for the upper numbering vanish above

p.

Remark 1.3. (1) Many simple groups G satisfy the hypotheses of The-
orem 1.1 (for instance, any PSLy(¢) where p # 2 and v,(£2—1) = n).
(2) If Ng(P) = Zg(P), then G is p-solvable by a theorem of Burnside
([25, Theorem 4, p. 169]), and thus falls within the scope of [12,
Theorem 1.3], which treats p-solvable groups. Theorem 1.1 seems
to be the next easiest case.
(3) Iexpect Theorem 1.1 to hold even if p = 3 or if all branching indices
are divisible by p. See Question 9.1.

Remark 1.4. In the case that all three branch points of f as in Theorem
1.1 have prime-to-p branching index, we show (Proposition 8.1) that f
actually has good reduction. We use this in Corollary 8.2 to give a proof
that, when N is prime, the modular curve X (N) has good reduction at
all primes not dividing 6/N. In fact, Corollary 8.2 is more general, and
works (in a slightly weakened sense) for all N. Our proof does not use the
modular interpretation of X (N), only that X (N) — X (1) can be given as
a three-point PSLy(Z/N)-cover.

As in [12], our main technique for proving Theorem 1.1 will be an analysis
of the stable reduction of the G-cover f to characteristic p. The major
difference between the methods of this paper and those of [12] is this paper’s
use of the auxiliary cover. This is a construction, introduced by Raynaud
([19]), to simplify the group-theoretical structure of a Galois cover of curves.
In particular, by replacing f with its auxiliary cover f*“*  we obtain a Galois
cover whose field of moduli is related to that of f, but which now has a
p-solvable Galois group.

Unfortunately, the cover f** in general has extra branch points, and
it is not obvious where these extra branch points arise. The crux of the
proof of Theorem 1.1 is understanding where these extra branch points are
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located; this is the content of §8.3.4, and is the reason why Theorem 1.1 is
significantly more difficult than the analogous theorem where G is assumed
to be p-solvable. Our assumption that |Ng(P)/Zq(P)| = 2 alleviates this
difficulty somewhat, as it allows us to work with more explicit equations
(see §8.3 and Question 9.2).

1.3. Section-by-section summary and walkthrough. In §2, we give
some explicit results on the reduction of y,»-torsors. The purpose of §3, §4,
and §5 is to recall the relevant material from [12]. In §3 and §4, we introduce
stable reduction of G-covers, and state some of the basic properties. We also
recall the vanishing cycles formula from [12], which is indispensable for the
proof of Theorem 1.1. In §5, we recall the properties of deformation data
(constructed in [15]), which give extra structure to the stable model.

The new part of the paper begins with §6, where we discuss monotonicity
of stable reduction (a property that becomes relevant when v,(|G|) > 1),
and show that it is satisfied for all covers in this paper. In §7, we introduce
the auziliary cover and the strong auxiliary cover, and discuss why they
are useful in calculating the field of moduli.

In §8, we prove our main result, Theorem 1.1. The proof is divided into
§8.1, §8.2, and §8.3, corresponding to the case of 3, 2, and 1 branch point(s)
with prime-to-p branching index, respectively. The proof for 1 branch point
with prime-to-p index is by far the most difficult (as it involves the ap-
pearance of an extra branch point in the auxiliary cover), and toward the
beginning of §8.3, we give an outline of the proof and of how it is split up
over §8.3.3-§8.3.7.

In §9, we consider some questions arising from this work. In Appendix A
we give an example of a three-point cover with nontrivial wild monodromy
(see the appendix for more details). Appendix A is not needed for the rest
of the paper.

For reasons that will become clear in §8.3, the case p = 5 presents some
complications. The reader who is willing to assume p > 5 may skip Lemma
2.1 (2), Remark 8.18, Proposition 8.19 (2), Remark 8.25, Proposition 8.26
(2), Proposition 8.31 (2), (3), Lemma 8.33, and Proposition 8.35 (2c), which
are among the more technical parts of the paper.

1.4. Notation and conventions. The letter k will always represent an
algebraically closed field of characteristic p > 0.

If H is a subgroup of a finite group G, then Ng(H) is the normalizer of
H in G and Zg(H) is the centralizer of H in G. If G has a cyclic p-Sylow
subgroup P, and p is understood, we write mg = |Ng(P)/Zg(P)|.

If K is a field, K is its algebraic closure. We write G for the absolute
Galois group of K. If H < Gk, we write K" for the fixed field of H in K.
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Similarly, if T is a group of automorphisms of a ring A, we write A! for the
fixed ring under I'.

We use the standard theory of higher ramification groups for the up-
per and lower numbering from [21, IV]. However, unlike in [21], if L/K is
a nontrivial G-Galois extension of complete discrete valuation rings with
algebraically closed residue fields, then the conductor of L/K, written
hr K, will be for us the greatest upper jump (i.e., the greatest i such that
G* # {id}). This is consistent with [12].

If R is any local ring, then R is the completion of R with respect to its
maximal ideal. If R is any ring with a non-archimedean absolute value | - |,
then R{T} is the ring of power series 3%, ¢;T" such that lim; . |¢;| = 0.
If R is a discrete valuation ring with fraction field K of characteristic 0
and residue field k of characteristic p, we normalize the absolute value on
K and on any subring of K so that |p| = 1/p. We always normalize the
valuation on K so that p has valuation 1.

A branched cover f : Y — X is a finite, surjective, generically étale
morphism of geometrically connected, smooth, proper curves. If f is of
degree d and we choose an isomorphism ¢ : G — Aut(Y/X), then the
datum (f,7) is called a G-Galois cover (or just a G-cover, for short). We
will usually suppress the isomorphism 4, and speak of f as a G-cover.

Suppose f : Y — X is a G-cover of smooth curves, and K is a field of
definition for X. Then the field of moduli of f relative to K (as a G-cover)

is K, where ' = {0 € Gk|f? = f (as G-covers)} (see, e.g., [12, §1.1]).
If X is P!, then the field of moduli of f means the field of moduli of f (as
a G-cover) relative to Q.

Let f:Y — X be any morphism of schemes and assume H is a finite
group with H — Aut(Y/X). If G is a finite group containing H, then there
is a map Ind% f : Ind%Y — X, where Ind%Y is a disjoint union of [G : H]
copies of Y, indexed by the left cosets of H in G. The group G acts on
Inde, and the stabilizer of each copy of Y in Inde is a conjugate of H.

The set N is equal to {1,2,3,...}.

Acknowledgements

This material is mostly adapted from my PhD thesis, and I thank my
advisor, David Harbater, for much help related to this work. I also thank
the referee for useful suggestions.

2. Reduction of p,n-torsors

Let R be a mixed characteristic (0,p) complete discrete valuation ring
with residue field £ and fraction field K. Let m be a uniformizer of R.
Recall that we normalize the valuation of p (not 7) to be 1. For any scheme
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or algebra S over R, write Sk and Sj for its base changes to K and k,
respectively.

We state a partial converse of [12, Lemma 3.1, which will be used re-
peatedly in analyzing the stable reduction of covers (see §8.3):

Lemma 2.1. Suppose R contains the p™th roots of unity. Let X = Spec A,
where A = R{T'}. Let f : Yx — X be a ppn-torsor given by the equation
yP" = g, where g = 1+ 322, ¢;T". Suppose that v(c;) > n + 5= for all
i > p divisible by p. Suppose further that (at least) one of the followmg two
conditions holds:

(1) There exists i such that v(c;) < min(v(cp), n + p%l)
(2) v(ep) >n— 28];_21) and there exists ¢, € R with v(c, —cp) > n+ p%l
and v (cl - c;,p(p_l)"‘*‘l) <n-+ zﬁ
Then, even after a possible finite extension of K, the map f : Yx — Xk
does not split into a union of p"~' connected disjoint tp-torsors, such that

if Y is the normalization of X in the total ring of fractions of Yk, then
Y. — X} is étale.

Proof. Suppose we are in case (1). Pick b € R such that v(b) = min;(v(¢;)).
Then v(b) <n+ = —Land g = 1+ bw with w € A\1A. Let a < n be the
greatest integer such that a + ﬁ < v(b). Then g has a p%th root in A,
given by the binomal expansion

p%:1+ /p bw + (1/pa)((;!/pa)_1)(bw)2+“.

Since v(b) > a + 55 , this series converges, and is in A. Furthermore, since
the coefficients of all terms in this series of degree > 2 have valuation
greater than v(b) — a, the series can be written as #»{/g = 1+ I%u, where u
is congruent to w (mod 7).

Now, v(b) —a = U(I%) <1+ ﬁ. Furthermore, by assumption (1), the
reduction 7 of w is not a pth power in A/7. Then [8, Proposition 1.6] shows
that /g is not a pth power in A (nor in K). If a < n — 1, this proves that
f does not split into a disjoint union of n — 1 torsors. If a = n — 1, then

( 7) < 14 =, and [8, Proposition 1.6] shows that the torsor given by
yP = »" &f does not have étale reduction. This proves the lemma in case
(1).

Suppose we are in case (2) and not in case (1). It then suffices to show

that there exists h € A such that h?"g satisfies (1). Let n = — “
(any pth root will do). Now, by assumption, v(c}) — (n — 1) > ﬁ, S0
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v(n) > ﬁ. Then there exists € > 0 such that

p" — n C;J pn CLID /4 n+%+e
(1+nT)Y =1—p pn—lT_ » FT (mod p" P17,

It is easy to show that (p;) =p"! (mod p") for all n > 1. So there exists
€ > 0 such that

(47T =1 = {fefpr=Dm4IT — TP (mod PP,
1

=1
the reader to verify that (14 nT)P" g satisfies (1) (with i = 1). O

Using the assumption that v(c; — c;)p(p_l)”ﬂ) <n+ we leave it to

3. Semistable models of P!

Let R be a mixed characteristic (0,p) complete discrete valuation ring
with residue field k£ and fraction field K. If X is a smooth curve over K,
then a semistable model for X is a relative flat curve Xp — Spec R with
Xgr xp K = X and semistable special fiber (i.e., the special fiber is reduced
with only ordinary double points for singularities). If Xg is smooth, it is
called a smooth model.

3.1. Models. Let X = IF’}(. Write v for the valuation on K. Let Xg be a
smooth model of X over R. Then there is an element 7" € K(X) such that
K(T) = K(X) and the local ring at the generic point of the special fiber
of X is the valuation ring of K(T') corresponding to the Gauss valuation
(which restricts to v on K). We say that our model corresponds to the
Gauss valuation on K(T'), and we call T' a coordinate of Xg. Conversely, if
T is any rational function on X such that K(7T') = K(X), there is a smooth
model Xg of X such that T is a coordinate of Xg. In simple terms, T is
a coordinate of Xpg iff, for all a,b € R, the subvarieties of Xr cut out by
T — a and T — b intersect exactly when v(a — b) > 0.

Now, let X}, be a semistable model of X over R. The special fiber of
X, is a tree-like configuration of P}’s. Each irreducible component W of
the special fiber X of X}, yields a smooth model of X by blowing down
all other irreducible components of X. If T is a coordinate on the smooth
model of X with W as special fiber, we will say that T corresponds to W.

3.2. Disks and annuli. We give a brief overview here. For more details,
see [7].

Let X}, be a semistable model for X = IP’}(. Suppose x is a smooth point
of the special fiber X of X7, on the irreducible component W. Let T be a
coordinate corresponding to W such that T' = 0 specializes to z. Then the

set of points of X (K ) which specialize to z is the open p-adic disk D given
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by v(T") > 0. The ring of functions on the formal disk corresponding to D
is Ox . = R{T}.

Now, let x be an ordinary double point of X, at the intersection of
components W and W'. Then the set of points of X (K) which specialize
to z is an open annulus A. If T is a coordinate corresponding to W such
that 7' = 0 specializes to W \W, then A is given by 0 < v(T') < e for some
e € v(K*). The ring of functions on the formal annulus corresponding to
Ais Ox, = R[[T,U]]/(TU — p°). Observe that e is independent of the
coordinate. It is called the épaisseur of the annulus.

Suppose we have a preferred coordinate 7" on X and a semistable model
X% of X whose special fiber X contains an irreducible component X
corresponding to the coordinate T'. If W is any irreducible component of
X other than X, then since X is a tree of P'’s, there is a unique non-
repeating sequence of consecutive, intersecting components Xo, ..., W. Let
W' be the component in this sequence that intersects W. Then the set
of points in X(K) that specialize to the connected component of W in
Y\W’ is a closed p-adic disk D. If the established preferred coordinate
(equivalently, the preferred component X) is clear, we will abuse language
and refer to the component W as corresponding to the disk D, and vice
versa. If U is a coordinate corresponding to W, and if U = oo does not
specialize to the connected component of W in X\W', then the ring of
functions on the formal disk corresponding to D is R{U}.

4. Stable reduction

In §4, R is a mixed characteristic (0,p) complete discrete valuation ring
with residue field k and fraction field K. We set X = Pl and we fix
a smooth model Xr of X. Let f : Y — X be a G-Galois cover defined
over K, with G any finite group, such that the branch points of f are
defined over K and their specializations do not collide on the special fiber
of Xg. Assume that f is branched at at least three points. Using the stable
reduction theorem for curves ([4, Corollary 2.7]), one can show that there
is a unique minimal finite extension K*'/K with ring of integers R*! such
that fyst = f xx K has a stable model f5':Ys" — X5t (which we will
simply call the stable model of f). This model has the properties that:

e The special fiber Y of Y* is semistable.

e The ramification points of fxs: specialize to distinct smooth points
of Y.

e Any genus zero irreducible component of Y contains at least three

marked points (i.e., ramification points or points of intersection with

the rest of Y).

G acts on Y* and X =Y*/G.
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The field K is called the minimal field of definition of the stable model
of f. If we are working over a finite extension K’/K*' with ring of integers

R, we will sometimes abuse language and call ! x ps« R’ the stable model
of f.

Remark 4.1. Our definition of the stable model is the definition used in
[23]. This differs from the definition in [19] in that [19] allows the ramifica-
tion points to coalesce on the special fiber.

Remark 4.2. Note that X*' can be naturally identified with a blowup of
X xr R* centered at closed points. Furthermore, the nodes of Y lie above
nodes of the special fiber X of X' ([18, Lemme 6.3.5]), and Y is the
normalization of X% in K*/(Y).

If Y is smooth, the cover f : Y — X is said to have potentially good
reduction. If f does not have potentially good reduction, it is said to have
bad reduction. In any case, the special fiber f:Y — X of the stable model
is called the stable reduction of f. The strict transform of the special fiber
of Xpst in X (Remark 4.2) is called the original component, and will be
denoted X.

Each 0 € Gk acts on Y (via its action on Y). This action commutes
with that of G and is called the monodromy action. Then it is known (see,
for instance, [15, Proposition 2.9]) that the extension K®/K is the fixed
field of the group I'* < G consisting of those ¢ € Gk such that o acts
trivially on Y. Thus K* is clearly Galois over K. Since k is algebraically
closed, the action of G fixes X pointwise.

4.1. The graph of the stable reduction. As in [23], we construct the
(unordered) dual graph G of the stable reduction of X. An unordered graph
G consists of a set of vertices V(G) and a nonempty set of edges E(G). Each
edge has a source vertex s(e) and a target verter t(e). Each edge has an
opposite edge €, such that s(e) = t(e) and t(e) = s(e). Also, € = e.

