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On the limit distribution of the well-distribution
measure of random binary sequences

par Christoph AISTLEITNER

Résumé. Nous prouvons l’existence d’une distribution limite de
la mesure de bonne distribution normalisée W (EN )/

√
N (quand

N → ∞) pour des suites binaires aléatoires EN . Par ce moyen,
nous résolvons un problème posé par Alon, Kohayakawa, Mauduit,
Moreira et Rödl.

Abstract. We prove the existence of a limit distribution of the
normalized well-distribution measure W (EN )/

√
N (as N → ∞)

for random binary sequences EN , by this means solving a problem
posed by Alon, Kohayakawa, Mauduit, Moreira and Rödl.

1. Introduction and statement of results
Let EN = (en)1≤n≤N ∈ {−1, 1}N be a finite binary sequence. For M ∈

N, a ∈ Z and b ∈ N set

U(EN ,M, a, b) =
∑{

ea+jb : 1 ≤ j ≤M, 1 ≤ a+ jb ≤ N for all j
}
.

In other words, U(EN ,M, a, b) is the discrepancy of EN along an arithmetic
progression in {1, . . . , N}. The well-distribution measure W (EN ) is then
defined as
W (EN ) := max {|U(EN ,M, a, b)| , where 1 ≤ a+ b and a+Mb ≤ N} .

The main result of the present paper is the following Theorem 1.1, which
solves a problem posed by Alon, Kohayakawa, Mauduit, Moreira, and
Rödl [2].

Theorem 1.1. Let EN denote random elements from {−1, 1}N , equipped
with the uniform probability measure. There exists a limit distribution FW (t)
of

(1.1)
(
W (EN )√

N

)
N≥1

.

The function FW (t) is continuous and satisfies

(1.2) lim
t→∞

t(1− FW (t))
e−t2/2 = 8√

2π
.
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It should be emphasized that the limit distribution of (1.1) is not the
normal distribution. However, as a consequence of Theorem 1.1 and the
Radon-Nikodỳm theorem, the limit distribution FW (t) has a density with
respect to the Lebesgue measure. The tail estimate (1.2) in Theorem 1.1
should be compared to the corresponding asymptotic result for the tail
probabilities 1− Φ(t) of a standard normal random variable, for which

lim
t→∞

t(1− Φ(t))
e−t2/2 = 1√

2π
.

The measure WN was introduced by Mauduit and Sárközy [11], to-
gether with two other measures of pseudorandomness. Again, let EN =
(en)1≤n≤N ∈ {−1, 1}N be a finite binary sequence. For k ∈ N, M ∈ N, X ∈
{−1, 1}k and D = (d1, . . . , dk) ∈ Nk with 0 ≤ d1 < · · · < dk < N , we define

T (EN ,M,X) = # {n : n ≤M, n+ k ≤ N, (en+1, . . . , en+k) = X} ,

V (EN ,M,D) =
∑
{en+d1 . . . en+dk

: 1 ≤ n ≤M, n+ dk ≤ N} .

This means that T (EN ,M,X) counts the number of occurrences of the pat-
tern X in a certain part of EN , and V (EN ,M,D) quantifies the correlation
among k segments of EN , which are relatively positioned according to D.

The normality measure N (EN ) is defined as

N (EN ) = max
k

max
X

max
M

∣∣∣∣T (EN ,M,X)− M

2k

∣∣∣∣ ,
where the maxima are taken over all k ≤ log2N, X ∈ {−1, 1}k, 0 < M ≤
N + 1− k.
The correlation measure of order k, which is denoted by Ck(EN ), is defined
as

Ck(EN ) = max {|V (EN ,M,D)| : M,D satisfy M + dk ≤ N} .
In [7] Cassaigne, Mauduit and Sárközy studied the “typical” values of
W (EN ) and Ck(EN ) for random binary sequences EN , and the minimal
possible values of W (EN ) and Ck(EN ) for special sequences EN . These in-
vestigations were extended by Alon, Kohayakawa, Mauduit, Moreira, and
Rödl, who in [1] studied in detail the possible minimal and in [2] the “typ-
ical” values of W (EN ), N (EN ) and Ck(EN ) (see also [10] for an earlier
survey paper). Among the results in [2] are the following two theorems.
Here and throughout the rest of the present paper, EN denotes random
elements of {−1, 1}N , equipped with the uniform probability measure.

