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A descent map for curves with totally degenerate
semi-stable reduction

par Shahed SHARIF

Résumé. Soit K un corps local de caractéristique résiduelle p.
Soit C une courbe sur K dont le modèle régulier propre mimimal
a réduction semi-stable totalement dégénérée. Sous certaines hy-
pothèses, nous calculons le sous-groupe rationnel de torsion pre-
mière à p dans la jacobienne de C. Nous déterminons aussi la
divisibilité de fibrés en droites sur C, incluant la rationalité des
thêta-caractéristiques et des structures de spin supérieures. Ces
calculs utilisent l’arithmétique de la fibre spéciale de C.

Abstract. Let K be a local field of residue characteristic p. Let
C be a curve over K whose minimal proper regular model has
totally degenerate semi-stable reduction. Under certain hypothe-
ses, we compute the prime-to-p rational torsion subgroup on the
Jacobian of C. We also determine divisibility of line bundles on
C, including rationality of theta characteristics and higher spin
structures. These computations utilize arithmetic on the special
fiber of C.

1. Introduction

Let K be a local field with residue field k of characteristic p > 0; that
is, K is a finite extension of the p-adic field Qp, or it is Fq((T )) where q
is a power of p. Write G for the absolute Galois group of K, and g for
the absolute Galois group of the residue field. Let C be a smooth, proper,
geometrically integral curve over K with genus g ≥ 2. Letting C be the
minimal proper regular model for C over the discrete valuation ring OK

of K, we write Ck for the special fiber. Let Ck be the base-extension of
the special fiber to k, the algebraic closure of the residue field; it equals
the special fiber of the minimal proper regular model for C over Ku, the
maximal unramified extension of K. We will assume that C has totally
degenerate semi-stable reduction; that is, Ck is connected, reduced and
consists of a finite collection of P1s such that a formal neighborhood of
each singularity is isomorphic to Spec k[[x, y]]/(xy).

Manuscrit reçu le 8 mars 2012.
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Let PicC/K denote the Picard scheme of C/K, and PicC the Picard
group, with PicC ⊆ PicC/K(K). (These are equal if C(K) 6= ∅, but not
generally.) Let r be a positive integer. As PicC/K is an abelian scheme, we
have a multiplication-by-r morphism

[r] : PicC/K −→ PicC/K
which induces group homomorphisms [r] : PicC/K(K) → PicC/K(K) and
[r] : PicC → PicC. Little is known in general about the image of these
maps. The canonical sheaf defines a canonical element in PicC, and it is
natural to wonder whether this element is in the image of any of the maps
[r]. In this article, we investigate this problem in the case p - r (which
we henceforth assume), and provide a method for answering this type of
question when the reduction of the Jacobian of the curve is purely toric.
Under certain conditions on Ck, we will define a subgroup Pic{r}C ⊆ PicC,
a finite set of classes Di, a finite collection of finite cyclic groups µi, and
maps γi : Pic{r}C → µi which satisfy the following condition:

Theorem 1.1. Given L ∈ Pic{r}C, we have L ∈ rPicC if and only if
there is some Dj such that L+Dj ∈ ker γi for every i.

The above result, phrased more explicitly, appears as Corollary 3.2 below.
The strength of the theorem lies in the explicit description of the γi. Re-

call that a theta characteristic (also called spin structure) is an invertible
sheaf L whose square L⊗2 equals the canonical class. As examples we will
show, for C lying in certain families of hyperelliptic curves, or in a specific
family of genus 4 curves, how to determine if C has a rational theta char-
acteristic, and we will also show how to compute the prime-to-p rational
torsion in the Jacobian of C.1 Note that there is no known algorithm to
determine in general either the reduction type or the size of the rational
torsion in the Jacobian of curves of genus g ≥ 3.

We will prove the following results:

Theorem 4.1. Let K be a local field with discrete valuation ring OK ,
uniformizer π, and residue field k of characteristic p. Let g ∈ OK [x] be
monic of degree d ≥ 3 and such that p - 2d. Let h ∈ OK [x] be a polynomial
of degree e with e ≤ 2d. Suppose that (π, g, g′) and (π, g, h) are both the
unit ideal in OK [x]. Let C be the nonsingular projective curve with affine
piece given by

y2 = g2 + πh.

For x ∈ OK , write x for the reduction of x (mod π). Similarly for f ∈
OK [x], write f for the reduction in k[x].

1In practice, if K = Qp then our method often gives the full rational torsion on the Jacobian;
see the Remark following Lemma 3.5.
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(1) Suppose d is odd and g factors over k as
g(x) = (x− α0)g1(x) · · · gs(x)

where α0 ∈ k and each of the gi is irreducible over k. Let αi ∈ k
be a root of gi(x). Then C has a rational theta characteristic if and
only if Nm h(α0)h(αi) ∈ k×2 for all i; here h(αi) 6= 0 for all i, and
the norm is computed from k(αi) to k.

(2) If d is even or g is irreducible, then C has a rational theta charac-
teristic.

Given C/K, we construct its Jacobian J/K and the Néron model J over
OK . Recall that if C has totally degenerate semi-stable reduction, then the
special fiber of J is an extension of a finite group by a torus T .

Theorem 4.2. Let C be as in the previous theorem, but now suppose g
splits into linear factors over k. Suppose q = #k. Let J(K)(p′) be the
largest subgroup of the K-rational torsion on the Jacobian of C which has
order prime to p. Let αi be the roots of g. Let H be the subgroup of k×
generated by the numbers h(αi)/h(α0). Let n be the order of H·k×d

k×d and let
m = d/n. Then

J(K)(p′) ∼=
( Z

(q − 1)Z

)d−2
⊕ Z
n(q − 1)Z ⊕

Z
mZ

.

In § 5, there are similar results for the family of nonhyperelliptic genus
4 curves given in P3

K as the intersection of the quadric XY = ZW and
the cubic (X − Y )(Z −W )(Z +W ) = πε, where ε varies in a Zariski open
subset of the set of all homogeneous cubic forms in OK [X,Y, Z,W ]. In The-
orem 5.1, we calculate the prime-to-p K-rational torsion on the Jacobian of
such a curve, and in Theorems 5.2 and 5.3 we determine whether there ex-
ists a rational theta characteristic and a rational cube root of the canonical
class. (The literature sometimes refers to rth roots of the canonical class
as r-spin structures.)