Given f, f, Y, and X as above, we construct two unordered graphs G
and G'. In our construction, G has a vertex v for each irreducible component
of X and an edge e for each ordered triple (Z, W’,W”), where W' and W"
are irreducible components of X whose intersection is Z. If e corresponds
to (Z, W ,W"), then s(e) is the vertex corresponding to W and t(e) is
the vertex corresponding to W". The opposite edge of e corresponds to
(Z, WH,W/). We denote by G’ the augmented graph of G constructed as
follows: consider the set Byjgq of branch points of f with branching index
divisible by p. For each x € Byjq4, we know that = specializes to a unique
irreducible component W, of X, corresponding to a vertex A, of G. Then
V(G') consists of the elements of V(G) with an additional vertex V,, for each
x € Byila- Also, E(G’) consists of the elements of E(G) with two additional
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opposite edges for each x € Byjg, one with source V, and target A,, and
one with source A, and target V,. We write vy for the vertex corresponding
to the original component X.

If v,w € V(G'), then a path from v to w is a sequence of nonrepeating
vertices {v;}i-, and edges {e;};~ L such that v = vy, w = vy, s(e;) = v,
and t(e;) = v;11. Let u € V(G ) correspond to the original component Xg.
We partially order the vertices of G’ such that v < w if there is a path
from u to w passing through v. The set of irreducible components of X
inherits the partial order <. Furthermore, if Z; and T are points of X,
we say that To lies outward from T if T1 # T2 and there are irreducible
components X1 < X9 of X such that z; € X; and Ty € X». Lastly, an
irreducible component W of X lies outward from a point T € X if there is
an irreducible component W' < W such that T € W'.

4.2. Inertia Groups of the Stable Reduction. Recall that G acts on
Y. By [18, Lemme 6.3.3], we know that the inertia groups of the action
of G on Y at generic points of Y are p-groups. Also, at each node of Y,
the inertia group is an extension of a cyclic, prime-to-p order group by a
p-group generated by the inertia groups of the generic points of the crossing
components. If V is an irreducible component of Y, we will always write
I < G for the inertia group of the generic point of V, and Dy < G for
the decomposition group.

For the rest of this subsection, assume G has a cyclic p-Sylow subgroup.
In this case, the inertia groups above a generic point of an irreducible
component W C X are conjugate cyclic groups of p-power order. If they
are of order p’, we call W a p‘-component. If i = 0, we call W an étale
component, and if i > 0, we call W an inseparable component.

As in [19], we call irreducible component W C X a tail if it is not the
original component and intersects exactly one other irreducible component
of X. Otherwise, it is called an interior component. A tail of X is called
primitive if it contains a branch point other than the point at which it
intersects the rest of X. Otherwise it is called new. This follows [23]. An
inseparable tail that is a p’-component will also be called a p’-tail. Thus
one can speak of, for instance, “new p'-tails” or “primitive étale tails.”

Lemma 4.3 ([15], Proposition 2.13). If x € X is branched of index p®s,
where p1 s, then x specializes to a p®-component.

Lemma 4.4 ([19], Proposition 2.4.8). If f has bad reduction and W is an
étale component of X, then W is a tail.

Lemma 4.5 ([15], Proposition 2.16, see also [19], Remarque 3.1.8). If f

has bad reduction and W is a p'-tail of X, then the component W' that
intersects W is a p’ -component with j > i.
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Definition 4.6. (cf. [15], Definition 2.18) Consider a component X, # X
of X. Let W be the unique component of X such that W < X, and W
intersects X, say at @,. Suppose that W is a p/-component and X is a
p'-component, i < j. Let Y} be a component of Y lying above X3, and
let 7, be a point lying above Zp. Then the effective ramification invariant
op of X is defined as follows: If X, is an étale component, then oy is the
conductor of higher ramification for the extension @717%/ @Yb,fb' If Xy is

a p'-component (i > 0), then the extension @?b ?b/ (’A)yb 7, can be factored
R o B A

as Oyb@'b — 5 O?b»?b’

degree p'. Then oy is the conductor of higher ramification for the extension

S/ O%, 7,

Remark 4.7. By Lemma 4.5, the effective ramification invariant is defined

for every tail.

where « is Galois and [ is purely inseparable of

Lemma 4.8 ([15], Lemma 2.20). The effective ramification invariants oy
lie in miZ.

G
4.3. Vanishing cycles formula. Assume the notation of §4. The vanish-
ing cycles formula stated below will be used repeatedly:

Theorem 4.9 (Vanishing cycles formula, cf., [15], Theorem 3.14, Corollary
3.15). Let f : Y — X = P! be a three-point G-Galois cover with bad
reduction, where G has a cyclic p-Sylow subgroup. Let Bpey be an indexing
set for the new étale tails and let By be an indexing set for the primitive
étale tails. Let oy, be the ramification invariant in Definition 4.6. Then we
have the formula

(4.1) 1= Y (-4 > o

beBnew beBpT’[’HL
Corollary 4.10. If mg = 2, and if f has bad reduction, then there are at
most two étale tails. Furthermore, for any étale tail Xy, op € %Z (see §4).

Proof. By Lemma [15, Lemma 4.2 (i)], each term on the right hand side of
(4.1) is at least n%; = %, so both parts of the corollary follow immediately.
O

5. Deformation data

Deformation data arise naturally from the stable reduction of covers.
Much information is lost when we pass from the stable model of a cover
to its stable reduction, and deformation data provide a way to retain some
of this information. This process is described in detail in [15, §3.2], and we
recall some facts here.
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5.1. Generalities. Let W be any connected smooth proper curve over
k. Let H be a finite group and x a 1-dimensional character H — F . A
deformation datum over W of type (H,x) is an ordered pair (V,w) such
that: V' — W is an H-cover; w is a meromorphic differential form on V
that is either logarithmic or exact (i.e., w = du/u or du for u € k(V)); and
n*w = x(n)w for all n € H. If w is logarithmic (resp. exact), the deformation
datum is called multiplicative (resp. additive). When V is understood, we
will sometimes speak of the deformation datum w.

If (V,w) is a deformation datum, and w € W is a closed point, we define
my to be the order of the prime-to-p part of the ramification index of
V — W at w. Define hy, to be ord,(w) + 1, where v € V is any point
which maps to w € W. This is well-defined because n*w is a nonzero scalar
multiple of w for n € H.

Lastly, define 0., = hyy/my,. We call w a critical point of the deformation
datum (V,w) if (hy,myw) # (1,1). Note that every deformation datum
contains only a finite number of critical points. The ordered pair (A, m.,)
is called the signature of (V,w) (or of w, if V is understood) at w, and o,
is called the invariant of the deformation datum at w.

5.2. Deformation data arising from stable reduction. We use the
notation of §4. Assume that a p-Sylow subgroup of G is cyclic. For each
irreducible component of Y lying above a p"-component of X with r > 0,
we construct r different deformation data. The details of this construction
are given in [15, Construction 3.4], and we do not give them here. Rather,
we recall the important properties.

Suppose V is an irreducible component of Y with nontrivial generic in-
ertia group Iy = Z/p" C G. If V' is the smooth projective model of the
function field of k(V)?", then [15, Construction 3.4] constructs r meromor-
phic differential forms wq,...,w, on Vv (well defined either up to scalar
multiplication by £* or by F’, depending on whether the differential form
is exact or logarithmic). Furthermore, if H = Dy/I;7, then H acts faithfully
on V', and W = V/H. It is shown in [15, Construction 3.4] that (V',w;)
is in fact a deformation datum of type (H,x) over W for 1 < i < r, where
X is given by the conjugation action of H on [37. The invariant of o; at a
point w € W will be denoted o ,,. Since f is Galois, these invariants do not
depend on which component V above W is chosen. The differential forms
w1, ...,w, correspond, in some sense, to the successive degree p extensions
building a tower between V' and V. For this reason, we will sometimes call
the deformation datum (V’,wl) the bottom deformation datum for V.

Furthermore, for 1 < i < r, we associate a rational number d; (see [12,
§5.2]). If w; is multiplicative, then §; = 1. Otherwise, 0 < §; < 1. The
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effective different 6% above W is defined by

r—1
oo = (S5 ) + L,
7= (50)

By convention, if W is an étale component, we set (5% = 0.
The following lemma will be very important in the main proof.

Lemma 5.1 ([15], Lemma 3.5, cf. [23], Proposition 1.7). Say (V',w) is a
deformation datum arising from the stable reduction of a cover, and let W
be the component of X lying under V'. Then a critical point w of the de-
formation datum on W is either a singular point of X or the specialization
of a branch point of Y — X with ramification index divisible by p. In the
first case, oy, # 0, and in the second case, o, = 0 and w is logarithmic.

Recall that G’ is the augmented dual graph of X (§4.1). To each e € E(G)
we will associate the effective invariant agff, and to each vertex of G we will

associate the effective different 6°%.

Definition 5.2 (cf. [15], Definition 3.10). Let e € E(G').

(1) Suppose e corresponds to the triplet (w, W, W’), where W is a p"-

component and W'is a p" -component with r > /. Then r > 1 by
Lemma 4.4. Let w;, 1 < i < r, be the deformation data above W.

Then )

—p-—1 1

agff = (; ppiai’w> + FUT’W
Note that this is a weighted average of the o; ,’s.

(2) If s(e) corresponds to a p"-component and t(e) corresponds to a
p"-component with r < 7/, then ¢¢f := —geff,

(3) If either s(e) or t(e) is in V(G )\V(G), then ¢ := 0.

(4) For all v € V(G), define 5 = 5%, where v corresponds to W.

(5) For all e € E(G), define €. to be the épaisseur of the formal annulus

corresponding to e (§3).

Remark 5.3. In the paper [16], similar ideas of deformation data are
used, but the notation and method of calculation is somewhat different.
Suppose V is an irreducible component of Y as in this section such that
Dy = Iy = Z/p", and let W be the component of X lying below it. If Ui
17 are the generic points of V, W, then @Yst v/ @) xstg7 isaZ /p"-extension
of complete discrete valuation rings, correspénding to a character x in the
language of [16, §5]. Our 5‘%& is equal to sw(x) in [16, §5.3], and if e € E(G’)

corresponds to (w, W, W’) as in Definition 5.2, then our ¢¢ is equal to

ord,, (dsw(x)) + 1 in [16, §5.3].
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Lemma 5.4 ([15], Lemma 3.11 (i), (iii), [12], Lemma 5.10).
(1) For any e € E(G'), we have o = —o&ft,
(2) Ift(e) corresponds to an étale tail Xy, then oS = oy,

(3) If e € E(G), then 6L, — 5l = oefle,.

The following lemma is very important for §8.3:

Lemma 5.5 ([12], Lemma 5.7). Let e € E(G) such that s(e) < t(e). Let
w € X be the point corresponding to e. Let 1, be the set of branch points
of f with branching index divisible by p that specialize outward from w. Let
B, index the set of étale tails X, lying outward from w. Then

o 1= 3 (o — 1) — [T,
beBe
Corollary 5.6 (Monotonicity of the effective different). If v,v" € V(G),
and v < ', then 6T > §¢ft.

Proof. Clearly we may assume that v and v" are adjacent, i.e., there is an
edge e such that s(e) = v and t(e) = v'. Since the branch points of f are
assumed not to collide on the special fiber of our original smooth model
XRg, there is at most one branch point of f specializing outward from the
node T, corresponding to e. That is, there is at most either one primitive
tail or one branch point of index divisible by p lying outward from Z.. Since
op > 1 for all new tails X, ([15, Lemma 4.2 (i)]), we see by Lemma 5.5 that
o > 0. We conclude using Lemma 5.4 (3). O

6. Monotonicity

We maintain the assumptions and notation of §4, along with the assump-
tion that a p-Sylow subgroup of G is cyclic of order p™.

Lemma 6.1. Let x be a branch point of f with branching index exactly
divisible by p". If x specializes to an irreducible component W of X, then
either W is the original component, or the unique component W' such that
W <W and W intersects W is a p°-component, for some s > r.

Proof. By Lemma 5.1 the deformation data above W are all multiplicative,

and by [12, Proposition 5.2] they are all identical. Thus (53‘/—ff =r+ 1%,

as 0, = 1 for all w; above W. Assume W is not the original component.
Then, by Corollary 5.6, 5%f, >r+ Zﬁ. This is impossible unless W is

a p®-component with s > r. If s = r, we must have 5%, = 6% =7r+

I%. By Corollary 5.6, o€ = 0 for e either edge corresponding to {w} =

W N W'. Since the deformation data above W are identical and ciﬁ is a
weighted average of invariants, we have o;,, = 0 for all w; above W. But
this contradicts Lemma 5.1. So s > r. O
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Lemma 6.2. Let T be a singular point of X such that there are no étale
tails Xy lying outward from T. If Iz < G is an inertia group above T, then
mp = 1.

Proof. We first claim that, given an inseparable component W C X, there
cannot be exactly one point w € W such that m 1> > 1. To prove the claim,
let V €Y be a component above W. Since W is inseparable, it follows that
Dy7 has a normal subgroup of order p (namely, the order p subgroup of Iy7).
By [15, Corollary 2.4], Dy has a quotient of the form Z/p” x Z/mDV, where
the action of Z/m Dy On Z /p¥ is faithful, and Z/p” is a p-Sylow subgroup of
Dy If mp. = 1, then m;_ =1 for all w € W, so assume mpg > 1. Then

V — W has a quotient Z/m Dy-cover V' — W, which must be branched
at at least two points, say w; and wy. Then I, and Iy, are non-abelian
subgroups of Z/p” X Z/m D> Meaning that m I, and m I, are greater than
1. This proves the claim.

Now, if W is an inseparable tail, then there is only one possible point
w € W where myr_ might not be 1 (the intersection point with the rest of
X), and the claim shows that we do, in fact, have mpr. = 1. The lemma
then follows by inward induction. O

Definition 6.3. We call the stable reduction f of f monotonic if for every
W = W’, the inertia group of W' is contained in the inertia group of W. In
other words, the stable reduction is monotonic if the generic inertia does
not increase as we move outward from X along X.

In the situation of Theorem 1.1, all covers are monotonic:

Proposition 6.4. If f is a three-point G-cover oij’l, where G has a cyclic
p-Sylow subgroup of order p", and mg = 2, then f is monotonic.

Proof. Suppose f is not monotonic. Then there exist j < n and a set X
of p/-components of X with the following properties: Xy ¢ X; the union
U of the components in 3 (viewed as a closed subset of X) is connected;
and each irreducible component of X that intersects U but is not in ¥ is
a p'-component, i < j (think of U as being a “plateau" for inertia). In
particular, j > 0. Note that, by Lemmas 4.3 and 6.1, no branch point of f
specializes to U (this is the only place where we use Xo ¢ ).