Theorem A. For any given ε > 0, there exist numbers N0 = N0(ε) and
δ = δ(ε) > 0 such that for N ≥ N0

(1.3) δ
√
N < W (EN ) <

√
N

δ
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and
δ
√
N < N (EN ) <

√
N

δ
with probability at least 1− ε.
Theorem B. For any δ > 0, there exist numbers c(δ) > 0 and N0 = N0(δ)
such that for any N ≥ N0

P
(
W (EN ) < δ

√
N
)
> c(δ)

and
P
(
N (EN ) < δ

√
N
)
> c(δ).

In other words, Theorem A means that the pseudorandomness measures
W (EN ) and N (EN ) are of typical asymptotic order

√
N , while Theorem B

means that the lower bounds in Theorem A are optimal. In [2] there are
also theorems describing the typical asymptotic order of Ck(EN ), which
prove the existence of a limit distribution of Ck(EN )/E (Ck(EN )) in the
case when k = k(N) grows slowly in comparison with N (in this case the
limit distribution is concentrated at a point). At the end of [2], Alon et.al.
formulated the following open problem:

(Problem 33) Investigate the existence of the limiting distri-
bution of(
W (EN )/

√
N
)
N≥1

,
(
N (EN )/

√
N
)
N≥1

and Ck(EN )√
N log

(N
k

) .
Investigate these distributions.

Subsequently they write: “It is most likely that all three sequences in
Problem 33 have limiting distributions”.

Theorem 1.1 proves the existence of a limit distribution of the normal-
ized well-distribution measure of random binary sequences, by this means
solving the first instance of Problem 33 above. The case of the normality
measure N (Ek) seems to be much more difficult, and I could not obtain any
satisfactory results. The case of the correlation measure Ck(EN ) is consid-
erably different from the cases of the well-distribution measureW (EN ) and
the normality measure N (EN ), since Ck(EN ) depends on two parameters.
It is reasonable to assume that the limiting distribution (provided that it
exists) will depend on the choice of k = k(N). As mentioned before, there
already exist several results on the typical asymptotic order of Ck(EN ),
see [2, 3].

There exist several generalizations of the aforementioned pseudorandom-
ness measures, for example to higher dimensions and to a continuous setting
(see for example [4, 5, 9]); the problem concerning the typical asymptotic
order and the existence of limit distributions is unsolved in many cases.
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2. Auxiliary results
Lemma 2.1 (Hoeffding’s inequality; see e.g. [12, Lemma 2.2.7]). Let
(en)1≤n≤N be independent random variables such that en = 1 and en = −1
with probability 1/2 each, for n ≥ 1. Then

P
(∣∣∣∣∣

N∑
n=1

en

∣∣∣∣∣ > t
√
N

)
≤ 2e−t2/2.

Lemma 2.2 (Donsker’s theorem; see e.g. [6, Theorem 14.1]). Let (ξn)n≥1
be a sequence of independent and identically distributed random variables
with mean zero and variance σ2. Define

YN (s) = 1
σ
√
N

bNsc∑
n=1

ξn, 0 ≤ s ≤ 1.

Then

YN ⇒ Z,

where Z is the (standard) Wiener process and ⇒ denotes weak convergence
in the Skorokhod space D([0, 1]).

A direct consequence of Donsker’s theorem is the following Corollary 2.1:

Corollary 2.1. Let (en)n≥1 be a sequence of independent random variables
such that en = 1 and en = −1 with probability 1/2 each, for n ≥ 1. Then
for any t ∈ R

P

 max
1≤M1≤M2≤N

∣∣∣∣∣∣
M2∑

n=M1

en

∣∣∣∣∣∣ ≤ t
√
N

→ P
(

max
0≤s1≤s2≤1

|Z(s2)− Z(s1)| ≤ t
)

as N →∞.