The methods described below so far only work when the normalizations
of the components of Ck are all isomorphic over k to P1

k. In particular,
the index of such C/K, the gcd of degrees of K-rational divisors on C,
is 1. The idea is simple: suppose we wish to determine if L ∈ PicC is
r-divisible. We translate L by a rational divisor which is known to be r-
divisible, and such that the class of the translate represents a point on
the toric part of the Jacobian. We then apply the theory of algebraic tori.
There are a number of technical difficulties to resolve along the way, one
of which involves computation of the K-rational prime-to-p torsion on the
Jacobian—see Propositions 3.3 and Corollary 3.1.

Results for determining rationality of theta characteristics, but with
other methods, were proven by a number of different authors. Atiyah [1,
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§5] showed that if the Galois action on the 2-torsion of the Jacobian fac-
tors through a cyclic group, then C has a rational theta characteristic; when
char k 6= 2 and C has good reduction, this immediately implies the existence
of a rational theta characteristic, and motivates our study of degenerating
curves. Mumford [11, §4] in the case of hyperelliptic curves gave explicit rep-
resentations of the theta characteristics in terms of the Weierstrass points of
C; thus, knowing the Galois action on the Weierstrass points enables one to
determine if there is a rational theta characteristic. He showed furthermore
that when charK = 2, C always has a rational theta characteristic. Taken
together with Atiyah’s result, we have that except when charK = 0 and
char k = 2, there is a rational theta characteristic over Ku. Parimala and
Scharlau [14, Thm. 2.4 et seq.] in results extended by Suresh [17, Thm. 1.2]
found a condition for the rationality of theta characteristics of hyperellip-
tic curves involving the splitting of a particular quaternion algebra. Suresh
also gives a method for computing the order of the 2-torsion subgroup of
the Jacobian.

Given a curve C as above, a related question is whether all of the r-torsion
on the Jacobian of C, or more generally all of the rth roots of a given line
bundle on C, are rational over Ku. This is essentially a geometric question,
and has been considered in Chiodo [5, §3]. Pacini gives a more explicit
answer for the case of theta characteristics [13]. See also Gross-Harris [7,
Corollary 7.3] for a description of the rational points on the moduli space of
curves all of whose theta characteristics are rational. Finally, see Poonen-
Rains [15] for a relationship of the rationality of theta characteristics to a
certain cup product over an abelian variety.

Acknowledgments to Dino Lorenzini, Wayne Aitken, and the referee for
many helpful comments.

2. Basic facts on algebraic tori over finite fields

In the following, we let q = #k, let T be a g-dimensional algebraic
torus defined over k, and let X(T ) be the character group of Tk. Let σ be
the Frobenius automorphism acting on k with fixed field k. The character
group X(T ) is a free Z-module of rank g equipped with an action of g. In
this section we will compute the group of rational points T (k) based on
knowledge of X(T ) as a Z[g]-module.

Henceforth, unless otherwise stated, all modules are Z[g]-modules. For
example, “X(T ) is generated by χ” means generated over Z[g].

Definition. Let X be a Z[g]-module. We say X is principal if it can be
generated by a single element. We say X is principally decomposable if it
can be written as a direct sum of principal submodules.

If X = X(T ), the character group of an algebraic torus, we use the
above terms to describe X and T interchangeably. We say that T =

∏
Tj
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is a principal decomposition of T if T is the fiber product over k of the Tj ,
and each Tj is a principal torus.

Example. Let `/k be the unique degree g extension. Let T be the Weil
restriction of scalars R`/kGm. Recall that T has the universal property that
for any k-scheme S, we have a functorial isomorphism

T (S) = Gm(S`)
where S` means the base-extension S×Spec kSpec `. Explicitly, T` ∼= (Gm,`)g,
and the usual action of σ is twisted by the automorphism which cyclically
permutes the factors; that is,

σ(x1, . . . , xg) = (σxg, σx1, . . . , σxg−1).
Alternatively, we can characterize T by setting X(T ) = Z[χ]/(χg − 1), and
σ acts as multiplication by χ. We observe that T is principal.

Remark. Suppose T =
∏
Ti is a principal decomposition of T . The pro-

jection T → Ti induces an inclusion X(Ti) ⊆ X(T ). This inclusion will be
used without comment from here on.

From now on, we will assume that unless otherwise stated all tori under
discussion are principally decomposable.

Definition. If T/k is the restriction of scalars R`/kGm for some finite ex-
tension `/k, then we say that T is a norm torus, or `-norm torus for clarity.
If T is a product of norm tori, we say it is a normal torus.

Proposition 2.1 (Ono [12], Prop. 1.2.2). Given x ∈ T (k), define the ho-
momorphism ex : X(T ) → k

× by ex(χ) = χ(x). Then the map x 7→ ex
induces an isomorphism of abelian groups T (k) ∼−→ Homg(X(T ), k×).

If the action of g is trivial, we see that T (k) = Hom(X(T ), k×). If the
action of g factors through Gal(`/k), since T (k) ↪→ T (`), we observe that
we may replace k× in the proposition with `×. Given a Z-basis of X(T ),
the action of σ may be represented by an element of GL(g,Z). We let
f(x) be the characteristic polynomial of the matrix obtained this way; it
is independent of the choice of basis. Given a positive integer n for which
(n, q) = 1, let µn denote the étale sheaf over k of nth roots of unity.

Proposition 2.2. Suppose T is principal. Then T (k) ∼= µf(q)(k
×).

Since f(q) ≡ ±1 (mod q), µf(q) is an étale sheaf over k.