Recall that G (resp. G’) is the dual graph (resp. augmented dual graph) of
X (§4.1). Let @ be the set of all edges e € E(G’) such that s(e) corresponds
to a component in X, and let ®' be the set of those e € ® such that t(e)
does not correspond to a component in ¥ (in particular, the inertia of (e)
has order smaller than p’). If e € ® corresponds to a point Z € X, then we
write oP°" to mean the invariant of any bottom deformation datum above

the component corresponding to s(e) at Z (this is equivalent to o¢f7—1
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in the language of [15, Definition 3.10]). By [15, Lemma 3.11 (i)] we have
obot = —gbot for all e € ®\@'. By [15, Lemma 3.12] (and the fact that no
branch point of f specializes to U) we have, for any vertex v representing
a component in ¥, that

S - = Y (o1 =2
ecE(G") e€E(G)
s(e)=v s(e)=v
A simple induction argument (cf. the proof of [23, Corollary 1.11] or [15,
Theorem 3.14]) shows that

(6.1) > (odt—1) = —2.

ecd’

Suppose e € ®' corresponds to a point T € X, and let m. = m I, where
I+ is an inertia group of f above X. By Lemma 4.8, we have o2t ¢ mieZ.
Since t(e) has smaller inertia order than s(e), [15, Lemma 3.11 (ii)] shows
that oP°* > 0. Clearly, m. € {1,2}, and m, = 1 if no étale tails of X lie
outward from 7 (Lemma 6.2).

In particular, o?° — 1 > —1 and oP°" — 1 > 0 if there are no étale
tails lying outward from Z. Since mqg = 2, Corollary 4.10 shows that there
can be at most two étale tails. Thus there are at most three e € @' such
that an étale tail lies outward from the node corresponding to e (at worst,
the outermost e preceding each of the étale tails and the innermost e). So
oo — 1 >0 for all but at most three edges e € ®'. This contradicts (6.1),

proving the proposition. O

7. The auxiliary cover

We maintain the notation of §4. Assume that f : Y — X is a G-cover
defined over K as in §4 with bad reduction, so that X is not just the
original component (G need not have a cyclic p-Sylow group). Following
[19, §3.2], we can construct an auziliary cover foU* . Y¥ — X with
(modified) stable model (fu®)st . (Yaur)st — X5t and (modified) stable
reduction f** : Y™ — X, defined over some finite extension R’ of R. We
will explain what “modified" means in a remark following the construction.
The construction is almost entirely the same as in [19, §3.2], and we will
not repeat the details. Instead, we give an overview, and we mention where
our construction differs from Raynaud’s.

Let By index the étale tails of X. Subdividing By, we index the set of
primitive tails by Bprim and the set of new tails by Byew. We will write X,
for the tail indexed by b € Bg.

The construction proceeds as follows: From Y remove all of the compo-
nents that lie above the étale tails of X (as opposed to all the tails—this is
the only thing that needs to be done differently than in [19], where all tails
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are étale). Now, what remains of Y is possibly disconnected. We choose one
connected component, and call it V.

For each b € Bprim, let a, be the branch point of f specializing to X, let
T}, be the point where X, intersects the rest of X, and let p"m; be the index
of ramification above X} at Ty, with my, prime-to-p. Then X, intersects a p”-
component. At each point T, of V above T, we attach to V a Katz-Gabber
cover of X, (cf. [10, Theorem 1.4.1], [19, Théoréme 3.2.1]), branched of
order my, (with inertia groups isomorphic to Z/m;) at the specialization a
of ap and of order p"m; (with inertia groups isomorphic to Z/p" X Z/my)
at Tp. We choose our Katz-Gabber cover so that above the complete local
ring of Ty on Xy, it is isomorphic to the original cover. It is the composition
of a cyclic cover of order my branched at T and @, with a cyclic cover of
order p" branched at one point. Note that if m; = 1, we have eliminated
the branch point a; of the original cover.

For each b € Byew, we carry out the same procedure, except that we
introduce an (arbitrary) branch point @, # T} of ramification index m; on
the new tail Xj.

Let f*" : Y™* — X be the cover of k-schemes we have just constructed.
Let G < G be the decomposition group of V. As in [19, §3.2], one shows
that, after a possible finite extension R’ of R, we can lift " to a map
(fouxyst . (yauryst 5 X5t gver R/, satisfying the following properties:

(1) Above an étale neighborhood of the union of those components of X
other than étale tails, the cover f5 : Yt — X5 is IndGau. (f*%*)st
(see §1.4).

(2) The generic fiber f** : Y% — X is a G**-cover branched exactly
at the branch points of f and at a new point a; of index my for
each new tail b € Byew (unless my = 1, as noted above). Each ap
specializes to the corresponding branch point a; introduced above.

Keep in mind that there is some choice here in how to pick the new branch
points—for a new tail X, depending on the choice of @,, we can choose
ap to be any point of X that specializes to X\Zp. The set of such points
forms a closed p-adic disk (§3.2)

The generic fiber f%® of (f2)st is called the auwiliary cover, and
(feuz)st is called the modified stable model of the auxiliary cover. The spe-
cial fiber " is called the modified stable reduction of the auxiliary cover.

Remark 7.1. Usually, the stable model of f*** is same as the modified
stable model (f“*)st. However, it may happen that the stable model of
fa is a contraction of ()t (or that it is not even defined, as we may
have eliminated a branch point by passing to the auxiliary cover). This
happens only if X has a primitive tail X, for which my, = 1, and for which
the Katz-Gabber cover inserted above X; has genus zero. Then this tail,
and possibly some components inward, would be contracted in the stable
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model of f**. We use the term modified stable model to mean that we do
not perform this contraction. Alternatively, we can think of (f%“%)%! as the
stable model of f***  if we count specializations of all points of Y*** above
branch points of f (as opposed to f**) as marked points.

If we are interested in understanding the field of moduli of a G-cover (or
more generally, the minimal field of definition of the stable model), it is in
some sense good enough to understand the auxiliary cover, as the following
lemma shows.

Lemma 7.2. If the modified stable model (f¥®)st . (Yauz)st — X5t of the
auxiliary cover f** is defined over a Galois extension K** /Ky, then the
stable model ¢ of f can also be defined over K.

Proof. (cf. [23], Theorem 4.5) Take o € I'***, the absolute Galois group of
K** We must show that f = f and that o acts trivially on the stable
reduction f : Y — X of f. Let f : Y — X be the formal completion of
f5t at the special fiber and let f‘“‘z . Your _y X be the formal completion
of (f@ue)st at the special fiber. For each étale tail X} of X, let 7, be the
intersection of X with the rest of X. Write D, for the formal completion
of X\{Zp} in Xpst. Then Dy is a closed formal disk, which is certainly
preserved by o. Also, let U be the disjoint union of the formal completion
of X \ U, X} with the formal completions of the T}, in X ps:.

Write V =V x U. We know from the construction of the auxiliary cover
that

V = IndZauu. Y x 4 U.

Since o preserves the auxiliary cover and acts trivially on its special fiber,
o acts as an automorphism on V and acts trivially on its special fiber.
By uniqueness of tame lifting, &, = Y x 5 Dy is the unique lift of Y X5
(Xp\{ZTp}) to a cover of Dy (where the branching is compatible with that
of f, if X} is primitive). This means that o acts as an automorphism on
v X ¢ Dy as well.

Define By, := U x ¢ Dy, the boundary of the disk Dy. A G-cover of formal
schemes Y — X such that ¥ x U=V and Y x ¢ Dy = & is determined
by a patching isomorphism

(pb:VXuBbggb XDbBb

for each b. The isomorphism ¢} is determined by its restriction @, to the
special fiber.
Let X3 o be the generic point of Spec O and define Yy o, (resp.

Xp,Tp’
I -aux

Yioo) tobe Y x5 Xp oo (resp. Y x5 X 00). Then Yoo = Indgauzyb,oo'

b,00 \ -
Since o acts trivially on Yg'g, it acts trivially on Y, o, which is the special
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fiber of both V xy/ By and &, xp, By. So o acts trivially on @, and thus on
pp. Thus f" = f , and by Grothendieck’s Existence Theorem, f7 = f.
Lastly, we must check that o acts trivially on f. This is clear away from
the étale tails. Now, for each étale tail X, we know o acts trivially on X,
so it must act vertically on Y3, := Y X5 X,. But o also acts trivially on
721;‘2 Since Y « is induced from 72?,‘2, o acts trivially on Y o. Therefore,
o acts trivially on Y. O

The auxiliary cover f*“* is often simpler to work with than f due to the
following;:

Proposition 7.3. If we assume that a p-Sylow subgroup of G is cyclic,
then the group G*** has a normal subgroup of order p.

Proof. Let S be the union of all inseparable components of X. By construc-
tion, the inverse image V of S in Y*"* is connected, and its decomposition
group is G**. By [15, Corollary 2.12], G*** has a normal subgroup of order
P. O

Lastly, in the case that a p-Sylow subgroup of G is cyclic, we make a fur-
ther simplification of the auxiliary cover, as in [19, Remarque 3.1.8]. Since
G has a normal subgroup of order p, [15, Corollary 2.4 (i)] shows that
the quotient G*!" of G** by its maximal normal prime-to-p subgroup N
is isomorphic to Z/p" x Z/mg,,,., where the action of Z/mg,,, on Z/p" is
faithful. Note that mg,,,|mqg. Then Y := Y% /N is a branched G*'-
cover of X, called the strong auxiliary cover. Constructing the strong aux-
iliary cover is one of the key places where it is essential to assume that
a p-Sylow subgroup of G is cyclic, as otherwise G** does not necessarily
have such nice group-theoretical properties.

The branching on the generic fiber of the strong auxiliary cover is as
follows: At each point of X where the branching index of f was divisible by
p, the branching index of f5!" is a power of p (as G*'" has only elements of
p-power order and of prime-to-p order). At each branch point specializing
to an étale tail b € By, the ramification index is my, where mp|(p — 1) (cf.
19, §3.3.2]).

The following lemma shows that it will generally suffice to look at the
strong auxiliary cover instead of the auxiliary cover.

Lemma 7.4. Let f :' Y — X be as in §4. Let L be a field over which
both the stable model of f5'" and all the branch points of Y% — YS! qgre
defined. Then the stable model 5t of f can be defined over a tame extension

of L.

Proof. Since Y = Y% /N and p t |N|, it follows from [12, Proposition
6.2] that (f“*)s! can be defined over a tame extension of L. By Lemma
7.2, so can f*t. O
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While the Galois group of the (strong) auxiliary cover is simpler than
the original Galois group of f, we generally are made to pay for this with
the introduction of new branch points. Understanding where these branch
points appear is key to understanding the minimal field of definition of the
stable reduction of the auxiliary cover.

8. Proof of the Main Theorem

In this section, we will prove Theorem 1.1. Let k be an algebraically
closed field of characteristic p, let Ry = W (k), and let Ky = Frac(Ry). Note
that if k = F,, then Ky = Q}". Also, for all i > 0, we set K; = Ko((yi),
where (i is a primitive p'th root of unity.

Let f:Y — X = P! be a three-point G-cover defined over K, where G
has a cyclic p-Sylow subgroup of order p"” and mg = 2. Since mg|(p — 1)
([15, Lemma 2.1]), we may (and do) assume throughout this section that
p # 2. We break this section up into the cases where the number 7 of
branch points of f : Y — X = P! with prime-to-p branching index is 1,
2, or 3. By Lemma 4.3, if f has bad reduction, then 7 is the number of
primitive tails of the stable reduction. The cases 7 = 2 and 7 = 3 are quite
easy, whereas the case 7 = 1 is much more involved. This stems from the
appearance of new tails in the stable reduction of f in the case 7 = 1. The
ideas in the proof of the 7 = 1 case should work as well in the 7 = 0 case,
but the computations will be more difficult. See Question 9.1.

We mention that, because any finite extension of K/K( has cohomologi-
cal dimension 1, then if K is the field of moduli of a G-Galois cover relative
to Ko, it is also a field of definition ([3, Proposition 2.5]).

8.1. The case ™ = 3.

Proposition 8.1. Assume f : Y — X is a three-point G-cover defined over
Ko where G has a cyclic p-Sylow subgroup P with mg = |Ng(P)/Zg(P)| =
2. Suppose that all three branch points of f have prime-to-p branching index.
Then f has potentially good reduction. Additionally, f has a model defined
over Ky, and thus the field of moduli of f relative to Ky is K.

Proof. Suppose f has bad reduction. We know that the stable reduction
must have three primitive tails. But this contradicts Corollary 4.10. So f
has potentially good reduction.

Let f:Y — X be the reduction of f over k. Then f is tamely ramified.
By [6, Theorem 4.10], if R is the ring of integers of any finite extension
K /Koy, then there exists a unique deformation fgr of f to a cover defined
over R. It follows that fg, exists, and fr, ®r, R = fr. Thus fr, ®r, Ko is
the model we seek. g



Fields of moduli, 11 599

Proposition 8.1, while an easy consequence of the vanishing cycles for-
mula, gives a proof that the modular curve X(N) has good reduction to
characteristic p for many p, without relying on its modular interpretation
(see, for instance, [5]).

Corollary 8.2. Let N € N have prime factorization N = []i_, pj*. Let M
be the product of all primes that divide p? —1 for more than one i. Then the
modular curve X (N) has good reduction at all primes not dividing 6N M .

Proof. The modular curve X(N) can be realized (via the j-function) as a
PSLy(Z/N)-cover f : X(N) — X(1) & P!, branched at three points of
index 2, 3, and N, respectively. Let G = PSL9(Z/N), and let p be a prime
dividing |G| but not dividing 6 N M. By the Chinese remainder theorem,
one sees that G = [[; PSLy(Z/p;"). Furthermore, for each i, we have an
exact sequence

1 — P, — PSLo(Z/p}*) — PSLa(p;) — 1,

where P, is a p;-group and the third map is the modulo p; projection on ma-
trix entries. The order of PSLa(p;) is p;(p? —1)/2, and it is well known that
PSLs(p;) contains cyclic subgroups of order % and pL—; By the Schur-
Zassenhaus theorem, these subgroups lift to PSLy(Z/p;"). In particular,
the p-Sylow subgroup of PSLy(Z/p;") is cyclic.

Since p 1 6N M, we have that p divides the order of exactly one PSLa(p;).
In particular, the p-Sylow subgroup of G is cyclic. It is well known that
MpSLy(p) = 2 for this p; (relative to the prime p), and thus the same is
true for mg. Since p 1 6N, Proposition 8.1 shows that the cover f, and thus
X (N), has good reduction to characteristic p. O

8.2. The case ™ = 2. If there are exactly two branch points with prime-
to-p branching index, then f has bad reduction (f cannot have good re-
duction because it will have a branch point with p dividing the branching
index). We use the notation of §4. In particular, 5 : V¢ — X5 is the
stable model of f and f:Y — X is the stable reduction.

Proposition 8.3. Assume f :' Y — X is a three-point G-cover defined
over Ko where G has a cyclic p-Sylow subgroup P of order p" with mg =
|ING(P)/Zc(P)| = 2. Suppose that two of the three branch points of f have
prime-to-p branching index. Then the stable model of f can be defined over
a tame extension K of K,. In particular, f can be defined over K. Thus
the field of moduli of f relative to Kq is contained in a tame extension of
K,.

Proof. We know that X must have two primitive tails, and Corollary 4.10
shows that there are no new tails. The effective ramification invariant for
each of the primitive tails is % by the vanishing cycles formula (4.1). Then
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the strong auxiliary cover f5" : Y — X is a three-point Z/p” xZ/2-cover,
for some v < n.