The quantity max0≤s1≤s2≤1 |Z(s2)− Z(s1)| in Corollary 2.1 is called the
range of the Wiener process. Its density d(s) has been calculated by Feller
[8] and is given by

(2.1) d(s) = 8
∞∑
k=1

(−1)k−1k2φ(ks), s > 0,

where φ denotes the (standard) normal density function.
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Figure 2.1. The density function d(s) of the range of a
standard Wiener process.

Lemma 2.3. Let (en)1≤n≤N be independent random variables such that
en = 1 and en = −1 with probability 1/2 each, for n ≥ 1. Assume that N
is of the form

N = j2m for j,m ∈ Z, 210 < j ≤ 211 and m ≥ 1.
Then, if N is sufficiently large, for any t > 2

P

 max
1≤M1≤M2≤N

∣∣∣∣∣∣
M2∑

n=M1

en

∣∣∣∣∣∣ > 1.38t
√
N

 ≤ 224e−t
2/2.

Lemma 2.4. Let (en)1≤n≤N be independent random variables such that
en = 1 and en = −1 with probability 1/2 each, for n ≥ 1. Then, if N is
sufficiently large, for any t > 2

P

 max
1≤M1≤M2≤N

∣∣∣∣∣∣
M2∑

n=M1

en

∣∣∣∣∣∣ > 1.39t
√
N

 ≤ 224e−t
2/2.

For an integer B ≥ 1 we define modified well-distribution measures
W (≤B) and W (>B) by setting

W (≤B)(EN )
= max {|U(EN ,M, a, b)| : b ≤ B and 1 ≤ a+ b, a+Mb ≤ N}

and

W (>B)(EN )
= max {|U(EN ,M, a, b)| : b > B and 1 ≤ a+ b, a+Mb ≤ N} .

This means that forW (≤B) we only consider arithmetic progressions having
step size at most B, while for W (>B) we only consider arithmetic progres-
sions of step size larger than B. Trivially an arithmetic progression with
step size larger than B, which is contained in {1, . . . , N}, cannot contain
more than dN/(B + 1)e elements. The idea is that the limit distribution of
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W is almost the same as the limit distribution of W (≤B) for large B, while
the contribution of W (>B) is almost negligible if B is large.

Lemma 2.5. For any positive integer B there exists N0 = N0(B) such that
for all N ≥ N0 for any t ∈ R, t > 2,

(2.2) P
(
W (>B)(EN ) > 1.4t

√
N/(B + 1)

)
≤ 228(B + 1)2e−t

2/2.

Lemma 2.6. For any integer B ≥ 1 and any t ∈ R the limit

F
(≤B)
W (t) = lim

N→∞
P
(
W (≤B)(EN )N−1/2 ≤ t

)
exists.

We have to prove Lemmas 2.3, 2.4, 2.5 and 2.6. The proofs will be given
in this order below. Lemmas 2.3 and 2.4 are a maximal form of Hoeffdings
large deviations inequality (Lemma 2.1), and will be proved by using a clas-
sical dyadic decomposition method which is commonly used in probablity
theory and probabilistic number theory. Using Lemma 2.4 we will prove
Lemma 2.5, which essentially says that the probability that the discrep-
ancy along any arithmetic progression with “large” step size B is of order√
N is very small. Finally using Donsker’s invariance principle (Corollary

2.1) we will prove Lemma 2.6, which is the main ingredient in the proof of
Theorem 1.1 in the next section.
Proof of Lemma 2.3: We use a modified version of a classical dyadic de-
composition technique. By assumption N is of the form j2m for j,m ∈
Z, 210 < j ≤ 211 and m ≥ 1. We write Am+1 for the class of all sets of the
form

{j12m + 1, . . . , j22m}, where j1, j2 ∈ {0, . . . , j}, j1 < j2.

Trivially, there exist at most 222 sets of this form.
Furthermore, for every k, 0 ≤ k ≤ m we write Ak for the class of

all sets of 2k consecutive integers which start at position j12k for some
j1 ∈ {0, . . . , j2m−k − 1}. Ak contains exactly j2m−k sets of this form.

Then every set {k : 1 ≤M1 ≤ k ≤M2 ≤ N} can be written as a disjoint
union of at most one element of Am+1, and at most two elements of each
of the classes Ak, 0 ≤ k ≤ m.