Proof. As T is principal, there is some χ ∈ X(T ) such that χ is a Z[g]-
generator for X(T ). We will show that the map

T (k) −→ µf(q)(k
×)

x 7−→ χ(x)
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is an isomorphism.
First observe that χ, χσ, . . . , χσg−1 form a Z-basis for X(T ). Thus,

the values of these characters uniquely characterize points in T (k). Given
x ∈ T (k), by Proposition 2.1 we must have

χσ
i(x) = σiχ(x) = χ(x)qi

for every i. Therefore the value χ(x) determines all of the values χσi(x) for
i = 1, . . . , g − 1. This tells us that χ : T (k)→ k

× is injective.
Now choose ω ∈ µf(q)(k

×). We will construct a g-equivariant homo-
morphism ex : X(T ) → k

× for which ex(χ) = ω. In order for ex to be
g-equivariant, we must have

ex(χσi) = ex(χ)qi

for all i. For 0 ≤ i ≤ g − 1, these are independent constraints. The only
additional constraint is given by the characteristic polynomial; that is, we
have the identity of characters χf(σ) = 0, or ex(χ)f(q) = 1. This holds by
our choice of ω, and so the proposition follows. �

We give some simple examples to demonstrate the proposition. If T =
Gm, then f(x) = x−1 and f(q) = q−1. The right hand side above becomes
µq−1(k×) = k×.

Now suppose that T is an `-norm torus, where [` : k] = g. Our de-
scription of X(T ) as a Z[g]-module shows that f(x) = xg−1. Then T (k) ∼=
µqg−1(k×) = `×. We verify this by the universal property of Weil restriction
of scalars: T (k) = Gm(`) = `×.

Corollary 2.1. Suppose T =
∏
Ti is a principal decomposition of T over

k. Let fi(x) be the characteristic polynomial of Frobenius acting on X(Ti).
Let χi be a Z[g]-generator for X(Ti). Then the map

⊕χi : T (k) 7−→ ⊕µfi(q)(k
×)

is an isomorphism.

We will often write µ(Ti) in place of µfi(q)(k
×). Note that fi(q), and

hence µ(Ti), depend on the base field.

Corollary 2.2. Let T be principally decomposable torus over k, and let
f(x) be the characteristic polynomial of Frobenius acting on X(T ). Then
#T (k) = f(q).

The previous corollary in fact holds for general algebraic tori; see
Ono [12, eq. (1.2.6)].
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3. The descent map

In the remainder, we will assume that C is a smooth, proper, geometri-
cally integral curve over K with minimal proper regular model C having
totally degenerate semi-stable reduction and special fiber Ck. It then holds
that the Jacobian J of Ck has a Néron model J whose special fiber Jk lies
in a short exact sequence of group schemes

(3.1) 0 −→ T −→ Jk −→ Φ −→ 0,

where T is an algebraic torus and Φ is a finite étale group scheme. The
scheme Φ is the component group of Jk.

3.1. Overview. Starting in § 3.3, we will assume that the normalization
of every irreducible component of Ck is isomorphic to P1

k. This implies
that PicC = (PicC)G; that is, any divisor linearly equivalent to its Galois
conjugates is linearly equivalent to a rational divisor. In the remainder of
this overview, we will operate under this assumption.

Let Div{1}C be the group of divisors D on C supported away from
points with singular reduction. Note that for any L ∈ PicC, there exists
some D ∈ Div{1}C which represents it by [6, Theorem 2.3]. Let

τ : Div{1}C −→ DivCk
be the specialization map; that is, given D ∈ Div{1}C, let D be the Zariski
closure of D in C under the canonical inclusion C ↪→ C . Then τ(D) is
D ∩Ck. (See for example [2, §2.1] or [10, ch. 10.1.3].) If Ci is an irreducible
component of Ck, the intersection pairing (τ(D) · Ci) is well-defined; by
abuse of notation, we will also write it (D · Ci).

Given L ∈ PicC, we wish to determine if L lies in rPicC. Evidently it
is necessary that L lie in Picr C. We will define a group Pic{r}C lying in a
filtration

(3.2) Picr C ⊃ Pic{r}C ⊃ rPicC.

In Proposition 3.1 below, we show how to determine if L ∈ Picr C lies in
Pic{r}C. Then, in the following sections, we will show how to determine if
L ∈ Pic{r}C lies in rPicC. The two quotients defined by the filtration may
be viewed as giving, respectively, geometric and arithmetic obstructions to
r-divisibility.

Our first step is to define a degree map

deg : DivCk −→ Zv

where v is the number of irreducible components of Ck. Now letting C1, . . . ,
Cv be the irreducible components of Ck, the degree map is defined by

deg(D) = ((D · Ci))
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where · denotes the intersection pairing. Then Pic{r}C is defined to be
the set of divisor classes containing a divisor D ∈ Div{1}C such that
deg(τ(D)) ∈ rZv. (For D ∈ Div{1}C, we will usually write deg(D) in
place of deg(τ(D)).) Furthermore, we certainly have the filtration (3.2).

We now show how to determine if a given L ∈ Picr C lies in Pic{r}C.
Let Mfib be the subgroup of Zv generated by the vectors vi = ((Ci · Cj)).

Proposition 3.1. Suppose L ∈ Picr C. Let D ∈ Div{1}C represent L.
Then L ∈ Pic{r}C if and only if deg(D) lies in rZv +Mfib.

Observe that the equivalent conditions of the proposition are stable under
unramified base change; in particular, we may base extend to Ku. This
explains the terminology “geometric obstruction” mentioned above.

Proof. Certainly if L ∈ Pic{r}C, we may find a divisor E with class L such
that deg(E) ∈ rZv. Since D is linearly equivalent to E, if we consider D
and E as horizontal divisors on C via the inclusion C ↪→ C , then (D −E)
is linearly equivalent to a fibral divisor F . Therefore deg(D) = deg(E) +
deg(F ) ∈ rZv +Mfib.

Suppose now that deg(D) ∈ rZv + Mfib. Then there exists a divisor D′
such that deg(D− rD′) ∈Mfib. Replacing D with D− rD′, we see that we
wish to show that if degD ∈Mfib, then L ∈ Pic{r}C.