By [12, Proposition 7.6], the stable model of 5" is defined over a tame
extension K" of K, C K,. Since the branch loci of f, f%* and f*"
are each the same three points, all branch points of the canonical map
YT s YST are ramification points of f5. The ramification points of ft
specialize to distinct points on ?Str, 80 G istr permutes them trivially. Thus
they are defined over K*!". By Lemma 7.4, the stable model of f is defined
over a tame extension K of K", O

8.3. The case 7 = 1. Now we consider the case where only one point,
say 0, has prime-to-p branching index. As in the case 7 = 2, the cover f
has bad reduction. The goal of this (rather lengthy) section is to prove the
following proposition:

Proposition 8.4. Assume f :Y — X is a three-point G-cover defined over
Ko where G has a cyclic p-Sylow subgroup P with mg = |Ng(P)/Zg(P)| =
2 and p # 3. Suppose that exactly one of the three branch points of f has
prime-to-p branching index. Then the stable model of f can be defined over
a finite extension K /Ky such that the nth higher ramification groups for the
upper numbering for (the Galois closure of) K/Ky vanish. In particular, f
can be defined over such a K. Thus the nth higher ramification group for
the upper numbering for the field of moduli of f relative to Ko vanishes.

We mention that, because mg = 2, the stable reduction of f is monotonic
(Proposition 6.4).

8.3.1. We first deal with the case where there is one primitive tail X},
but no new étale tails. Then the vanishing cycles formula (4.1) shows that
op = 1. Furthermore, we claim that mgew = 1. If this were not the case,
then the strong auxiliary cover would have Galois group G*'" = Z /p¥ xZ /2,
for some v < n, but only one branch point with prime-to-p branching index.
Then taking the quotient by Z/p” would yield a contradiction.

Since we are assuming that the stable reduction of f has no new tails, the
auxiliary cover fo* Y% — X is branched at either two or three points.
If it is branched at three points, we conclude using [12, Proposition 7.15]
that the stable model of f*** (which is the modified stable model) is defined
over some K such that the nth higher ramification groups of the extension
K /K vanish. If f®* is branched at two points (without loss of generality, 0
and 00), it is a cyclic cover, and thus clearly defined over K,,. Furthermore,
the points in the fiber above 1 are defined over K,,. We conclude that the
modified stable model of f** is defined over K, (Remark 7.1). By [21, IV,
Corollary to Proposition 18], the nth higher ramification groups of K, /Ky
vanish. By Lemma 7.2, Proposition 8.4 is true in this case.
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8.3.2. We now come to the main case, where there is a new étale tail
X, and a primitive tail X;. We will assume for the remainder of §8.3 that
p # 3 (although it is likely that the main result should hold in the case
p = 3, see Question 9.1).

Fix, once and for all, a coordinate x corresponding to the smooth model
X g, with special fiber X, so that f is branched at z = 0, z = 1, and z = oco.
By the vanishing cycles formula (4.1), the new tail X}, has o, = 3/2 and
the primitive tail X, has oy = 1/2. It is then clear that the auxiliary cover
has four branch points: at + = 0, x = 1, x = oo, and = = a, where a is
in the disk corresponding to X;. Keep in mind that, by the construction
of the auxiliary cover (§7), we may always replace a by any other point
in the disk corresponding to X;. Also, the modified stable model of the
auxiliary cover is, in fact, the stable model. The strong auxiliary cover
then has Galois group G*" = Z/p” x Z/2 for some v < n. Without loss
of generality, we can assume that 0 and a are branched of index 2, and 1
and oo are branched of p-power index. After a possible application of the
transformation z — %5 of P!, which interchanges 1 and oo while fixing
0, we may and do further assume that a does not collide with co on the
smooth model of X corresponding to the coordinate z (i.e., |a] < 1).

Lemma 8.5. At least one point of f5" is branched of index p”. Such a
point specializes to the original component.

Proof. Consider the Z/pxZ/2-cover f':=Y*" /QQ — X, where Q has order
p”~ 1. This must be branched at at least three points, thus at 1 or co. If 1
or oo is a branch point of f’, then its branching index in f is p”. By Lemma
4.3, any branch point of index p” specializes to a p”-component of X. By
Lemma 6.1, it specializes to Xg. O

Let us fix some additional notation for §8 by writing down the equations
of the cover f5" : Y$I" — XSt Let Z5" = Y$" /(Z/p”). Then Z51" — XSt
is a degree 2 cover of P!’s, branched at 0 and a. Therefore, Z*'" can be
given (birationally) over K( by the equation

(8.1) 2=1"1

X

Fix a choice of \/1 — a. Since z = 1 (resp. +v/1 — a) corresponds to x = oo
(resp. z = 1), then Y — Z5!" can be given (birationally) over K by the

equation
z+ 1)7" <z+ val —a)s

8.2 pl’ = = (
(52) v=o) = (1) (T
for some integers r and s, which are well-defined modulo p”. Without loss

of generality, we take 0 < r,s < p”. The branching index of f*" at oo is
p’~v(") and at 1 it is pv V).



602 Andrew OBUS

Write Z° for Y /(Z/p"), and let Z, (resp. Zy) be the unique irre-
ducible component of Z*"" above the new tail X (resp. the primitive tail
Xy).

We will work over a large enough finite extension K /Ky (i.e., we assume
the stable model of f*'" is defined over K and we replace K by a finite
extension whenever convenient). Let e € K be such that |e| is the radius
of the disk D corresponding to Zj. Since x = a corresponds to z = 0, we
can choose a coordinate ¢ on the disk D such that z = et. If Y, 7 are the
formal completions of (Y*!")5t and (Z*")%! along their special fibers, then
the torsor ¥ x 5 D — D can be given generically, after a possible finite
extension of K, by the equation

g"(0)
2!

/
(8.3) Y =1+ gl(‘O)

(et) + (et) +---.

Now, since o = %, and since X, intersects a p-component (see Lemma 8.6
below), we know that the generic fiber of this torsor must split into p*~!
connected components, each of which has étale reduction and is birationally
equivalent to a Z/p-cover branched at one point with conductor 3. Let

(%) ;
= gii!(o)e’. Then

(8.4) =1+t + et + .

Note that we have fixed the meaning of the symbols f, p, k, a, 7, s, n,
v, 1, y, 2, e, t, ci, 9(2), G, oy, oy, Xp, Xy, X0, Zp, and Zy. We will also
use the notation G and G’ for the dual graph and augmented dual graph of
X (§4.1).

The idea of the proof is as follows: In order to place bounds on the higher
ramification filtration of the field of moduli of f, it suffices by the results
of §7 to understand the minimal field of definition of the stable model of
f5 . In order to do this, we must first calculate the disk corresponding to
the new tail X,. Since we can take a to be any value in this disk, we choose
the value defined over the “smallest" field possible to be our a, and then
Ky, (a,+/1—a) will be a field of definition of f*¢". This is done in the first
large subsection, §8.3.4.

Since understanding the monodromy action is enough to pin down a
field of definition of the stable model of ", the goal is then to determine
the monodromy action of Gal(Ky/Kj) on F°". We use the criterion of [12,
Proposition 4.9], which essentially says that if this action fixes the tails

x-str 7str

of Y, then it fixes all of Y. To this end, in §8.3.5 (our second large
subsection), we show exactly which disks correspond to inseparable tails of
X (if there are any).
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In §8.3.6, we put all of the information from §8.3.4 and §8.3.5 together to
determine a field of definition for the stable model of f (up to tame exten-
sion). Lastly, in §8.3.7, we show that the appropriate higher ramification
groups vanish.

We start with §8.3.3, where we show some basic properties of (f5)¢
and prove a couple of algebraic results that will be used later.

8.3.3. Preliminary lemmas.
Lemma 8.6. Every étale tail X, of X intersects a p-component.

Proof. By Lemma 4.5, X intersects an inseparable component. If X, in-
tersects a p“-component, with a > 1, then [15, Lemma 4.2] shows that
op > p/2. Since p/2 > 2, this contradicts the vanishing cycles formula
(4.1). O

Lemma 8.7. The map %" is branched at x = oo of index p”, and x = oo
specializes to the original component Xy. If v(a — 1) = 0, then fotr is
branched at x = 1 of index p¥, and x = 1 also specializes to Xg.

Proof. Assume for a contradiction that oo is not branched of index p”.
Then 1 is branched of index p”, and specializes to X by Lemma 6.1.
Thus, the deformation data above X are multiplicative by Lemma 5.1,
and identical by [12, Proposition 5.2]. By assumption and by Lemma 4.3,
oo does not specialize to the original component. Then consider the unique
point T € X such that the specialization 50 of oo lies outward from Z. Since
la| < 1, there is no étale tail lying outward from Z. If ¢ € E(G’) corresponds
to (z, X, W), for some W, then Lemma 5.5 shows that o¢f = 0. But this
means that o, = 0 for each deformation datum above X, which contradicts
Lemma 5.1. We have thus shown that oo is branched of index p”. By Lemma
6.1, co specializes to Xg.

Now suppose v(a — 1) = 0. Assume for a contradiction that 1 does not
specialize to the original component. Consider the unique point 7 € X
such that the specialization 1 of 1 lies outward from =, and let ¢ € E(G’)
correspond to (T, Xo, W) for some W. As in the previous paragraph, o. = 0
for each deformation datum above X, and we get a contradiction. O

Corollary 8.8. All deformation data above the original component are
multiplicative. In particular, 5%1?0 =v+ ﬁ.

Proof. By Lemma 8.7, x = oo specializes to the original component X. By

Lemma 5.1, all deformation data above X are multiplicative. O
Lemma 8.9. Let ¢ = a + \/15—77 where «, B,a € K and /1 —a means

2
either square root. Let ag = 1 — (ﬁ) . If v(e) > 0 and v(a) = 0, then

«

v(a —ag) = v(c) + 2v(B). Note that ag € Ko(a, 5).
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2 2
Proof. Solving for a, we find that a =1 — (Cfa) . Choose ag =1 — (g) .
Then

2ca — ¢?
a=a=p <a2(a—c)2>
Clearly, v(a — ag) = 2v(8) + v(c). O
For positive integers ¢ and r1,...,r, such that >, r; = ¢, define

q _q
T1,...,Tn rleorp!

We leave the proof of the following lemma to the reader:

Lemma 8.10. For any prime p,

o <<r1 q ,rn>> = max (vp ((2))) = vp(q) — miin(vp(ri))

(here () is the standard binomial coefficient).

8.3.4. The new (étale) tail. An open p-adic disk is determined by its
radius and any point inside. The disk corresponding to the new tail X3 is
centered at a. The following lemma determines its radius.

Lemma 8.11. Let p (resp. e) be an element of K such that |p| (resp. e|)
is the radius of the disk centered at x = a corresponding to X (resp. the
disk centered at z = 0 corresponding to Zy ).

(1) Ifv(a) = v(a—1) =0, thenv(p) = %(V o 1) andv(e) = % V+z%)
(2) Ifv(a) >0, then v(p) = §(v+ 17) + 5v(a) and v(e) = g(v+ ;1 —

v(a)).
(3) If v(a—1) > 0, then v(p) = 3(v + p%l + v(l —a)) and v(e) =

s+ 51 o1l —a)).

Proof. Since 22 = 224 then for any 2, v(z) = 3(v(z — a) — v(z)). Since

X, is a new tail, z = 0 does not specialize to the corresponding disk. So
for any z in this disk, v(z — a) > v(a), thus v(x) = v(a). This shows that
v(z) = $(v(z — a) — v(a)) in this disk, and thus v(e) = 1(v(p) — v(a)).
Therefore, it suffices to prove the statements about v(p).

Consider the path {UZ}Z 0> {ei iz 0, where vy corresponds to X and v;
corresponds to X (§4.1). Write ez (resp osft 5¢f) for e, (resp. JEH 663)
(see Definition 5.2). Then §p = p—l’ whereas §; = 0.

To (1): Suppose v(a) = v(a — 1) = 0. Then X, is the only étale tail
lying outward from the point Zy corresponding to eg. No branch points
with branching index divisible by p lie outward from Zg, either. By Lemma
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5.5, offt = % for all 0 < i < j. By applying Lemma 5.4 (3) to each e;,
0 < i< j, we obtain v(p) = (v + Iﬁ)

To (2): Suppose v(a) > 0. In order to separate the specializations of
z = a and z = 0 on the special fiber, there must be a component W of X
corresponding to the closed disk of radius |a| and center 0 (or equivalently,
center a). Suppose W corresponds to v;,. Then, for i < i, Lemma 5.5 shows
that o$ = 1. For i > ig, Lemma 5.5 shows that o = % By construction,

we have Z;O 01 ¢, = v(a). Applying Lemma 5.4 (3) to each of the edges
€0, - - - €iy—1, wWe see that 5§ = V—l—i—v( ). Then, applying Lemma 5.4 (3)

to each of the edges e;,, .. e] 1, we see that Zl ZO & =2(v+ ﬁ —wv(a)).

So v(p) = Ezofz— (V‘|‘ )+ zv(a).

To (3): Suppose v(a = 1) > 0. In order to separate the specializations
of z = a and = 1 on the special fiber, there must be a component W
of X corresponding to the closed disk of radius |1 — a| and center 1 (or
equivalently, center a). Suppose W corresponds to v;,. Then, for i < i,
Lemma 5.5 shows that O’eff = 1 . For ¢ > iy, Lemma 5.5 shows that Jfﬁ = %
By construction, we have ZZO olei = v(1 — a). Applying Lemma 5.4 (3)
to each of the edges ey, ..., e,—1, we see that 635 =v+ 73 (1 —a).
Then applymg Lemma 5. 4 to each of the edges e, .. e] 1, We see that
Zz zoi (V+F*7(1*a)) Sov(p) 5061—%(’/+p%1+v(1*
a)). O

We now determine a point ag inside the disk corresponding to X. It will
turn out that ag (thus the disk) is uniquely determined by p, r, and s. We
choose ag so that it is defined over as small an extension of K as possible.
Our strategy will be to look at equations (8.3) and (8.4), understand the

dependence of the coefficients ¢; = £ l(o)e on a, and use Lemma 2.1 to
show that only for certain choices of a can the torsor given by (8.4) split
into p*~! copies of an Artin-Schreier cover.

The main idea of the argument is completely present when v(a) = v(a —
1) = 0 (Proposition 8.12, the simplest case). Unfortunately, calculational
difficulties make this idea more difficult to implement when v(a) > 0 or
v(a — 1) > 0 (Propositions 8.19 and 8.26), and the arguments are much
longer. Furthermore, when p = 5, we will have to use Lemma 2.1 (2) instead
of Lemma 2.1 (1), which obscures the main idea even more. Thus, on a
first reading, the reader might choose to read only §8.3.4.1, as well as the
statements of Propositions 8.19 and 8.26, before moving on to §8.3.5.

Note that our choice of a does not affect which case we are in, as the
radius of the disk corresponding to X is less than 1.
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8.3.4.1. The case v(a)=v(a—1)=0.
Proposition 8.12. If v(a) = v(a — 1) = 0, then the disk A corresponding

to X contains the Ky-rational point x = ag, where ag = 1 — ‘;—2

Proof Recall that we use the notation of (8.3) and (8.4). We know v(e) =
(v + 5 —L-) by Lemma 8.11. Since g (0)/4! is the coefficient of 2* in the

Maclaurln series expansion of g, and since v(y/1 —a) = 0, we obtain that

v(%)>0 Since ¢; —g()()e Wehavev( i) > iv(e) = (l/+ —5). It

follows that for pli (and i # 0), v(¢;) > v + ;=5. So for the torsor given by

(8.4) to split into p*~1 disjoint s,-torsors Wlth étale reduction, Lemma 2.1
(1) says that we must have v(c1) > v + L In particular, we must have

v(g'(0) > 2(v + 5 —L-). A calculation shows that

2s
Vi-a

Since the branching index of 1is p¥, s is a unit modulo p and v(2s) = 0.
Since v(¢'(0)) > (1/ +3 —1.), Lemma 8.9 (with c = g (0), a=2r, 3 =2s)
shows that ag = 1— %5 € Ko satisfies v(a—agp) > (l/+ 7). But by Lemma
8.11, v(p) = 2(v + pil), where |p| is the radius of A. So ap € A. O

g'(0) =2r +

Remark 8.13. In fact, if a is as in Proposition 8.12, we have v(c3) = l/—l—ﬁ
and v(¢;) > v + Zﬁ for ¢ # 3. By [12, Lemma 3.1 (i)], the torsor given

by (8.4) indeed splits into p*~! disjoint pp-torsors with étale reduction
birational to an Artin-Schreier cover branched at one point of conductor 3.