For any set Am+1 from Am+1 we have by Hoeffdings inequality (Lemma
2.1)

P

∣∣∣∣∣∣
∑

n∈Am+1

en

∣∣∣∣∣∣ > t
√
N

 ≤ 2e−t2/2.

Now assume that k ∈ {0, . . . ,m}, and let Ak be any set from Ak. By con-
struction Ak contains 2k ≤ N2k−m/210 elements. By Hoeffding’s inequality
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for any t > 0

P

∣∣∣∣∣∣
∑
n∈Ak

en

∣∣∣∣∣∣ > t
√

2k
 ≤ 2e−t2/2,

which implies

P

∣∣∣∣∣∣
∑
n∈Ak

en

∣∣∣∣∣∣ > t
√

(m− k + 1)2k−m−10
√
N

 ≤ 2e−(m−k+1)t2/2.

If we assume t > 2, then e−t2/2 ≤ 1/4, and therefore

P

∣∣∣∣∣∣
∑
n∈Ak

en

∣∣∣∣∣∣ > 2−5t
√

(m− k + 1)2k−m
√
N

 ≤ 2e−t2/2
(1

4

)m−k
.

Now observe that
m∑
k=0

√
(m− k + 1)2k−m ≤

∞∑
k=0

√
(k + 1)2−k ≤ 6,

and

(2.3) 2−5
m∑
k=0

√
(m− k + 1)2k−m ≤ 0.19.

Letting

A =

 ⋃
Am+1∈Am+1


∣∣∣∣∣∣
∑

n∈Am+1

en

∣∣∣∣∣∣ > t
√
N


∪

∪

 ⋃
0≤k≤m

⋃
Ak∈Ak


∣∣∣∣∣∣
∑
n∈Ak

en

∣∣∣∣∣∣ > 2−5t
√

(m− k + 1)2k−m
√
N


 ,

this implies

(2.4) P(A) ≤ 223e−t
2/2 +

m∑
k=0

j2m−k2e−t2/2
(1

4

)m−k
≤ 224e−t

2/2.

As mentioned before, every set {k : 1 ≤M1 ≤ k ≤M2 ≤ N} can be written
as a disjoint union of one set from Am+1 and at most two sets from each
of the classes Ak, 0 ≤ k ≤ m. By (2.3) we have on the complement of A

max
1≤M1≤M2≤N

∣∣∣∣∣∣
M2∑

k=M1

en

∣∣∣∣∣∣ ≤
(

1 + 2
(

2−5
m∑
k=0

√
(m− k + 1)2k−m

))
√
N

≤ 1.38
√
N,
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and thus by (2.4) for every t ≥ 2

P

 max
1≤M1≤M2≤N

∣∣∣∣∣∣
M2∑

k=M1

en

∣∣∣∣∣∣ > 1.38t
√
N

 ≤ P(A) ≤ 224e−t
2/2,

which proves the lemma. �

Proof of Lemma 2.4: Assume that N is not of the form described in Lemma
2.3. Write N̂ for the smallest integer which is of this form, and which
satisfies N̂ ≥ N . Then, if N is sufficiently large, N̂/N ≤ 210 + 1/210. Thus
by Lemma 2.3 for t > 2

P

 max
1≤M1≤M2≤N

∣∣∣∣∣∣
M2∑

n=M1

en

∣∣∣∣∣∣ > 1.39t
√
N


≤ P

 max
1≤M1≤M2≤N̂

∣∣∣∣∣∣
M2∑

n=M1

en

∣∣∣∣∣∣ > 1.39t
√
N


≤ P

 max
1≤M1≤M2≤N̂

∣∣∣∣∣∣
M2∑

n=M1

en

∣∣∣∣∣∣ > 1.38t
√
N̂


≤ 224e−t

2/2.

which proves Lemma 2.4. �

Proof of Lemma 2.5: Let P = {a + b, . . . , a + Mb} be an arithmetic pro-
gression in {1, . . . , N}. We say that P is of maximal length if a < 0 and
a+(M+1)b > N . Denote the class of all arithmetic progressions, which are
contained in the definition of W (>B) (that is, all arithmetic progressions in
{1, . . . , N} with step size exceeding B) by Â, and the class of all maximal
arithmetic progressions among them byA. Then for any k ∈ {B+1, . . . , N},
the class A contains at most k different arithmetic progressions with step
size k, and each of them has at most dN/ke elements.