Let F ∈ Div C be a fibral divisor for which degF = degD. We wish to
replace F with a linearly equivalent horizontal divisor. On each irreducible
component Ci of Ck, choose a smooth point xi ∈ Ci(k). By [6, Prop. 6.2],
there is a divisor F ′ linearly equivalent to F which avoids each of the xi; this
latter condition forces F ′ to be horizontal. Observe that deg(F ′) = deg(F ).
Furthermore, if we consider F ′ as a divisor on C by restricting to the
generic fiber of C , one sees that F ′ must be principal. Thus D is linearly
equivalent to D − F ′. But deg(D − F ′) = deg(D − F ) = 0, from which the
claim follows. �

Therefore to determine if L ∈ PicC is divisible by r, we may assume
that L ∈ Pic{r}C. In this section, we will associate to every character

of T a homomorphism γ from Pic{r}C
rPicC to a finite cyclic group, so that

the intersection of the kernels of the γs is trivial. The idea behind the
homomorphism is as follows.

Given L ∈ Pic{r}C, choose D ∈ Div{r}C representing it. We may trans-
late D to Div{0}C via an r-divisible divisor, map the resulting divisor to
some x ∈ T (k), then evaluate characters of T on x to determine if it lies in
rT (k). If it does, then L was r-divisible. But even if x /∈ rT (k), L may still
be r-divisible in J(k)! Under our hypotheses, Φ is a constant group scheme
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(see Prop. 3.2). We have a short exact sequence

Φ[r] −→ T (k)
rT (k) −→

J(k)
rJ(k) .

In order for L to be r-divisible, we must test if the resulting x ∈ T (k)
lies in rT (k) + im(Φ[r]). As we will see, determining im(Φ[r]) will have the
pleasant consequence of telling us the prime-to-p torsion in J(K).

3.2. One-cycles on Γ. Let Γ be the dual graph of Ck; that is, the graph
whose vertices correspond to the irreducible components of Ck, and whose
edges correspond to the nodes of Ck. The graph Γ comes equipped with a
natural g-action. Let H1(Γ,Z) be the group of closed, oriented 1-cycles on
Γ; it is a g-module. Define a group F1(Γ) as the set of pairs (γ, (ti)) where
γ ∈ H1(Γ,Z) and (ti) is a collection of functions, each ti being a function
on the irreducible component Ci ⊆ Ck such that the zeroes and poles of ti
occur only at nodes. (If any Ci is itself a nodal curve, construct ti on its
normalization.) The group structure is

(γ1, (si)) · (γ2, (ti)) = (γ1 + γ2, (si · ti)).

We will often use the more compact notation tγ for the pair (γ, ti) when
the ti are understood. Observe that σ−1 acting on Ck induces a map
(σCi)(k) → Ci(k). Then the group F1(Γ) comes equipped with a natural
g-action; namely,

σ(γ, (ti)) = (σγ, (tσi ))
where tσi (x) = σti(σ−1x) for every x ∈ (σCi)(k). There is a canonical
Galois-equivariant projection

F1(Γ) −→ H1(Γ,Z).

We define a subset F1(Γ)(1) ⊆ F1(Γ) as follows. Let γ ∈ H1(Γ,Z) be an
oriented 1-cycle. Let C1, . . . , Cv be some labeling of the components of Ck.
Over Ck, γ corresponds to an ordered sequence of components Ci0 , . . . , Cin ,
connected by some choice of nodes. Let xj ∈ Ck(k) be the corresponding
choice of node in Cij ∩ Cij+1 . The orientation is given by the order of the
components as given; observe that we may have Cij = Cih and/or xj = xh
for some j 6= h. Then F1(Γ)(1) consists of pairs (γ, (ti)), where ti is given
as follows:

(1) if Ci does not appear in γ, then ti = 1;
(2) if Ci appears with multiplicity one, then ti is a degree 1 local pa-

rameter on Ci such that ti(xi−1) = 0 and ti(xi) =∞; and
(3) if Ci appears with higher multiplicity, compute a degree 1 local

parameter as above for each Cij for which Cij = Ci, then let ti be
their product.
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3.3. Evaluation of divisors on 1-cycles. In this section, we will assume
that the normalization of every irreducible component of Ck is isomorphic
to P1

k.
Recall from § 3.1 that Div{1}C is the group of divisors D on C supported

away from points with singular reduction, and that

τ : Div{1}C −→ DivCk
is the specialization map.

Let γ ∈ H1(Γ,Z) be an oriented 1-cycle, and let tγ be an element of
F1(Γ)(1) lying over γ. We now define a homomorphism, also written tγ , as

tγ : Div{1}C −→ k
×

D 7−→
∏

ti(τ(D) ∩ Ci)

where the product is over all i. By abuse of notation, we will often write
D ∩ Ci for τ(D) ∩ Ci, or more concisely just Di.

Recall the degree map from § 3.1, and that Div{r}C ⊆ Div{1}C is the
subgroup of divisors D with degD ∈ rZv. Let Pic{r}C be the set of divisor
classes L such that L contains some divisor in Div{r}C.

Lemma 3.1. For γ ∈ H1(Γ,Z), choose some tγ ∈ F1(Γ)(1) lying over it
and consider the homomorphism tγ : Div{0}CKu → k

×. Then the latter ho-
momorphism factors through Pic{0}Ck. Via the identification of Pic{0}Ck
with T (k), the map γ 7→ tγ induces a well-defined Galois-equivariant iso-
morphism

H1(Γ,Z) −→ X(T )
where X(T ) is the character group of the torus T .