8.3.4.2. The case v(a) > 0. When v(a) > 0, the required calculations are
somewhat more involved. By Lemma 8.11, we have v(e) = %(V—i—ﬁ —v(a))
in this case.

Lemma 8.14. We have v(a) = v(r + s) < v — 1. In particular, v(a) € Z.

Proof. The cover v L7 splits completely above the specialization Z
of z = 0. Recall that t is a coordinate on the disk corresponding to Zp,
so that z = et. Then Z corresponds to the open disk [¢| < 1, and [18,
Proposition 3.2.3 (2)] shows that this disk splits into p* disjoint copies in
Y. In particular, g(et) is a p”th power in R[[t]]. If 3 a;t’ is a power series
in R[[t]] that is a p”th power, the coefficient of ¢ must be divisible by p”.
So the coefficient ¢1 of ¢ in g(et), which is ¢’(0)e, has valuation at least v,
and thus v(¢/(0)) > v —v(e) = 2v + fv(a) — ﬁ.
On the other hand, ¢'(0) = 2r + \/— which can be written as

(8.5) g (0) =2r +2s(1+ g +0(a?) = 2(r + 5) + sa + s(0O(a?)),
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where O(a?) represents terms whose valuation is at least 2v(a). If we assume
for the moment that v(a) < v — ﬁ, then we must have

, 2 1 1
v(g'(0)) > Fida gv(a) BET )

> v(a).

Since v(a?) > v(a), this means v(2(r + s) + sa) > v(a), so
v(r+s) = v(sa) = v(a)

(v(s) =0, by Lemma 8.7). Since v(r + s) € Z, we have

v(a) =v(r+s) <v-—1.

If instead, we assume that v(a) > v — ﬁ, then
2 1 1
0) > v+ -v(a) - ——— >v—1.
v(g'(0)) > 31/+ 3v(a) 5= 1) > v
So v(2(r +s)) =v(r+s) > v by (8.5).
It remains to show that we cannot have both v(a) > v — ﬁ and
v(r + s) > v. Suppose, for a contradiction, that this is the case. Then,

+
multiplying g(z) by (z—Zerll—a)’" S, which is a p”th power, we obtain the

alternative equation
» (2t V1—a fr—V1i—a\
sz z+1 z—1
o} (8.2).£0nsider the unique component V' of Z°" above W, the compo-
nent of X corresponding to the disk of radius |a| around z = 0. Then V

corresponds to the coordinate z. The formal completion of V\{z = +1} in
Z%% is isomorphic to Spec C' where

C=R{(z—1D7L(z+1D 1L

We have
J1 =
PV (VT=a-D(z+ 1)L
z+1
Since
1
v(\/l—a—l):v(a)>y—1+71,
»—

this is a p”~!st power in C' (which follows from the binomial expansion).
Likewise, (‘7‘_v 1_“) is a p”~ st power in C. So

(z—l—ﬂ)s <z—\/m>r

z+1 z—1
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1

is a p”~ st power in C. But this means that there are at least p”~! irre-

ducible components in the inverse image of V\{z = £1} in Y, and thus

that many irreducible components of Y above V.

Now, W is not a tail, so it is not an étale component by Lemma 4.4. So W
must be a p-component. Furthermore, it cannot intersect a })2—(:omr1p01flem7
because the inertia groups above the intersection point would have order
divisible by p?, and then there could not be p*~! irreducible components
above V. So Y has p”~! irreducible components above V, each a radicial
extension of degree p. Associated to each is one deformation datum. It has
three critical points: two at the intersection of W with outward-lying com-
ponents, and one at the intersection of W with inward lying components.
By Lemma 5.5, the first two critical points have invariants 3/2 and 1/2,
and [23, p. 998, (2)] shows that the third has invariant —1. Since no multi-
plicative deformation datum can have —1 for an invariant, the deformation
datum must be additive. But this contradicts [22, Proposition 2.8], proving
the lemma. O

Remark 8.15. Armed with the knowledge that v(a) = v(r + s), we can
run the argument of the second-to-last paragraph of the proof again to
see that g(z) is a p*(@~Lst power in C, and thus there are at least p?(®)—1

irreducible components of Y above V. In particular, W is a p’-component
for i <v—w(a)+ 1.

Lemma 8.16. The valuation v (g(i;!(o)) is at least v(a) — v(i).

Proof. Note that g(iz!(o) is the coefficient of z* in the Maclaurin series ex-
pansion of ¢g(z). Since v(a) > v(a) — v(i), it suffices to look modulo a. By
(8.2), g(z) is congruent (mod a) to

2 r+s
:<1+ 1) =(—1—-2z—22% 223 —...)"Fs,
o

Expanding out the above expression gives
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(8.7)

i q . 7"_|-3 .
—_1)rts |1 + 2|Zj:1 aj| S
(=1) Z Z ...,aq,r—i—s—zgzlaj

- a
i=1 I={i1,...,iq}CN L
A:(a17...,aq)€Nq

q
Zj:1 a;<r+s

Z;’.Zl ajij=i

(the contributions to the z* term come from taking a; different 2% terms
for j =1 to q).

Now, if Z?Zl aji; = i, then there exists j such that v(a;) < v(i). By
Lemma 8.10, the coefficient of 2z has valuation at least v(r 4+ s) — v(i),
which is v(a) — v(i), by Lemma 8.14. O

Recall that c; := %ei.

Corollary 8.17. Fori > 3, we have v(c;) > v+ p%l, unlessp=1i=>5 and

v(a) =v—1.

Proof. By Lemma 8.16, v(c;) > iv(e) + v(a) — v(i). By Lemma 8.11 (ii),
v(e) = $(v+ Iﬁ —v(a)). So

(88)  w(e)> (1/ + %1 - v(a)> + () — v(i)
(8.9) = V+7+i7 (V—i——u(ct)) — (7).

Therefore, v(¢;) > v + p%l whenever (133) (v + L —v(a)) > v(i). By
Lemma 8.14, v — v(a) > 1. One checks that (233) (v+ L5 —v(a)) > v(i)

always holds, except when p = ¢ = 5 and v(a) = v — 1. This proves the
corollary. O

Remark 8.18. In the case p = 5 and v(a) = v — 1, one uses (8.7) to see
that @ is congruent to 32("%®) (mod a) (this is the term where I = {1}
and A = (5); all other terms are 0 modulo a). Thus ¢5 is equal to 32 (T'gs)eg’
plus terms of valuation greater than v(ae®) = v+ 13 > v+ 1 =v+ p%l.
Also, v(cs) = v+ .

Proposition 8.19. Suppose v(a) > 0.
(1) If p > 5 or v(a) < v — 1, then the disk A corresponding to X,

contains the Kg-rational point x = ag, where ag = 1 — 5.
™
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(2) If p=>5 and v(a) = v —1, then A contains the point x = ag, where
s— 9 /54v+1 (H-S) 2
ag=1-— <5) (for all choices of 5th root).

-
Proof. To (1): By Corollary 8.17, v(¢;) > v + ;= for all i such that pli.
By Lemma 2.1 (1), the torsor given by (8.4) can spht into p*~! disjoint
pp-torsors with étale reduction only if v(c1) > v + 1%' In particular, we
must have

v(g'(0)) = v(2r + !

1 2 1
) > —I—j—v(e) B(V—i-j)—kgv(a).

2s
vi—a
By Lemma 8.9, ap = 1 — % > € K satlsﬁes v(a —ag) > (u + o1 L)+ v( ).

But by Lemma 8.11, v(p) = 2(v +3 L)+ Lv(a), where |p| is the radius of
A. So aqp € A.

To (2): Let ¢ = 32("£")e’. By Remark 8.18, v(cf — ¢5) > v + } and
v(cs) > n. Also, Corollary 8.17 shows that v(c;) > v+ % for all i > 5 such
that 5|i. By Lemma 2.1 (2), the torsor given by (8.4) can split into 57!
disjoint us-torsors with étale reduction only if

1
v (01— j32-54’/+1<r;8>e5) 2+

In particular, we must have

(8.10) v (g’(O) - i?}? - HAvFl (T _g S>> > v+ % —v(e) =v— é

Recall that ¢'(0) = 2r + \/—

v(<1—\/11_ﬁ>j32.54v+1<7“‘g$>) :U(a)+V—é>u—%

(as v(a) > 1), Equation (8.10) is equivalent to

25 — /32 5H1("E9) 1
v|2r+ > v — 5

vi—a
s— B 54V+1<T‘g5))2

By Lemma 8.9, we have v(a—ag) > V—%, where ag = 1( .

But v(p) = v — £, so ag specializes to X3, and we can take a = ag. O

1
6
Remark 8.20. As in Remark 8.13, one shows that if a is as in Proposition
8.19, then the torsor given by (8.4) indeed splits into p* ! disjoint p-torsors

with étale reduction birational to an Artin-Schreier cover branched at one
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point of conductor 3. Also, if we are in case (1) of Proposition 8.19 and
a=1-— f;—z, then since v(¢’(0)) > 0, we must choose v/1 —a = —2.

T

8.3.4.3. The case v(a—1) > 0. This case will be quite parallel to the
v(a) > 0 case. We have v(e) = (v +5 L.+ 9(1 — a)) by Lemma 8.11.
We claim that z = 1 is branched of mdex strictly less than p”. Indeed,
if x = 1 is branched of index p”, its specialization 1T would lie on X by
Lemma 6.1. But T must be a smooth point of X. So 1 corresponds to an
open disk of radius 1. Since v(a — 1) > 0, then a would specialize to 1 as
well, contradicting the fact that a specializes to an étale tail. Let p** < p”
be the branching index of = 1. Then we know v(s) = v —vy.

Since the specializations of 1 and a cannot collide on X, we must have a
component W of X corresponding to the disk of radius |1 — a| centered at
1 (or equivalently, at a).

The next two lemmas play the role of Lemma 8.14 for the case v(a—1) >
0.

Lemma 8.21. We have v(1 —a) <2(v —1+ Iﬁ)

Proof. Let Q < G*'" be the unique subgroup of order p*'. Consider the
cover (fst) : (YS”)St/Q — X% with generic fiber f’. Cons1der the path
{vitl_o, {ei}] 0 in G, where v corresponds to X and v; corresponds to W.
Write (o¢T) (resp. (65T)') for the effective invariant at e; for (f*!)" (resp.
the effective different at v; for (f*!)’). Then (6§1) = v — 1 + =Y

Since no branch point of f” with index divisible by p, and only one branch
point with index 2, specializes outward from the point corresponding to any
e;, Lemma 5.5 shows that (o) — 1 is a sum of elements of the form o — 1,
where 0 > 0,0 € lZ and o € Z for all but one term in the sum. Therefore,
(afﬁ)’—IZ—f so( )>l

By Lemma 6.1 and monotonlclty, x = 1 specializes to a component which
intersects a component which is inseparable for (f*!)'. In particular, since
x = 1 specializes on or outward from W, it must be the case that any
component of X lying inward from W is inseparable for (f5!)’. Then, we
can apply Lemma 5.4 to each e;, 0 < i < j, to show that

1 j
Since (5;5)’ >0 and vy > 1, this yields v(1 —a) <2(r -1+ ]ﬁ) O

Lemma 8.22. We have v(v/1 — a) = v(s). In particular, v(v/1 — a) € Z.

Proof. As in the case v(a) > 0, we must have that v(¢’(0)e) > v (see
beginning of proof of Lemma 8.14), so

1 c 1
— (¢ > 1—
v yl—i—p oSty 21}( a).
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Since v(1 —a) <2(v —1+ 5 —1-) (Lemma 8.21), we see that

2 1
/
>2_ >
oG O) 2 5 o2 >0
Recall that ¢'(0) = 2r + \/7 (2r) =0 (f is totally ramified above
x = o0), it follows that v(m) = 0. Therefore v(y/1—a) = v(2s) =
v(s). O

The following lemma plays the role of Lemma 8.16 when v(a — 1) > 0.
Lemma 8.23. The valuation v (@) > (1—=1d)v(vV1—a)—uv(i).

g
Proof. Again, < (0) is the coefficient of 2z’ in the Maclaurin series expansion

of g(z). Since (1 —i)v(v/1 —a) —wv(i) <0, it suffices to look at coefficients
modulo R (as an R-submodule of K'). Then, g(z) is congruent (mod R) to
(8.11)

ztvl-a S_ 1_,_# 8_(_1_2w_2w2_2w3_...)8
= - = ,
z—+v1—-a -1

where w =

1—a

. This is analogous to (8.6), and we conclude as we do in

1_
Lemma 8.16 that the coefficient of w' has valuation at least v(s) — v(i).
Thus the coefficient of z* has valuation at least v(s) — v(i) — v (/1 — a).
By Lemma 8.22, this is (1 —i)v(v/1 — a) — v(q). O

Recall that ¢; := £ @,(0) e'. Parallel to Corollary 8.17, we have:

Corollary 8.24. Fori > 3, we have v(c;) > v+
v(v1—a)=v—1.
Proof. By Lemma 8.23, v(¢;) > iv(e) + (1 —i)v(v/1 — a) — v(i). By Lemma

= 1, unless p=1=>5 and

8.11 (3), v(e) = 3 (v + 71 tv(l—a)). So

) 1
(812) o) > <1/ g ol - a)) F(1—i(VI=a) - v(i)
(8.13) —V+1+i_3<u+1—U(\/l—a))—v(i)

‘ N p—1 3 p—1 '
Therefore, v(¢;) > v + ;=7 whenever @ 3) v+ 55 —v(V1—a)) > v(i).
By Lemma 8.21, v — fu(\/l —a) > 1. One checks that @(V + z% -
v(v/1—a)) > v(i) always holds, except when p =i =5 and v(y/1 —a) =
v — 1. This proves the corollary. O

Parallel to Remark 8.18, we have:
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Remark 8.25. In the case p= 5 and v(s) = v(v/1 —a) = v — 1, one sees
(using (8.7) and (8.11)) that g )( ) is congruent to (M)_5 32(;) modulo
(vVI—a) "’ sR (viewed as an R—submodule of K). That is, £ (O) is equal to
(\/m)_5 32(Z) plus terms of valuation more than —41}(@), which is

4(1—v). So ¢5 is equal to (v/1 — a)_5 32(5)e’ plus terms of valuation greater
than4—4v+5v()—1/+12>1/—|—4—1/+ . Also, v(es) = v+ .

The following proposition plays the role of Proposition 8.19 when v(a —
1) >0.