Let P, P̂ denote arithmetic progressions from Â. We write P̂ ⊂ P, if
P̂ = P or if P̂ can be obtained by removing a section from the beginning
and/or from the end of P. Then for any P̂ ∈ Â there exists a least one
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P ∈ A for which P̂ ⊂ P. Thus

W (>B)(EN ) = max
P̂∈Â


∣∣∣∣∣∣
∑
n∈P̂

en

∣∣∣∣∣∣


= max
P∈A

max
P̂⊂P


∣∣∣∣∣∣
∑
n∈P̂

en

∣∣∣∣∣∣


= max
B<k≤N

max
P∈A,

P has step size k

max
P̂⊂P


∣∣∣∣∣∣
∑
n∈P̂

en

∣∣∣∣∣∣
 .

To prove (2.2) it is obviously sufficient to consider those arithmetic pro-
gressions which contain at least 1.4

√
N/B elements. For these arithmetic

progressions we can use Lemma 2.3 (provided N is sufficiently large), and
obtain for any t > 2 and any P with step size k, using the estimate

dN/ke ≤ 1.4
1.39

N

k

(which holds for sufficiently large N),

P

max
P̂⊂P


∣∣∣∣∣∣
∑
n∈P̂

en

∣∣∣∣∣∣
 > 1.39t

√
dN/ke

 ≤ 224e−t
2/2

and consequently

P

max
P̂⊂P


∣∣∣∣∣∣
∑
n∈P̂

en

∣∣∣∣∣∣
 > 1.4t

√
N/(B + 1)

 ≤ 224e−t
2k/(2(B+1)).

Thus, again for t > 2 and sufficiently large N , we have

P
(
W (>B)(EN ) > 1.4t

√
N/(B + 1)

)
≤

N∑
k=B+1

224ke−t
2k/(2(B+1))

≤ 224
∞∑
l=1

4(B + 1)2l2e−t
2/24−l+1

≤ 228(B + 1)2e−t
2/2,

which proves the lemma. �

Proof of Lemma 2.6: Let B ≥ 1 be given. Denote by Q the least common
multiple of all the numbers {1, . . . , B}. Set

Qk = {1 ≤ n ≤ N : n ≡ k mod Q} , 1 ≤ k ≤ Q.

WriteA for the class of thosemaximal arithmetic progressions in {1, . . . , Q}
which have a step size in {1, . . . , B}. By Donsker’s theorem (Lemma 2.2)
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each of the processes

Sk(s) =
√
Q√
N

∑
1≤n≤sN,
n∈Qk

en, 0 ≤ s ≤ 1, 1 ≤ k ≤ Q,

converges weakly to a standard Wiener process Zk(s). Since the random
variables en, n ≥ 1 are independent, we can assume that the Wiener pro-
cesses Zk(s) are also independent, for 1 ≤ k ≤ Q. Observe that

W (≤B)(EN ) =
√
N√
Q

sup
0≤s1≤s2≤1

max
A∈A

∣∣∣∣∣∣
∑
k∈A

Sk(s2)− Sk(s1)

∣∣∣∣∣∣ .
Thus by Sk ⇒ Zk we have for t ≥ 0

(2.5) lim
N→∞

P
(
W (≤B)(EN )√

N
≤ t
)

= P

 sup
0≤s1≤s2≤1

max
A∈A

∣∣∣∣∣∣
∑
k∈A

(Zk(s2)− Zk(s1))

∣∣∣∣∣∣ ≤ t√Q
 ,

where Z1, . . . , ZQ are independent Wiener processes. Thus a limit distribu-
tion F (≤B)

W (t) of W (≤B)(EN )/
√
N exists, which proves the lemma. �

3. Proof of Theorem 1.1
The proof of Theorem 1.1 is split into several parts. Lemma 3.1 shows

that the limit distribution function of the normalized well-distribution mea-
sure for the arithmetic progressions with short step sizeW (≤B) is Lipschitz-
continuous. Together with the fact that the contribution of the arithmetic
progressions with large step size is small (Lemma 2.6), this proves the ex-
istence of a limit distribution of the normalized well-distribution measure
WN (Lemma 3.2 and Corollary 3.1). Finally, in Lemmas 3.3 and 3.4 we
prove the continuity of the limit distribution and the tail estimate (1.2) in
Theorem 1.1.