Proof. First, observe that if tγ = (γ, (ti)), t′γ = (γ, (t′i)) are two lifts of
γ to F1(Γ)(1), that t′i = αiti for some αi ∈ k

×. For L ∈ Div{0}C, since
(L · Ci) = 0, we have ti(L ∩ Ci) = t′i(L ∩ Ci). Thus the homomorphism
Div{0}CKu → k

× is independent of the choice of tγ .
Now base-extend to Ku. Let χ be the character associated to γ; we recall

its definition. Suppose γ consists of the components Ci0 , . . . , Cin−1 , where
Cij is connected to Cij+1 via a node xj (viewing subscripts modulo n).
The orientation of γ is given by ordering the components with increasing
subscripts. Choose tγ ∈ F1(Γ)(1) lying over γ, and let ti be the correspond-
ing functions. Given L ∈ Div{0}C supported away from the nodes, let
L∩Ci =

∑
j eijyij , where eij ∈ Z and yij ∈ Ci(k). Observe that

∑
j eij = 0

for every i. Let
fi =

∏
j

(ti − ti(yij))eij
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be a function on Ci; we see that f is regular at xi−1 and xi. Also,

fi(xi−1) =
∏
j

ti(yij)eij , fi(xi) = 1

where the first equality uses the fact that
∑
j eij = 0. Then

χ([L]) =
∏
i

fi+1(xi)
fi(xi)

=
∏
ij

ti(yij)eij = tγ(L).

The lemma follows. �

Suppose T =
∏
Ti is a principal decomposition of T , and let χ be a

generator forX(Ti). Via the canonical inclusionX(Ti) ⊆ X(T ), we consider
χ as an element ofX(T ). Let γ ∈ H1(Γ,Z) be the 1-cycle which corresponds,
via Lemma 3.1, to χ. We define a subset of “rational” elements F1(γ, k) ⊆
F1(Γ)(1) lying over γ as follows. We may write γ as an ordered sequence of
components Ci0 , Ci1 , . . . such that Cij and Cij+1 are connected by the node
xj . Since P1

k(k) has at least 3 elements, we can always find a point bj ∈
Cij (k) such that bj 6= xj−1, xj . (Of course, bj might itself be a node.) Choose
bj for each Cij in the list of components in γ; note that if a component
appears more than once, then the corresponding base points bj may be
different. Then we define F1(γ, k) to be the set of tγ = (γ, (ti)) such that

(1) if Ci does not appear in γ, then ti = 1;
(2) if Ci appears with multiplicity one, say equal to Cij , then ti is a

degree 1 local parameter on Ci such that ti(xj−1) = 0, ti(xj) =∞,
and ti(bj) ∈ µ(Ti); and

(3) if Ci appears with higher multiplicity, compute a degree 1 local
parameter as above for each Cij for which Cij = Ci, then let ti be
their product.

If T is a split torus and no Ci appears with higher multiplicity, this
condition is equivalent to ti ∈ k(Ci)× for all i.

Lemma 3.2. Let T =
∏
Ti be a principal decomposition, let χ be a gen-

erator for X(Ti), and let γ ∈ H1(Γ,Z) correspond to χ via the inclu-
sion X(Ti) ⊆ X(T ) and the isomorphism of Lemma 3.1. Suppose that
tγ = (γ, (ti)), t′γ = (γ, (t′i)) ∈ F1(γ, k) lie over γ. Then there exist αi ∈ µ(Ti)
such that t′i = αiti for every i.

One consequence of the lemma is that F1(γ, k) does not depend on the
choice of base-points bi.

Proof. It suffices to consider the case where Ci appears in γ with mul-
tiplicity 1. Let bi, b′i ∈ Ci(k) be the base-points corresponding to ti, t

′
i,



222 Shahed Sharif

respectively. Then

ti(b′i) = ti(bi)
ti(b′i)
ti(bi)

= ti(bi)tγ((b′i)− (bi)),

where (b′i) − (bi) means the natural divisor on Ck. But this divisor lies
in the reduction of Div{0}C, hence by Lemma 3.1 and Corollary 2.1,
tγ((b′i)−(bi)) ∈ µ(Tj). The claim follows from setting αi = tγ((b′i)−(bi)). �

3.4. Torsion and descent. Given a principal decomposition T =
∏
Ti,

and χ a generator for X(Ti), let γ ∈ H1(Γ,Z) be a one-cycle such that, via
the isomorphism of Lemma 3.1, tγ = χ. Write rµ(Ti) for the group of all
αr, α ∈ µ(Ti). We define a map

Div{r}C −→ µ(Ti)
rµ(Ti)

which, by abuse of notation, we also denote γ. This map is defined by
γ(D) = tγ(D) (mod rµ(Ti))

where tγ is any element of F1(γ, k) lying over γ.

Lemma 3.3. γ is a well-defined homomorphism.

Proof. For convenience, we assume that T is itself principal, so that T = Ti.
We need to show that the image of the map γ lies in µ(T )/rµ(T ), and that
the map does not depend on the choice of tγ . Lemma 3.2 implies that
tγ(D) ∈ µ(T ) for any tγ ∈ F1(γ, k), D ∈ Div{r}C. Also by that lemma,
choosing a different tγ is the same as replacing the ti with αiti, where
αi ∈ µ(T ). But since Di has degree divisible by r, (αiti)(Di) differs from
ti(Di) by a power of αri , hence an element of rµ(T ). Finally, the fact that
γ is a homomorphism is clear from the definition. �

Lemma 3.4. Let f, g ∈ K(C)×, and suppose div f, div g ∈ Div{1}C. If
deg(div f) = deg(div g), then for any tγ ∈ F1(Γ)(1),

tγ(div f) = tγ(div g).

Proof. It suffices to show that

tγ

(
div

(
f

g

))
= 1.

This follows from Lemma 3.1. �

Recall that Φ denotes the component group of Jk; it is a finite étale
group scheme on Spec k. Recall also the exact sequence of group schemes

0 −→ T −→ Jk −→ Φ −→ 0.
(Note that Φ depends on the base field K, and in particular becomes larger
upon ramified base change.) The group Φ(k) is effectively computable;
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see [16, Proposition 8.1.2] or [2, Appendix A]. The rational component
group, Φ(k), can be computed via Theorem 1.11 of [3].

Proposition 3.2. Let C be a proper, flat, regular curve over OK with
geometrically connected generic fiber. Let J be the Jacobian of the generic
fiber.

(1) If every component of the special fiber Ck is geometrically irredu-
cible, then the component group Φ of J is a constant group scheme.

(2) If ` is an extension of k which is a finite field, or if Ck is totally
degenerate, then the map Jk(`)→ Φ(`) is surjective.