Proposition 8.26. Suppose v(a — 1) > 0.
(1) If p > 5 orv(y/1 —a) < v—1, then the disk A corresponding to X,

contains the Ky-rational point x = agy, where ag =1 — Ti
(2) If p="5 and v(v/1 —a) = v — 1, then A contains the point x = a,
2
_ 5 /pdv41(s
where ag =1 — (8 > (5)> .

r

Proof. To (1): By Corollary 8.24, v(¢;) > v + ;=5 for all i such that pli.
By Lemma 2.1 (1), the torsor given by (8.4) can spht into p*~! disjoint
pp-torsors with étale reduction only if v(c1) > v + z%' In particular, we
must have

2s 1 2 1
>4 (V1<)
m)_u—i—p_l v(e) = 3(1/—i- — u( a))
By Lemma 8.9, ap = 1— f—z € K satisfies v(a —ag) > (V—i— —1+v(l—a)).
But by Lemma 8.11, v(p) = 2(v + ﬁ +v(1 —a)), where |p| is the radius
of A. So aqp € A.
To (2): Let ¢ = (V1 — a)_5 32(;)e’. By Remark 8.25, v(cf —cs5) > v+ 1
and v(c5) > n. Also, Corollary 8.24 shows that v(c;) > v + 1 for all i > 5

such that 5|i. By Lemma 2.1 (2), the torsor given by (8.4) can split into
5~! disjoint ps-torsors with étale reduction only if

v (q _ j (m)‘5 32 . pv+l (;) e5) >+ %.

In particular, we must have

v (g/(O) - i (m)* 32 5t (;)) >v+ i —v(e) = %

v(g'(0)) = v(2r +
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which can be rewritten as

2s — 9/32 - 512
v(2r+ (5))2

S| Ut

Vi—a

T

By Lemma 8.9, we have v(a—ag) > 21/—%, where ag = 1— (

But v(p):21/—%,so ap € A. O

Remark 8.27. As in Remarks 8.13 and 8.20, one shows that if a is as in
Proposition 8.26, then the torsor given by (8.4) indeed splits into p*~! dis-
joint p,-torsors with étale reduction birational to an Artin-Schreier cover
branched at one point of conductor 3. Also, if we are in case (1) of Propo-

sition 8.26 and @ = 1 — f,—z, then since v(¢’(0)) > 0, we must choose

Vi—a=->.

8.3.5. The inseparable tails. For the rest of the proof, we replace a with
the ag calculated in Proposition 8.12, 8.19, or 8.26 of §8.3.4, depending on
the congruency class of a (see the paragraph preceding Lemma 8.5). Main-
tain the notations of §8.3.4. Throughout §8.3.5, we assume that v > 1 (if
v = 1, there can be no inseparable tails by Lemma 4.5). Our goal is to
calculate exactly where the inseparable tails of X lie. We first place restric-
tions on what kinds of inseparable tails we can have and where they lie
(Lemma 8.28, Proposition 8.30), and then explicitly exhibit an inseparable
tail in each allowable situation (Proposition 8.31).
The next lemma shows us that we are not looking for too many tails.

Lemma 8.28. Suppose X has a new inseparable p’-tail X .

(1) The only new inseparable p’-tail is X.. Its effective ramification
invariant is o, = 2.

(2) There are two p’-components Xp and X g of X that intersect pI L
components and have non-integral effective ramification invariant
(see Definition 4.6). We have og = 03 = % Also, up to switching
indices 3 and ', we have Xo < Xpg < X}, and Xo < Xg < Xy .

(3) If v(a) > 0, then j < v —wv(a). Ifv(a—1) > 0, then j < v —

v(v1—a)—1.

Proof. To (1) and (2): Let {X,, a € A} be the set of all p/-components
that intersect p/'-components with j' > j. By Lemma 4.5, this includes
all the p/-tails. Also, for i > 0, let II; be the set of all branch points of f
(equivalently f5") with branching index divisible by p’. As a consequence
of [15, Proposition 3.17] (setting the “a" of [15] equal to our j) and mono-
tonicity, we have the following equation relating the effective ramification
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invariants of the X, (see Definition 4.6):

(8.14) M1l =2=) (00— 1)
acA

By definition, o, > 0 for any X . Furthermore, by [15, Lemmas 4.1, 4.2
(i)], any new inseparable tail X, has invariant o, > 2. By Lemmas 6.2 and
4.8, any X, that has non-integral effective ramification invariant and is not
a tail must lie between X and either X, or X/, and must have o, > % By
monotonicity, there are at most two such components: Call them Yﬁ and
possibly 75/. If there is a new inseparable p’-tail X, then the only way
that (8.14) can be satisfied is if [II;11| = 2, if X, is the only new p’-tail
(and o, = 2), and if X5 and X g both exist (with o3 = o3 = 3). Since
the conductor of a Z/p®extension of k[[t]] is always at least p*~! (see, e.g.,
[17, Lemma 19]), we see that X (resp. X 5) intersects a p/T!-component,
because otherwise the invariant oz (resp. og/) would be at least £.

To (3): If v(a) > 0, recall that W is the component of X separating 0
and a. Assume that 3 and 3’ are as in the statement of (2). Then W < X
(and W < X ). Now, by Remark 8.15, the order of generic inertia above
W is at most p*~?(@+1, By monotonicity, X s has less inertia than W. Since
X g is a p/-component, we see that j < v — v(a).

If v(a—1) > 0, then Lemma 8.22 shows that f*" is branched above 1 of
index p*~*(VI=9)_ From the proof of (2), |I;41| = 2, which means that 1 is
branched of index at least p/ 1. It follows that j < v —v(y/1—a) —1. O

Not only does Lemma 8.28 show us that we are not looking for too
many tails, but it (in particular, part (2)) also gives information on the
inseparable interior components Yg and Y@/ of X. The next lemma gives
further information on the corresponding disks.

Lemma 8.29 (cf. Lemma 8.11). Suppose X has a new inseparable P’ -tail
X, and maintain the notation X g from Lemma 8.28. Let Zg be the unique
component of 7" above Xp. Let € (resp. p') € K be such that the radius
of the disk corresponding to Zg (resp. Xg) is || (resp. |p]).
(1) If v(a) = v(a—1) = 0, then v(p') > 2(v — j + p%l) and v(e') >
s(v =7+ 559).
(2) If v(a) > 0, then v(p') > 2(v — j + p—il) + 1v(a) and v(e) >
Lo —j+ 2L — o(a).
(3) Ifv(a—1) >0, thenv(p') > 2(v —j + 1% —v(l —a)) and v(e') >

3=+ (1l —a).

Proof. We give only a sketch. As in Lemma 8.11, we have v(e') = 3 (v(p) —
v(a)), so it suffices to prove the statements about p'.
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Let Q@ < G*'" be the unique subgroup of order p?, and let
(fst)/ . (Ystr)st/Q N Xst

be the canonical map.

Consider the path {v;}{_,, {e; f;é, where v corresponds to X and v,
corresponds to X g. Write (o§)’ for the effective invariant for (f*!)’ at e;.
The effective different for (f5) at vy is v — j + p%l, whereas at vy it is 0.
Lastly, write A; = 1 (resp. 0) if X, lies (resp. does not lie) outward from
the point corresponding to e;. In particular, Ay 1 = 0, so A; is not always
1.

To (1) (cf. Proof of Lemma 8.11 (1)): By Lemmas 5.5 and 8.28, (o) =
% + A;. In particular, A,y = 0, so (Ufﬁ)’ < % with equality not holding

for some i. By applying Lemma 5.4 (3) to each e;, 0 < i < ¢, we obtain
o) > 20— j+ -1y).

To (2): Recall that W is the component of X corresponding to the closed
disk of radius |a| and center a. Suppose W corresponds to v;,. Then, for
i < ip, Lemma 5.5 shows that (o§%)" = A;. For i > i, Lemma 5.5 shows
that (o¢) = 2 + A, If A; were equal to 1 for all i, we would have v(p') =
Zv—j+ p—il) + fv(a) (cf. Proof of Lemma 8.11 (2)). But since, for large
enough i, we have A; = 0, we can see from Lemma 5.4 (3) that v(p’) >
Fv =i+ )+ zu(a).

To (3): In this case, W is the component of X corresponding to the
closed disk of radius |1 — a| and center a. Suppose W corresponds to vj,.
Then, for i < ig, Lemma 5.5 shows that (o)’ = —% + A;. For i > 1,
Lemma 5.5 shows that (o)’ = 1 + A;. If A; were equal to 1 for all i, we
would have v(p') = 2(v — j+ -15 +v(1 —a)) (cf. Proof of Lemma 8.11 (3)).

p—1
But since, for large enough i, we have A; = 0, we can see from Lemma 5.4
(3) that v(p') > 2(v —j + pil + (1 —a)). O

Knowledge of the inertia groups above Yﬁ, Yﬂ/, as well as the disks to
which they correspond, gives further restrictions on the inseparable tails,
as we see below.

Proposition 8.30. Suppose that X has a new inseparable p’-tail. Then
v(a) > 0 orv(a—1) > 0. Furthermore, if v(a) > 0, then either j = v—wv(a),
or bothp =5 and j = v —wv(a) — 1. If v(a—1) > 0, then p = 5 and

j=v—ov(y1—a)-1.

Proof. Maintain the notation X 3 and Zg from Lemma 8.29. Let €’ be such
that the radius of the disk corresponding to 75 is |€/|, and let ¢’ be a
coordinate on this disk. Let Q < G*" be the unique subgroup of order p’.
Write g : (Y$") :=Y/Q — Z*% for the canonical map. We can write the
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equation of ¢ in terms of ¢’ as

g'(0)
1!

g"(0)
2!

v—J

Yy = g(et) =14 S () + T ()

We claim that, unless j and a are as in the statement of the proposition,
the right-hand side is a p”~/th power in Frac(R{t'}). This means that
(Ystr)st /@ splits into p” 7 irreducible components above Z g, each mapping
isomorphically to 75. This implies that Yg is a p/-component for f that
does not intersect a p’Tl-component, which contradicts the definition of
Xp.

Let ¢, be the coefficient of (#') in g(et’). Then ¢, = ci(%)i, so v(c) =
v(¢;) — i(v(e) — v(€)), which is greater than v(c;) — £j, by Lemmas 8.11
and 8.29.

In the case v(a) = v(a — 1) = 0, it is clear from Lemma 8.29 that
v(d) > u—j—i—p%l for i > 3. Also, by Lemma 2.1 (1), we have v(¢;) > u—l—p%l
for i = 1,2. Then

1

()>+1 Sy—j+
v 13J”‘7—1

for i = 1,2. Since v(c}) > v — j + ;=5 for all 4, the binomial theorem shows

that g(e't') is a p“~Jth power in Frac(R{t’}) finishing this case.
Now, suppose v(a) > 0. Since v(c}) > v(c;) — 54, Equation (8.9) shows
that

By Lemma 8.28 (3), v — j — v(a) > 0. We obtain that v(c}) >v —j + ﬁ
for ¢ > 3, unless j = v —v(a) or both j = v —wv(a) —1 and p =i = 5.
Barring these possibilities we conclude as in the case v(a) = v(a -1)=0
that v(c}) > v —j + 5= for i = 1,2. Since v(d) >v—7j + 5= for all i,
the binomial theorem shows that g(e't’) is a p* Jth power in Frac(R{t’ s
finishing this case.
Lastly, if v(a — 1) > 0, then since v(c]) > v(¢;) — %4, Equation (8.13)
shows that
, 1 -3 1 )
o) > v =gt g = oI a) — u()
By Lemma 8.28 (3), v—j—v(y/1 — a) > 1. We obtain that v(c}) > y—j—i—{%
for i > 3, unless p =49 =5 and j = v — v(y/1 —a) — 1. We conclude as in
the case v(a) > 0.
|
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Proposition 8.30 has narrowed down the possibilities for inseparable tails
to the point that we can now explicitly exhibit every possible inseparable
tail.

Proposition 8.31. A new inseparable tail in fact exists in all cases allowed
by Proposition 8.30. In particular:
(1) Ifv(a) > 0, then X has a new inseparable p* V¥ -tail corresponding
1
to the disk of radius p_(v(a)Jr(P—l)) around x = 5. The two compo-
J— 1
nents of z°" lying above correspond to the disks of radius pf(Q(P*U)
around z = ++/—1. o
(2) Ifv(a) >0, p=5, and v(a) < v —1, then X has a new inseparable
pY @=L t44l corresponding to the disk of radius pf(”(a)Jr%) around

v(a 2/5
r = 1%, where d 1= £ (57::1) / (for any choice of 5th root).

The two components of Z° lying above correspond to the disks of
radius ping around the two possible choices of d.

(3) If v(a—1) > 0, p =5, and v(v1—a) < v — 1, then X has a
new inseparable p”*”(M)*l—tail corresponding to the disk of ra-

v(vI=a 2/5
dius p_(v(l_a”%) around x = %5, where d := £27 (%)

(for any choice of 5th root). The two components onStr lying above

correspond to the disks of radius p~(vlv 1=0+3) around the two POS-
sible choices of d.

Combining this with Lemma 8.28 (1), we obtain:

Corollary 8.32. The new inseparable tails mentioned in Proposition 8.31
are all the new inseparable tails of X.

Before proving Proposition 8.31 we prove a lemma. Recall that
()_<z+1>r z++v1l—a °
9= z—1 z—1—a)

Lemma 8.33. Suppose p = 5.
(1) Suppose v(a) >0, v(a) <v—1, anda=1— fj—z Let d,e" € R with
2

v(d) = 2 and v(€") = 5. Then, if we expand g(d+€"t") as a power

series in R{t"}, we will have g(d + €"t") =
2
g(d) + (-1)"** (2(7“ + s)dze'/t" +2(r + S)d(e”t”)2 + 3(r5+8)(6"t”)5>

modulo 5”(a)+%+€R{t”} for some € > 0. Furthermore,

v(g(d) — (=1)"**) = v(a) + 1.



Fields of moduli, 11 619

(2) Suppose v(a—1) > 0, v(v/1—a) <v-—1, anda =1 — j—z Let
d,e" € R with v(d) = v(vT—a)+ 2 and v(e") = v(vI—a) + 1.
Then, if we expand g(d+ €"t") as a power series in R{t"}, we will
have g(d + €"t") =

r ré 3275
g(d) + (=)™ <—882d26"t” = 85d("t")? — (")’

modulo 5°(V 17“”%*6]%{75”} for some € > 0. Furthermore,
v(g(d) — (=1)"*) = v(v/1 —a) + 1.

Proof. Write /1 —a = —2 (Remarks 8.20, 8.27).
To (1): We can write

(8.15) 9(2) = <zi>+ <<Z+z\fl_7a> (z —Zx;ll—ians'

Recall (Lemma 8.14) that v(r + s) = v(a). We will calculate g(d+ €”t") by
first expanding g(z) as a power series, and then plugging in z = d + €”t".
Note that, since min(v(d),v(e”)) = %, we can essentially think of z as
having valuation %, and thus can ignore terms of the form cz’ such that
v(c) + 2i > v(a) + 2. Throughout, we use the notation ¢ ~ 7 if, thinking
of z as a generic element of R having valuation %,
terms with valuation > v(a)+ 2. Since v(a) > 1, note that a?z ~ 0. This, as
well as the fact that v(a) = v(r+s) (Lemma 8.14), will be used repeatedly
(without mention) below.

Using (8.6), (8.7), and simplifying, we can write

we have ¢ = 7 modulo

s16)
<z —_F i) ~ (—1)s (1 +2(r+8)z + g(r +5)2 + %(r I s)z5> .