Lemma 3.1. For every fixed t0 > 0 there exists a constant c = c(t0) such
that for any B ≥ 1, δ > 0 and t ≥ t0

F
(≤B)
W (t+ δ)− F (≤B)

W (t) ≤ c(t0)δ.

Lemma 3.2. Let ε > 0 be given. Then for every t ∈ R there exists an
N0 = N0(ε) such that for N1, N2 ≥ N0∣∣∣P (W (EN1)N−1/2

1 ≤ t
)
− P

(
W (EN2)N−1/2

2 ≤ t
)∣∣∣ ≤ ε.
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Corollary 3.1. For every t ∈ R the limit

FW (t) = lim
N→∞

P
(
W (EN )N−1/2 ≤ t

)
exists.

Lemma 3.3. The function FW (t) (which is defined in Corollary 3.1) is
continuous in every point t ∈ R.

Lemma 3.4.
lim
t→∞

t(1− FW (t))
e−t2/2 = 8√

2π
.

Proof of Lemma 3.1: Let t0 > 0 be fixed. We use the notation from the
previous proof, and formulas (2.1) and (2.5). For δ > 0 we want to estimate

F
(≤B)
W (t+ δ)− F (≤B)

W (t),

which by (2.5) is bounded by

(3.1)
∑
A∈A

P

 sup
0≤s1≤s2≤1

∣∣∣∣∣∣
∑
k∈A

(Zk(s2)− Zk(s1))

∣∣∣∣∣∣ ∈
(
t
√
Q, (t+ δ)

√
Q
] .

If Z1, . . . , ZK are independent standard Wiener processes (for someK ≥ 1),
then (Z1 + · · · + ZK)/

√
K is again a standard Wiener process. Thus the

probabilities in (3.1) can be computed precisely: if A contains |A| elements,
then, writing Z(t) for a standard Wiener process and d(s) for the density
function in (2.1), we have

P

 sup
0≤s1≤s2≤1

∣∣∣∣∣∣
∑
k∈A

(Zk(s2)− Zk(s1))

∣∣∣∣∣∣ ∈
(
t
√
Q, (t+ δ)

√
Q
](3.2)

= P
(

sup
0≤s1≤s2≤1

|Z(s2)− Z(s1)| ∈
(
t
√
Q√
|A|

,
(t+ δ)

√
Q√

|A|

])

=
∫ (t+δ)

√
Q/
√
|A|

t
√
Q/
√
|A|

d(s) ds.

It is easily seen that for k ≥ 1 and s ≥ 2

k2e−k
2s2/2 ≤ e−ks2/2.

Thus for s ≥ 2 we have

(3.3) d(s) ≤ 8√
2π

∞∑
k=1

k2e−k
2s2/2 ≤ 4

∞∑
k=1

e−ks
2/2 ≤ 5e−s2/2.

Clearly for every k ∈ {1, . . . , B} the class A contains exactly k arithmetic
progressions with step size k, and each of them contains Q/k elements.
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Thus, by (3.1), (3.2) and (3.3), we have for every t ≥ t0

F
(≤B)
W (t+ δ)− F (≤B)

W (t) ≤
B∑
k=1

k

∫ (t+δ)
√
k

t
√
k

d(s)ds

≤ c(t0)δ,

where the constant c depends on t0, but not on B. �

Proof of Lemma 3.2: Let ε > 0 be given. Choose B = B(ε) “large”. We
have

P
(
W (EN1)N−1/2

1 ≤ t
)
≤ P

(
W (≤B)(EN1)N−1/2

1 ≤ t
)
,

and

P
(
W (EN2)N−1/2

2 ≤ t
)

≥ P
(
W (≤B)(EN2)N−1/2

2 ≤ t
)
− P

(
W (>B)(EN2)N−1/2

2 > t
)
.