The two statements are respectively Corollary 1.8 and Lemma 2.1b of [3].
As the hypothesis of part 1 holds for us, by abuse of notation Φ will denote
Φ(k) as well as its usual meaning. Consider the commutative diagram

(3.3) 0 // T (k) //

r

��

Jk(k) //

r

��

Φ //

r

��

0

0 // T (k) // Jk(k) // Φ // 0,

where the vertical maps are multiplication by r and the horizontal sequences
are exact by the last proposition. Applying the Snake Lemma, we obtain
the exact sequence

(3.4) Jk(k)[r] −→ Φ[r] ν−→ T (k)
rT (k) −→

Jk(k)
rJk(k) .

We now show how to compute ν.

Proposition 3.3. Let r be an integer not divisible by p. Let D ∈ Div{1}C
represent δ ∈ Φ[r]. Let T =

∏
Ti be a principal decomposition. For each

i, let χi be a generator for X(Ti), and let γi ∈ H1(Γ,Z) correspond to χi
via the inclusion X(Ti) ⊆ X(T ) and the isomorphism of Lemma 3.1. Then
there exists f ∈ K(C)× such that deg(div f) = −r deg(D), and for every i

χi(ν(δ)) ≡ γi(div f) (mod rµ(Ti)),
where by abuse of notation we write χi for the induced homomorphism
T (k)
rT (k) →

µ(Ti)
rµ(Ti) .

Proof. Observe that −rD maps to the trivial class in Φ. Therefore the
reduction of the divisor class of−rD lies in T (k). As observed in Lemma 3.1,
divisor classes in T (k) can be represented by elements of Div{0}C, so that
−rD is linearly equivalent to some D′ ∈ Div{0}C. Let f be chosen so that
div f = −rD −D′. By our choice of D′, we have deg(div f) = −r deg(D).

For convenience, we will append the subscript t or b to the groups in (3.3)
to distinguish objects in the top row from objects in the bottom row; e.g.,
T (k)t refers to the top left object in (3.3). Also, for a divisor E, write [E]
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for the divisor class of E; whether this class lies in PicC or PicCk will be
clear from context.

We proceed with an explicit diagram-chase: start with δ ∈ Φ[r], and
consider it as an element of Φt. Choose D ∈ Div{1}C so that the class
[τ(D)] ∈ Jk(k)t maps to δ. Then [rτ(D)] ∈ Jk(k)b maps to 0 in Φb, and so
lies in the subgroup T (k)b; the class of this element in T (k)/rT (k) is none
other than ν(δ).

Now [rD] = [rD + div f ]. But by our choice of f , rD + div f is −D′ ∈
Div{0}C. For each i, Lemma 3.1 tells us that

χi(ν(δ)) = tγi(rD + div f)
for any choice of tγi ∈ F1(γi, k) lying over γi. The first claim now follows
by observing that

tγi(rD + div f) ≡ γi(div f) (mod rµ(Ti)).
�

Corollary 3.1. Fix the notation of Prop. 3.3. If δ̃ ∈ J(k) maps to δ, then
ν(δ) ≡ rδ̃ (mod rT (k)).

Proof. One observes that δ̃ is identical to [τ(D)] in the proof of Prop. 3.3.
From this observation and the snake lemma argument in the above proof,
the claim follows. �

If M is an abelian group, write M(p′) for the torsion in M with order
prime to p.
Lemma 3.5. Let J be the Jacobian of C with special fiber Jk. Then

J(K)(p′) = Jk(k)(p′).
Proof. The reduction map J(K)(p′)→ Jk(k)(p′) is injective, since the tor-
sion in the kernel of reduction is a p-group. For r not divisible by p, let
x ∈ Jk(K)[r]. By Hensel’s Lemma, there is x ∈ J(K) which maps to x. But
rx lies in the kernel of the reduction map, which is r-divisible; therefore
rx = ry for some y in the kernel of reduction. Then (x−y) ∈ J(K)[r] maps
to x. �

Remark. By varying r, one can use Proposition 3.3, Corollary 3.1, and
Lemma 3.5 to effectively compute the torsion subgroup J(K)(p′). For ex-
ample, if for all r (p - r) we find that ν is the zero map, then J(K)(p′) ∼=
T (k)⊕ Φ(p′).

If K = Qp with p 6= 2, then the kernel of reduction is torsion-free [9,
Appendix]; if in addition Φ[p] = 0, then we are able to compute the full
torsion subgroup of J(K). Even when K 6= Qp but Φ[p] = 0, one can still
compute J(K)(p) by Mumford-Tate uniformization. This will be explored
in future work.
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Theorem 3.1. Let T =
∏
Tj be a principal decomposition of T . Let γj ∈

H1(Γ,Z) be such that χj is a Z[g]-generator for X(Tj). Given D ∈ Div{r}C,
[D] ∈ rPicC if and only if there exists some δ ∈ Φ[r] such that

γj(D) ∈ χj(ν(δ)) · rµ(Tj)

for all j.

Proof. Let D′ ∈ Div{1}C satisfy r(D′ · Ci) = (D · Ci) for all i. Then [D] ∈
rPicC if and only if [D − rD′] ∈ rPicC. Furthermore

γj(D) ≡ γj(D − rD′) (mod rµ(Tj))

for all j. Therefore we may assume that D ∈ Div{0}C. In particular, the
reduction of [D] to the special fiber of the Jacobian Jk lies in the torus
T (k). Let x ∈ T (k) be the point corresponding to [D]. From the exact
sequence (3.4), [D] is divisible by r in Jk(k) if and only if x lies in the
subgroup generated by rT (k) and im ν. The claim follows. �

Remark. The proof, together with Lemma 3.4, shows that for L ∈ Pic{r}C,
we may use any D ∈ Div{r}CKu which represents L; then γi(D) ∈ µ(Ti),
and the above theorem holds.

Corollary 3.2. For each δ ∈ Φ[r], let Dδ ∈ Div{1}CKu represent it, and
choose fδ so that deg(div fδ) = −r deg(Dδ). Given D ∈ Div{r}CKu with
[D] ∈ PicC, we have [D] ∈ rPicC if and only if there exists some δ such
that γi(D + div fδ) ∈ rµ(Ti) for every i.