On the other hand, since /1 —a = -7, ifwelet y = /1 —-a—1= —#,
then v(u) = v(a). We can write

((ZJ;T) (z _z\;%))"’ = ((1+ zil)(1+ z—f-,ﬂ)s

22 -1’
and thus
((z+\/1—a>< z—1 ))@
(8.17) z+1 z—+v1—-a
1—|—2M(z+z3)%1—2(7“—{—5)(24—23).

r
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Combining (8.15), (8.16), and (8.17) yields

. 2 32
g(z) = (1) (1 + g(r +5)25 + E(’I“+ 5)25> .

Now, if we plug in z = d+¢€”t” (and ignore all ¢” terms where the coefficient
has valuation > v(a) + 2), then 23 becomes d* + 3d%e"t" + 3d(e"t")? and
2% becomes d° + (e”t")?. We obtain the expression in the lemma.

Since v(2Z(r+s)d®) = v(a)+1 and v(3(r+s)d*) = v(a) + £, we see that
o(g(d) — (1)) = o(a) + 1.

To (2): Recall by Lemma 8.22 that v(s) = v(y/1 —a). Let w = ==
—%2. Again, we calculate g(d + €"t") by first expanding g(z), and then
plugging in z = d + €”t". Since min(v(d),v(e")) = v(v/IT—a) + 2, we can
essentially think of z as having valuation v(v/1 —a) + % and w as having
valuation % We will write o & 7 if, thinking of z (resp. w) as a generic ele-
ment of R having valuation v(v/1T — a)+ 2 (resp. £), we have 0 = 7 modulo
terms with valuation > v(v/1—a) + 5. Note also that v(s) = v(v/1—a)
(Lemma 8.22).

Using (8.7), we have

(8.18) <zj:i>Tzs(1Y(1%2rz)

(note that 22 ~ 0).
On the other hand, using (8.11), (8.7), and simplifying, we can write

Vi—a\’ 2
(H) ~ (—1)° (1 + 25w + gsw?’ + 3581115) .
Combining (8.18), (8.19), and substituting w = —%z yields

8rd 5 32r°

(8.20) g(z) ~ (=1)""* (1 ~ 327 T Ea” ) .

If we plug in z = d+ €”t"” (and ignore all ¢ terms where the coefficient has
valuation > v(v/IT — a) + 2), then 2® becomes d* + 3d%¢"t” + 3d(e"t")? and
2% becomes d° + (e”t")?. We obtain the expression in the lemma.

Since 0(352825 d®) = v(v/T—a) + 1 and v(%d?’) =v(vVT—a)+ 2, we see
that v(g(d) — (—=1)""*) = v(v/1 —a) + 1. O

We now prove Proposition 8.31:

(8.19)

2:

Proof. Since z 4 it is easy to check (as in Lemma 8.11) that it suffices

to prove the statements about i

Say that we wish to show that a disk D in P! corresponds to a component
of Z° lying above a new inseparable p’-tail X. of X. Let Q < G*" be
the unique subgroup of order p/. If Y, Z are the formal completions of
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(Y$')$t/Q and (Z5)%! along their special fibers, then we claim that it
suffices to show that the generic fiber of the torsor f Y x 5 D — D splits
into p* 7~ p,-torsors, each of which has étale reduction with conductor 2.

We prove the claim. Suppose D is such that f splits as desired. Since an
Artin-Schreier cover of conductor 2 has genus % > 0, then [12, Lemma
4.3] shows that X. is contained in the stable reduction of X. Since the
proposed disks corresponding to X. do not contain z = 0, 1, a or oo, it
follows that no branch point specializes to or outward from X.. So either
X, is a new inseparable tail, or there exists a new inseparable tail lying
outward from X,. In cases (2) and (3), no new inseparable tail can lie
outward from X, by Proposition 8.30, Lemma 4.5, and monotonicity. In
case (1), any new inseparable tail lying outward from X, would have to be
one of the tails in (2) or (3) (again using Proposition 8.30, Lemma 4.5, and
monotonicity), and inspection shows that this is not the case. Thus X, is
an inseparable tail, proving the claim.

It remains to show that, for the disks D in the proposition, f splits as
desired. Let z = d be a center of D, and enlarge K (if necessary) so that
K contains an element ¢” such that |e¢”| is the radius of D. Then we can
choose a coordinate ¢’ on D such that z = d + €”t”. Enlarge K again (if
necessary) so that g(d) € (K*)P". The generic fiber of f can be given by
the equation

yp”*j B g(d + €/lt//)
g(d)

To (1): Here d = /—1 (either square root) and e¢” € K with v(e”) =

ﬁ. Also, j = v —w(a), so v — j = v(a) = v(r + s), by Lemma 8.14.
So we may multiply % by p*"t5)th powers without changing the generic

fiber of f. By (8.15), we may assume that the generic fiber of f is given by

pv(a)_ Z+\/1—a ( z—1 > °
Y B z+1 z—+1—a '
Let = —"* = \/T —a — 1. Then v(y) = v(a). Thus we can write
(8.21)

y””(a>=h(z)=((1+ a (1 + o u)>5:1+28“

+0(1),

z+1 z—1-— 22 -1

where O(u?) signifies terms in z whose coefficients have valuation at least
2
v(p?).

After a possible finite extension, assume h(d) € (K*)

replace h(z) by %, without changing f. Expanding % out in terms of

P’ Thus we may
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t" gives

h/<d) //t//_|_ h//(d)
h(d)1! h(d)2!

For all ¢ > 0, Equation (8.21) shows that

RIC

) B B .
W) 2 v =@ =v =

1+

(6”75”)2 4o

So for i > 2,
h(i) (d) AV 1
Vi € > v =it =y
For ¢ =1, a direct calculation shows % = O(u?), so

v(};/((;l)) e’y > 2v(p) =2v(a) >v—j+ %1

For i = 2, a direct calculation shows
2z

(22 —1)°
Then v(h"(d)) = v(u) = v — j. Since v(h(d)) = 0, we have that

W) 1
v(h(cg)2)! (€))=v—j+ PR

h"(z) = 2su (—4(1 + 22) 4+ 22(2% — 1)) +O(u?).

By [12, Lemma 3.1 (i)], the generic fiber of f splits into pv(@)—1 fp-torsors,
each of which has étale reduction with conductor 2.

To (2): Here d = + (57;(1):1)2/5 (any 5th root) and e’ € K with v(e”) =
}Tg' Since v(r + s) = v(a), then v(d) = £. Also, v — j = v(a) + 1. Then the
generic fiber of f can be given by y”" ' % By Lemma 8.33 (1),
this is equivalent to

pr(a)+1 ~1+ (2(7, + s)dze”t” + 2(7, + S)d(e”t/l)Q + 32(7“5+ 5) (e”t”)5> ,
where “~" means we have equality up to terms with coefficients of valuation
v(a) + 2. Note that, since v(g(d) — (—1)""*) = v(a) + 1, dividing out by
g(d) is the same as dividing the coefficients of positive powers of t” by
(—=1)"*5, up to ~.
The valuation of the coefficient of (t”)? is v(a) + 2. If ¢/ and ¢ are

the coefficients of t” and ("), respectively, then plugging in d shows ¢ —

54(5(1% = 0. By [12, Lemma 3.1 (ii)], the special fiber of f splits into p*(%)

pp-torsors, each of which has étale reduction with conductor 2.

v —a 2/E)
To (3): Here d = 27 (5(\/177)“) (any 5th root) and e’ € K with

s

v(e”) = v(vT—a) + f£. Since v(s) = v(y/I—a) by Lemma 8.22, then
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v(d) = v(v/T—a) + 2. Also, v — j = v(a) + 1. Then the generic fiber of f

can be given by ypv(a)+1 = W'l;(ij)lt”). By Lemma 8.33 (2), this is equivalent

to

3 3 5
v(a)+l 2 in r nwan2 3217 s
yP N1+<—882det—882d(et) —584(€t) ,
where “~" is as in (2). Asin (2), dividing out by g(d) is the same as dividing
the coefficients of positive powers of ¢ by (—1)""% up to ~.
The valuation of the coefficient of (t”)% is v(v/I — a) + 2. If ¢] and ¢/ are
the coefficients of ¢’ and ("), respectively, then plugging in d shows
/15 5
1 (<)) _ (925 o5\ 5
ST s(/ima+s (27 -2 )534 ()",
which has valuation v(v1 —a) + 2 > v(v/I —a) + 2. By [12, Lemma 3.1
(i)], the generic fiber of f splits into pv(@—1 pp-torsors, each of which has
étale reduction with conductor 2. O

8.3.6. A field of definition of the stable model. We first determine
a field of definition of f*". Recall that f*'" is branched at 0, 1, co, and a,
and that K, = Ko((pv).

Proposition 8.34. The cover f5'" is defined (as a G5 -cover) over K" :=

K,(a,v/1—a) = K,(a).

Proof. The explicit equations (8.1) and (8.2) give the cover f". So it is
immediate that f*" is defined as a mere cover (i.e., without the G*" —
action) over Ko(a,v/1 — a).

Let a be a generator of Z/p” < G5, let 3 be an element of order 2 in
G®'", and let (,» be a pth root of unity. Since o* fixes z, Equation (8.2)
shows that a*(y) = C;;Vy for some i € Z. Also, Equation (8.1) shows that
B*(z) = —z. Then we see that 8*(g(z)) = g(z)~!. Thus B*(y) = Cﬁyil for
some ¢ € Z. This shows that the action of G*'" is defined over Ko((y) = K.
So f%" is defined over K, (a, /1 — a) as a G**"-cover.

To conclude the proof, note that either v(1 —a) = 0 or v(l —a) =
2v(s) € 2Z (Lemma 8.22). Since v(K,(a)*) D Z and p # 2, it follows that

V1—ae K,(a). O
Recall that we have fixed a = 1 — j—z, unless we are in the situation of
_ 5 /pdv+1(Tts 2

Propositions 8.19 (2) or 8.26 (2). In these cases, a = 1 — (S5+(5)>

r

ora=1-—

8.26).

2
) , respectively (see Propositions 8.12, 8.19, and
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Proposition 8.35. (1) If v(a) = v(a — 1) = 0, then (f5")5t can be
defined over a tame extension (K*")% of K,,.
(2) Suppose v(a) >0 orv(a—1) > 0.

(a) We have v > 1.

(b) If p>5,v(a) =v—1, orv(y/1—a) =v—1, then (f5)% can
be defined over a tame extension (K*)st of K, (a)(¥/1+ u),
where u € Ko(a) has valuation 1.

(¢) If p = 5 and both v(a) and v(v/1—a) are less than v — 1,
then (f51)5t can be defined over a tame extension (K)S of
K, () (V1 +u, V1 +'), where n € Q has prime-to-p valua-
tion, u € Ko has valuation 1, and v’ € Ko(y/n) has valuation
1.

Proof. Let K*'" = K, (a), as in Proposition 8.34.
We will use the criterion of [12, Proposition 4.9], which states that if f
has monotonic stable reduction, if L/K*" is such that G, fixes a smooth

point of X on each tail of X, and if G, fixes a smooth point of Y above
each tail of X, then (f*'")% can be defined over a tame extension of L.

To (1): Tt is clear that there is a K*"-rational point specializing to each
étale tail (namely, x = 0 and x = a). By (8.1) and (8.2), the fibers of 5!
above x = 0 and & = a consist of K*"-rational points. These points are
fixed by Gstr. Now, if v(a) = v(a — 1) = 0, there are no inseparable tails
(Proposition 8.30) and K*'" = K,,. This, together with the criterion of [12,
Proposition 4.9], proves (1).

To (2a): If v(a) > 0, then Lemma 8.14 shows that v > 1. If v(a—1) > 0,
then Lemmas 8.21 and 8.22 show that v > 1.

To (2b): Suppose we are in the situation of (2) and v(a) > 0. By Propo-
sition 8.31 (1), there is a p”~V(®-inseparable tail X. to which the K®-

rational point x = § specializes. Then each component of Z°" above

X, contains the specialization of one of z = +1/—1. Consider the cover
(Ystry — Zst where (Y*)! = Y*" /Q with @Q the unique subgroup of
G*'" of order p*~*(%). Equation (8.21) shows that this cover can be given
by the equation

v(a) z
yp

=1+2 O(u?
+2su—5— +O(),

where v(u) = v(a), and where the terms on the right-hand side are all in
Ko(a). Plugging in z = /1, we get that y?""” = 1+a, with v(a) =v(a).
By a binomial expansion (cf. proof of Lemma 2.1), 1 + o has a p*(®~1st
root in Ko(a), which is of the form 1 + u with v(u) = 1. So G ger( g7
fixes the fiber above the specialization of z = § € X for this cover. Since
the quotient by @ is radicial above X, it follows that G Kstr (Y1) fixes
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the fiber of Y above the specialization of x = § € X, pointwise. In
particular, it fixes a point above X..

If, instead, v(a—1) > 0, then there is a (not new) p¥~v(5)_inseparable tail
X, containing the specialization of £ = 1. Then each component of Z
above X contains the specialization of one of z = £1/1 — a. Consider the
cover (Y5I) — Z5t" where (Y*!") = Y5 /Q and Q is the unique subgroup
of G5t of order p¥~?(8). After multiplying by p”(®)th powers, this cover can

be given by the equation

(s 1\" 2 T
P ) - (5
z—1 z—1

Recall that, by Lemma 8.22, we have v(s) = v(y/1 — a). Plugging in z =
++v/1 — a and multiplying by (—1)", which is a p*)th power in K5, we
get that 37" = 1 + , with v(a) = v(s) = v(v/1 —a). As in the previous
paragraph, we conclude that there exists u € Ky(a) with v(u) = 1 such
that GKSt,.(m) fixes a point above X..

By Proposition 8.31 (1), these are the only inseparable tails in the sit-
uation of (2b). Applying the criterion of [12, Proposition 4.9] finishes the
proof of (2b).

To (2c): Assume we are in the situation of (2c). By Propositions 8.19
and 8.26, we have a € Q C K,, so K" = K, and u (from (2b)—the
inseparable tail in that case still exists in this case) is in Kj.

Suppose v(a) > 0. Then there is a new inseparable p” —v(a)—1_tail X
containing the specialization of a K’ := Ko( ¢/n)-rational point, where 7 €
Q and p t v(n) (Proposition 8.31 (2)). Each component of 7" above Xy
contains the specialization of the K’-rational point z = d of Proposition
8.31 (2). Consider the cover (Y*") — Z5" where (Y*")" = Y5 /Q and
Q is the unique subgroup of G of order p*~*(@~1. This cover is given by
the equation y?" " = g(2). Now, by Lemma 8.33 (1), g(d) = (=1)" "% +a/,
with v(o/) = v(a) + 1. Since (—1)"* is a p*(D+1st power in K, we may
assume ¢(d) = 1+ /. By the binomial expansion, 1+ o' has a p*(@th root
in K, which is of the form 1+« with v(u') = 1. So G (i fixes a

point above X . for this cover. Since the quotient by @ is radicial above X,
it follows that G KU fixes a point above X .