By Lemma 2.6 the sequence

P
(
W (≤B)(EN )N−1/2 ≤ t

)
converges as N →∞, and thus

P
(
W (≤B)(EN1)N−1/2

1 ≤ t
)
− P

(
W (≤B)(EN2)N−1/2

2 ≤ t
)
≤ ε/2

for sufficiently large N1, N2. By Lemma 2.5 for sufficiently large B and
N2 = N2(B)

P
(
W (>B)(EN2)N−1/2

2 > t
)
≤ 228(B + 1)2e−t

2B/8.︸ ︷︷ ︸
≤ε/2 for sufficiently large B

Thus

P
(
W (EN1)N−1/2

1 ≤ t
)
− P

(
W (EN2)N−1/2

2 ≤ t
)
≤ ε

for sufficiently large B,N1, N2, which proves Lemma 3.2. �

Proof of Lemma 3.3: Obviously FW (t) = 0 for t < 0. The continuity of
FW (t) at t = 0 follows from Theorem A of Alon et.al., see (1.3). Now assume
that t > 0 is fixed. Let δ > 0 and B ≥ 1, and assume that δ is “small” and
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B is “large”. We have
FW (t+ δ)− FW (t)

= lim
N→∞

P
(
W (EN )N−1/2 ≤ t+ δ

)
− lim
N→∞

P
(
W (EN )N−1/2 ≤ t

)
≤ lim

N→∞
P
(
W (≤B)(EN )N−1/2 ≤ t+ δ

)
− lim
N→∞

P
(
W (≤B)(EN )N−1/2 ≤ t

)
+ lim sup

N→∞
P
(
W (>B)(EN )N−1/2 > t

)
= lim

N→∞
P
(
W (≤B)(EN )N−1/2 ∈ (t, t+ δ]

)
+ lim sup

N→∞
P
(
W (>B)(EN )N−1/2 > t

)
.

By Lemma 3.1

lim
N→∞

P
(
W (≤B)(EN )N−1/2 ∈ (t, t+ δ]

)
≤ c(t)δ,︸ ︷︷ ︸
≤ε/2 for sufficiently small δ

and by Lemma 2.5 for sufficiently large B and N

lim sup
N→∞

P
(
W (>B)(EN )N−1/2 > t

)
≤ 228(B + 1)2e−t

2B/8.︸ ︷︷ ︸
≤ε/2 for sufficiently large B

This proves
FW (t+ δ)− FW (t) ≤ ε

for sufficiently small δ. In the same way we can show a similar bound for
FW (t)− FW (t− δ). This proves the lemma. �

Proof of Lemma 3.4: For any t ∈ R

1− FW (t) ≥ 1− F (≤1)
W (t) =

∫ ∞
t

d(s) ds.

Using the standard estimate
t

1 + t2
1√
2π
e−t

2/2 < 1− Φ(t) < 1
t

1√
2π
e−t

2/2, t > 0,

where Φ(t) = (2π)−1/2 ∫ t
−∞ φ(s) ds is the standard normal distribution

function, we can easily show

lim
t→∞

t
(
1− F (≤1)

W (t)
)

e−t2/2 = lim
t→∞

t
∫∞
t d(s) ds
e−t2/2 = 8√

2π
,

which implies

(3.4) lim
t→∞

t(1− FW (t))
e−t2/2 ≥ 8√

2π
.
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On the other hand it is clear that

1− FW (t) ≤ 1− F (≤1)
W (t) + lim sup

N→∞
P
(
W (>1)(EN )N−1/2 > t

)
.

By Lemma 2.5, for sufficiently large t,

lim sup
N→∞

P
(
W (>1)(EN )N−1/2 > t

)
≤ 230e−t

2/(1.4)2
,

and in particular

lim
t→∞

t
(
lim supN→∞ P

(
W (>1)(EN )N−1/2 ≤ t

))
e−t2/2 ≤ 230 lim

t→∞

te−t
2/(1.4)2

e−t2/2 = 0.

Thus

lim
t→∞

t(1− FW (t))
e−t2/2 ≤ 8√

2π
,

which together with (3.4) proves the lemma. �
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