Proof. Combine Theorem 3.1, the Remark above, and Proposition 3.3. �

Theorem 3.2. Let C be a smooth, projective, geometrically integral curve
over a local field K. Suppose either charK = 2 or the residue characteristic
is odd. If the minimal proper regular model of C has totally degenerate semi-
stable reduction, then C has a rational theta characteristic over the unique
degree 2 unramified extension of K.

Proof. If charK = 2, then Mumford [11, §4] shows that C already has a
rational theta characteristic over K. Suppose then that the residue charac-
teristic is odd. Then the 2-torsion in the Jacobian of C is tamely ramified,
so overKu the Galois representation on the 2-torsion is cyclic. By Atiyah [1,
§5], C has a rational theta characteristic over Ku, and therefore the canon-
ical class of C lies in Pic{2}C. Let T be the toric part of the Jacobian of
C, and L the degree 2 unramified extension of K; let `/k be the respec-
tive residue fields. Observe that T (k) ⊆ 2T (`). The claim now follows from
Theorem 3.1. �
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3.5. Simplifications for normal tori. We suppose that T is a princi-
pal torus with X(T ) generated by χ. Let γ ∈ H1(Γ,Z) correspond to χ.
Consider tγ ∈ F1(γ, k). Let m be the smallest positive integer such that
σmγ = γ. We define Nm tγ to be

Nm tγ =
m−1∏
i=0

σitγ

where the product is computed in F1(Γ). The projection of Nm tγ lies over
the 1-cycle Nm γ :=

∑m−1
i=0 σiγ, which generates H1(Γ,Z)g. Given a torus

with a fixed principal decomposition, extend Nm in the obvious way to
generators γi for each principal subtorus. For γ ∈ H1(Γ,Z)g, we may write
it as

γ =
∑

ei Nm γi

for some integers ei; if T is a normal torus, this representation is unique.
For each γi, choose tγi ∈ F1(γi, k). We then consider tγ ∈ F1(γ, k) of the
form

tγ =
∏

(Nm tγi)ei .

Note that the map tγ : Div{r}C −→ k× induces a well-defined map

γ : Pic{r}C −→ k×

k×r
.

Corollary 3.3. Suppose T is a normal torus and r | (q − 1). Given D ∈
Div{r}CKu with [D] ∈ PicC, we have [D] ∈ rPicC if and only if there
exists some δ ∈ Φ[r] such that

γ(D) ∈ χγ(ν(δ)) · k×r

for all γ ∈ H1(Γ,Z)g; here, χγ is the character associated to γ via Lem-
ma 3.1.

Proof. It suffices to consider the case where T is a norm torus; say X(T ) ∼=
Z[χ]/(χg − 1), with Frobenius acting as multiplication by χ. Let ` be the
unique degree g extension of k. Then χ : T (k) → `× is an isomorphism.
Furthermore, X(T )g is generated by Nmχ := 1 + χ + χσ + · · · + χσ

g−1
.

Observe that the diagram

T (k)
χ

��

Nmχ

""DD
DD

DD
DD

`×
Nm // k×

commutes. Now we tensor everything in the diagram with Z/rZ and observe
that since r | (q − 1), the induced norm map Nm : `×

`×r −→ k×

k×r is an
isomorphism. The claim follows. �
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4. Curves with Γ = Bd

The graph Bd is the so-called banana graph; it consists of 2 vertices
connected to each other by d edges:

• •

...

1
2

d

Equivalently, the special fiber of a curve C having dual graph Bd consists
of two P1s which intersect transversely at d points; the involution swapping
the two components shows that such a curve must be hyperelliptic. For
certain families of curves with dual graph Bd, we determine rationality of
theta characteristics and then compute the order of the prime-to-p rational
torsion on the Jacobian. In all that follows, we fix d ≥ 3.

4.1. Rationality of theta characteristics when Γ = Bd. We apply
Theorem 3.1 in this section to determine if certain curves with dual graph
Bd have rational theta characteristics. Recall that a theta characteristic
is a square root of the canonical class. Note that Mumford [11, §4] and
Suresh [17, Thm. 1.2] give alternate methods for determining the existence
of a rational theta characteristic for hyperelliptic curves.

Suppose that C is given by y2 = g2 + πh subject to the following:
• K is a local field with uniformizer π and residue characteristic p,
with p - 2d;
• g(x) ∈ OK [x] is a monic polynomial of degree d such that (π, g, g′) ⊆

OK [x] is the unit ideal; and
• h(x) ∈ OK [x] is a polynomial of degree e ≤ 2d such that (π, g, h) ⊆

OK [x] is the unit ideal.
We say such a curve satisfies hypothesis (H). Observe that C is smooth of
genus d− 1.

Lemma 4.1. Let C satisfy hypothesis (H), and let C be the associated
arithmetic surface over OK ; i.e., use the same equation and adjoin the
usual two points at infinity. Then C is minimal and regular, the special
fiber has dual graph Bd, and the component group Φ of the Jacobian of C
over K is Z/dZ.

Proof. One checks that the special fiber of C at infinity is smooth. Then for
the given affine piece, we obtain the equation y2 = g2, which looks like two
rational curves intersecting d times, once at each root of g. Regularity of
C need only be checked at these nodes. But (π, g, h) = OK [x] implies that
the reduction of h modulo π does not vanish at any of the nodes; regularity
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follows. One also observes that the dual graph is Bd. Minimality follows
from checking Castelnuovo’s criterion.

For the component group, we follow the standard method (see
[16, Prop. 8.1.2] or [4, Thm. 9.6.1]). Since every component of Ck possesses
a k-rational point, the component group is unchanged upon base-extension
to the maximal unramified extension Ku. One checks that the intersection
matrix M for Ck is

M =
[
−d d
d −d

]
.