If, instead, v(a — 1) > 0, the exact same proof (using Proposition 8.31
(3) instead of (2) and Lemma 8.33 (2) instead of (1)) shows that we can
find n € Q with p f v(n) and u" € K’ := Ko(¢/n) such that G e piy) fixes
a point above the new inseparable tail X . We have now addressed all the
inseparable tails (Proposition 8.31), so we can apply the criterion of [12,
Lemma 4.9] to complete the proof of (2c). O
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Proposition 8.36. In all cases of Proposition 8.35, the stable model f*
of f can be defined over (K5")st

Proof. Since the branch loci of f%% and f5" are the same, all branch points
of YT _ Yt are ramification points of £5¥. Thus their specializations do
not coalesce on ?Str, and G gseryst must permute them trivially. So they are
each defined over (K*)%. By Lemma 7.4, f5! is defined over (K*")st. [J

8.3.7. Higher ramification groups. In this section, we calculate the
bounds on the conductors of the fields in Proposition 8.35, considered as
extensions of K. Recall that, for any finite Galois extension L/K (K a
finite extension of Ko), we write hy,x for the conductor of L/K.

Proposition 8.37. (1) If L is a tame extension of K, (v > 1), then
L/Ky is Galois and hy g, =v — 1.

(2) Letn € Ky be such that p 1 v(n), let u € Ko such that v(u) = 1,
and let v € Ko(¢/mn) such that v(u') = 1. Let v > 1, and let K’
be a tame extension of K := K, (y/n) (Y1 +u, Y1 +u'). If L is the
Galois closure of K' over Ky, then hr Kk, = max(v — 1, p%l).

Proof. To (1): By [21, IV, Corollary to Proposition 18], hg,/x, = v — 1.
Note that any tame extension of a Galois extension of Kj is, in fact, Galois
over Ky. So L/ Ky is Galois. By [12, Lemma 2.2], its conductor is also v — 1.

To (2): Fix an algebraic closure Ky of K. Let K” be the Galois closure
of K over Ky. Then, because any tame extension of a Galois extension of
Ky is Galois over K, we see that the compositum K’'K” is Galois over
Ky, thus L = K'K”. In particular, L/K" is tame. By [12, Lemma 2.2], it
suffices to show that hyer )/, = max(v — 1, J25).

Let uj, 1 < i < ¢, be the distinct Galois conjugates of v’ in an algebraic
closure of K. Then K" is the compositum of K, with

M = Ky (/m) (V1 +u, {/1+uf, ... {/1+u).

Note that M /K is Galois. The conductor of a compositum is the maximum
of the conductors ([12, Lemma 2.3]), so hgr /g, = max(v — 1, hy ). It
will suffice to show that hys/x, = 1%'

Note that the absolute ramification index of Kj is p — 1. By [14, Lemma
3.2(11)], hi om)/ K, = p- Since the lower numbering is invariant under sub-
groups, the greatest lower jump for the higher ramification filtration of
G(K1(y/n)/Ko) is p. Then h, (ym)/x, = ;27 by the definition of the upper
numbering.

Now, by [14, Lemma 3.2, Remark 3.4],

p _
hKI(W)(W)/KI(%) < ﬁ(p(p -1)-plp—1)=p.



Fields of moduli, 11 627

The same holds for K1 (¢/n)(¥/1+ u)/K1(¢/n). Thus, again using [12, Lemma
2.3], we see that hpr g, (pm) < p- By [14, Lemma 2.1] (with our Ko, K1(¢/7),
and M playing the roles of K, L, and M in [14]), either hy/x, = 1% or
hM/KO > Z% and

1

. P
p(p_l)(hM/Kl(W) p)_hM/Ko p—1

Since the left hand side is negative whereas the right hand side is positive,
the second option cannot hold. So hys/x, = p%l. O
Proof of Proposition 8.4. Note that in Proposition 8.35 (2b), either a € K|
or a € Ko(¢/n), for some n € Q with p { v,(n). Thus Proposition 8.37
shows that the Galois closures (over Ky) of all of the extensions (K*!")% in
Proposition 8.35 have conductor < v over K. This, along with Proposition
8.36 and the fact that v < n, completes the proof of Proposition 8.4. [

Proof of Theorem 1.1. By Proposition 8.37 (1), the extensions in Proposi-
tions 8.1 and 8.3 have conductor < n over Kj. This fact, combined with
Proposition 8.4 and Remark 1.2, proves Theorem 1.1. O

9. Further questions

Question 9.1. Does Theorem 1.1 hold even if we allow p = 3 or no prime-
to-p branch points?

If there are no prime-to-p branch points (7 = 0, in the language of §8),
then X can have up to two new (étale) tails. This allows for a greater
proliferation of subcases (for instance, the two new tails could branch out
from the same point of the original component). Techniques similar to those
used in §8.3 should work, and we have worked out some of the easier cases
(unpublished). However, keeping track of all the possibilities will be quite
tedious, and we do not pursue the calculation here.

If we allow p = 3 (even if we assume that there is a branch point of f
with prime-to-p branching index), then the stable reduction of f*" looks
very different than what we determine in §8.3. In particular, Lemma 8.6
does not hold. In fact, if X}, is an étale tail with ramification invariant
op = %, then it must intersect a p?-component (because the conductor of
a 7/3-extension in residue characteristic 3 cannot be 3). To pursue this
case using the techniques of §8.3 would require good, explicit conditions
characterizing the following extensions, in analogy with Lemma 2.1: Say R
is a complete discrete valuation ring with fraction field K of characteristic
0, residue field k algebraically closed of characteristic 3, and uniformizer .
Suppose further that R contains the 9th roots of unity. Write A = R{t}
and L = Frac(A). We wish to characterize Z/9-extensions M of L such that
the normalization B of A in M satisfies the following conditions:
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e Spec B/m — Spec A/7 is an étale extension with conductor 3.
e Spec B/ is integral.

For a similar statement in residue characteristic 2, see [12, Proposition C.1].
Question 9.2. What if the condition mg = 2 is relaxed in Theorem 1.17

Allowing arbitrary mg will require some new techniques, as the strong
auxiliary cover is in general no longer a p”-cyclic extension of P!, making it
difficult to perform explicit computations. However, it turns out to be true
that, if the cover has bad reduction, the deformation data above the origi-
nal component of X are all multiplicative, even for arbitrary me (this holds
for mg = 2, by adapting Lemma 8.5 to the 7 = 0 and 7 = 2 cases). One
might hope to obtain results using variations on the deformation theory of
torsors under multiplicative group schemes that Wewers develops in [24]. In
the case where v,(|G|) = 1, such deformation theory leads to a conceptual
understanding of where the disks corresponding to the étale tails of the
stable reduction (as in §8.3.4) are located, in particular showing that such
disks must contain rational points over a small field. It also does not rely at
all on having mg = 2. If one considers a more generalized version of Theo-
rem 1.1 where no restrictions on mg or the branching indices are required,
then generalizing [24] to the case of larger cyclic p-Sylow subgroups might
provide a more conceptual proof (in particular, with regards to the analog
of §8.3.4).

Appendix A. An Example of Wild Monodromy

In [15, Theorem 1.1], it is proven that if f : ¥ — X is a three-point
G-cover defined over a complete discrete valuation field K of mixed char-
acteristic (0,p), where G has a cyclic p-Sylow subgroup of order p" and
p does not divide the order of the center of GG, then the wild monodromy
group Ty, of f (i.e., the p-Sylow subgroup of Gal(K*'/K), notation of §4)
has exponent dividing p"~'. In particular, if n = 1, then Iy, is trivial (this
is [19, Théoreme 4.2.10]). In this appendix, we exhibit an example showing
that the wild monodromy can be nontrivial when n > 1. This is surpris-
ingly difficult (see Remark A.4). Our example is based on the calculations
of §8.3.

Throughout the appendix, let G = SLy(251), and let k be an alge-
braically closed field of characteristic p = 5. Let Ry = W (k) and Ko =
Frac(Ryp). Lastly, let K = Ko(puse) (that is, we adjoin all 5th-power roots
of unity to K), and let R be the valuation ring of K. Note that G has a
cyclic 5-Sylow subgroup of order 52 = 125 and mg = 2. We normalize all
valuations on Ry, Ko, or any extensions thereof so that v(5) = 1.
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Proposition A.1. There ezists a three-point G-cover f : Y — X = IP’}(,
defined over K, such that the branching indices of the three branch points
are e1, ez, and ez, with vs(e1) =0, vs(ez) = 2, and vs(e3) = 3.

Proof. We show that such a cover can be defined over Q%. Since Q% — K,
this will prove the proposition.

Let a = < (1) 1 > € (. This has order 251. We claim there exists 8 =

< CCL Z ) € G satisfying the following properties:

e The order of 3 is 250.
e The order of af is 50.
e The matrices @ and (3 generate SL2(251).

To prove the claim, first note that any G'La(251)-conjugacy class in G is
determined by the trace of the matrices it contains, unless the trace is £2.
In particular, the trace of a matrix determines its order if it is not +2. Let
7 be the trace of the matrices in some conjugacy class of order 250, and let
p be the trace of the matrices in some conjugacy class of order 50. Then T,
p, 2, and —2 are pairwise distinct. Choose a, b, ¢, and d in Fa51 solving the
(clearly solvable) system of equations:

at+d=rT1
a+c+d=p
ad —bc=1

Since the trace of af is a + ¢ + d, these equations ensure that g and af
have the desired orders. Let @ and (3 be the images of a and 8 in H :=
PSLy(251). Since ¢ # 0, one checks that 3 does not normalize the subgroup
generated by @. Then, by [9, II, Hauptsatz 8.27], we have that @ and 3
generate H. Furthermore, since [ is diagonalizable over GL2(251) and has
eigenvalues of order 250, we have 32> = —1I,. Since @ and [ generate H,
and [ generates ker(G — H), then a and § generate G.

Consider the triple ([a], 8], [@8]7!) of conjugacy classes of G. By [11,
I, Theorem 5.10 and Remark afterward], this triple is rigid. By [11, I,
Theorem 4.8], there exists a three-point G-cover of P!, defined over Q®,
with branching indices e; = ord(a) = 251, e3 = ord(S) = 250, and
ea = ord((aB)~1) = 50. This completes the proof of the proposition. O

Proposition A.2. If f:Y - X = ]P’}( is a cover satisfying the properties
of Proposition A.1, then f has nontrivial wild monodromy T'y,.

Proof. To fix notation, we assume f is branched at x = 0, x = 1, and
x = oo of index ey, ez, and e3, respectively, with vs(e1) = 0, vs(e2) = 2,
and vs(ez) = 3. By [13, Lemma 3.2], the stable reduction of f has both
a primitive étale tail and a new étale tail. Construct the strong auxiliary
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cover fSt" . Yst" — X of f (§7). This is a four-point G**"-cover, with
GS'" = 7,/125 x Z/2 such that the action of Z/2 is faithful. As in (8.1) and
(8.2), this cover is given by

(A1) 2 = 5’3;“
(A2) P = glz) = (fi)(%t) ,

where r and s are integers satisfying vs(r) = 0 and v5(s) = 1. Replacing
y with a prime-to-5 power, we can assume s = 5. By Lemma 8.7, we have
v(l —a) > 0 in K(a)/K, and then Lemma 8.22 and Proposition 8.26 (1)
show that we can take a = 1 — f—g’ In particular, f5" is defined over K.
By Proposition 8.31, the stable model (f57)st : (Y5ir)st — Xt of fstr
has a new inseparable 5-tail X.. We claim that there is an extension L/K
such that Gal(L/K) fixes X. pointwise, and acts nontrivially of order 5

x7str

on the stable reduction f° : Y™ — X of f*'" above X.. Since (fstr)st
is a quotient of the stable model (f2“*)t of the (standard) auxiliary cover
fe* (§7), then Gal(L/K) will act nontrivially of order divisible by 5 above
X, in (f@u®)st as well. Lastly, since, above an étale neighborhood of X,
the stable model % of f is isomorphic to a set of disconnected copies of
(f*ur)st the same holds true over a formal neighborhood X C X* of X...

That is,
YSt XXst X = Indgauz (Yaux)St XX.st X

Since f is defined over K, the Gal(L/K)-action on Y* x x«+ X is determined
by the action on (Y**)5 x v X and the fact that it commutes with the
G-action. So the action of Gal(L/K) on Y x+ X, thus on Y, is nontrivial
of order divisible by 5. This means that f has nontrivial wild monodromy.
It remains to prove the claim. Let Z5" = Y*I" /(Z/125), with stable
model (Z5")%! and stable reduction Z*"" . Then z is a coordinate on Z S and
by Proposition 8.31 (3), there is a component of 7" above X, containing
the specialization d of
7/5
z=d:= 2-57 ,

r

where we can use any choice of 5th root. Since X, is a p-component, there
are 25 points of Y above d. If g(d) is a 5th power, but not a 25th power, in
K(d) = K(v/5), and if L = K(d, ¥/g(d)), then the action of Gal(L/K(d))
will permute these 25 points in orbits of order 5, and we will be done (it
turns out that Gal(K(d)/K) fixes d, even though it clearly does not fix d).
This follows from Lemma A.3 below. O
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Lemma A.3. Letd = 2'5:/5, where r is a prime-to-p integer and we choose
any pth root of 5. Let g be the rational function in (A.2), with s =5 and
a=1-— 3—5‘ Then g(d) is a 5th power, but not a 25th power, in K(3/5).

Proof. Fix a 5th root of 5 in K, which we will denote by either /5 or 5'/5.
We first note that g(d) € Ko(+/5). By (8.20), we have

3 2 5
g(d) =+ <1 S g 32 d5> + 0(5%%),

75 55

where the o represents terms of valuation greater than % Upon plugging in
d and simplifying, this gives

g(d)==x(1-3- 511/5 _ 4. 52) + 0(59/4).

Using the binomal theorem, we see that g(d) has a 5th root 1 in Ko(V/5),
and

n=4(1—3-5%°—20) + o(5°/4).
We wish to show that 7 is not a 5th power in K (V/5).

Now, since K (v/5)/Ko(+/5) is abelian, any subextension is Galois. So if n
is a 5th power in K (v/5), then taking a 5th root of 7 must generate a Galois
extension of Ko(+/5). This is clearly not the case unless 7 is already a 5th
power in Ko(+/5), so it suffices to show that 7 is not a 5th power in Ko(V/5).
Since —1 is a 5th power in Kj, we may assume that 1 = 1943-55/540(55/4).

Suppose that 6 € Kq(+/5) such that #° =, and write

0=a+B-57°+4.5%°45.5%5 4 ¢. 545,

where «, 5, v, 0, and € are in Ky. Comparing valuations, we see that
6 € Ro[v/5]. Equating coefficients of 1 and 56/5 gives the equations

o®+58°=19 (mod 25)
o*3=3 (mod5)

The second equation yields & = 4 (mod 5), and then the first equation
yields 8 =3 (mod 5). But then a®+58% = 24+45-18 = 14 # 19 (mod 25).

So € cannot exist, and we are done. O

Remark A.4. The example above is quite complicated, and is not gener-
alizable in any meaningful way (for instance, it depends critically on having
p = 5). One hopes for easier examples, but they are difficult to come by.
For instance, results of [12, §7.1] show that no examples of three-point
G-covers with nontrivial wild monodromy can exist when G is p-solvable
and mg > 1. So if one wants to find an easier example where p does not
divide the order of the center of G, one needs to look either at a group
that is not p-solvable, or at a group where mg = 1. By Burnside’s theorem
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(see, e.g., [15, Lemma 2.2]), having mg = 1 implies that G is of the form
G = H x Z/p", where the action of Z/p™ on H is faithful.
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