Then Φ is the homology of Z2 M→ Z2 → Z, where the first map is multipli-
cation by M and the second is (x, y) 7→ x+ y. We obtain Φ ∼= Z/dZ. �

The special fiber Ck has 2 components C+ and C− meeting transversely
at d points, given by the roots of g. Label the components so that the point
at infinity on C given by y

xd = 1 lies on C+; we call this point∞+, and the
other point at infinity ∞−. Observe that C+ is given by y − g(x) = π = 0
and C− by y + g(x) = π = 0. That means the coordinate x may be used
to specify points on each of C+ and C−. Given α ∈ k ∪ {∞}, we write α+

for the point P ∈ C+ such that x(P ) = α, and similarly α− for the point
P ∈ C− such that x(P ) = α; this is consistent with our labeling of ∞±.
Also, α+ = α− if and only if g(α) = 0. Finally, one sees that the set of
edges of the dual graph Γ is isomorphic as a g-set to the set of roots of g.

Lemma 4.2. Let β1, . . . , βe be the roots, counted with multiplicity, of h
over k. Let D = τ(div(y − g)), where τ is the specialization map described
in § 3.1. Then

D =
∑

β+
i + (d− e)∞+ − d∞−.

Proof. We first consider the divisor of y − g as a function on C . Write
divC (y − g) = D̃ + Df , where D̃ is horizontal and agrees with the generic
divisor divC(y − g), and Df is fibral. As observed earlier, Df = C+. Since
D̃ +Df is principal, we have

(D̃ · C+) = −(Df · C+) = d

(D̃ · C−) = −(Df · C−) = −d.

Thus we may writeD = D+−D−, whereD± is a degree d divisor supported
on C±, respectively.

To compute the x-coordinates of the points in the support of D, we solve
y2 = g2, which yields h(x) ≡ 0 (mod π). Since (π, g, h) ⊆ OK [x] is the unit
ideal, g(βi) 6= 0 for all i. Furthermore, the points (βi, g(βi)) lie on C+.
Therefore

D+ =
∑

β+
i + (d− e)∞+.



Descent for degenerating curves 229

The remaining points in the support of D must be ∞±. By degree consid-
erations, the claim follows. �

Lemma 4.3. Let α0, αi ∈ k be distinct roots of g. Let ej be the edge of
Γ corresponding to αj for j = 0, i oriented from C+ to C−. Let γi be the
one-cycle ei − e0 with uniformizers t+ = x−α0

x−αi
on C+ and t− = x−αi

x−α0
on

C−. Then
γi(∞+) = γi(∞−) = 1, and

γi(div(y − g)) = h(α0)
h(αi)

.

Proof. Since t±(∞±) = 1 for all four combinations, the first line of equalities
follows. Let he be the lead coefficient of h. Observe that∏

j

(βj − α0) = (−1)eh(α0)
he

and similarly for αi. Therefore∏
j

t+(β+
j ) = h(α0)

he

he

h(αi)
= h(α0)
h(αi)

.

But by Lemma 4.2 and the first part of this lemma, the left hand side is
equal to γi(div(y − g)). �

Theorem 4.1. Let C satisfy hypothesis (H).
(1) Suppose d is odd and g factors over k as

g(x) = (x− α0)g1(x) · · · gs(x)
where α0 ∈ k and each of the gi is irreducible. Let αi ∈ k be a root
of gi(x). Then C has a rational theta characteristic if and only if
Nm h(α0)h(αi) ∈ k×2 for all i. Here h(αi) 6= 0 for all i, and the
norm is computed from k(αi) to k.

(2) If d is even or g is irreducible, then C has a rational theta charac-
teristic.

Proof. In order to apply Theorem 3.1, we must find L ∈ Div{2}C which is
a canonical divisor. The standard choice is (d− 2)(∞+ +∞−); if d is even,
then this divisor is clearly divisible by 2, and we have found a rational
theta characteristic. We henceforth assume that d is odd, in which case
the latter divisor meets each component with odd multiplicity. Let L be
(d− 2)(∞+ +∞−) + div(y − g). Letting D be as in Lemma 4.2, and using
the fact that the genus of C is d− 1, we have

τ(L) := D + (d− 2)∞+ + (d− 2)∞−

=
∑

β+
i + (2g − e)∞+ − 2∞−.
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The g here denotes the genus of C. Observe that (L·C+) = 2g and (L·C−) =
−2, so L ∈ Div{2}C.

Lemma 4.1 implies that Φ[2] = 0. Thus we need only evaluate L on the
relevant 1-cycles. Suppose we are in the first case. We show that the toric
part of the special fiber of the Jacobian is in fact a normal torus. Let γi be
as in Lemma 4.3. Observe that the γi form a Z[g]-basis for H1(Γ,Z). Let
di = deg gi. Let χi ∈ X(T ) correspond to γi. The subtorus Ti with character
subgroup Z[g] · χi ⊆ X(T ) is a norm torus, as the character module is
isomorphic to Z[Y ]/(Y di − 1)—the isomorphism is given by χi 7→ Y , and
Frobenius acts as multiplication by Y . But T =

∏
Ti, which proves that T

is a normal torus.
It remains to apply Corollary 3.3. The group H1(Γ,Z)g is generated by

the elements
Nm γi := (1 + σ + σ2 + · · ·+ σdi−1)γi.

It follows from Lemma 4.3 that

(Nm γi)(L) = (Nm γi)(div(y − g)) ≡ Nm h(α0)h(αi) (mod k×2),

and the first case of the theorem is proved.
Let us now consider the case where g(x) is irreducible (and d is odd). Let

α be any root of g(x), and let e be the edge on the dual graph corresponding
to α, oriented in either direction. Then the 1-cycles σi+1e− σie form a Z-
basis for X(T ). The characteristic polynomial of Frobenius may then be
calculated to be xd−1 + xd−2 + · · ·+ 1 = 0. Via Proposition 2.2,

#T (k) = qd−1 + qd−2 + · · ·+ 1

which is odd; therefore T (k)/2T (k) = 0, and there is a rational theta char-
acteristic. �

When d is even, C is an odd genus hyperelliptic curve, and the above
argument shows that such curves always have a rational theta characteristic
given by (g−1)

2 (∞+ +∞−), regardless of the shape of the special fiber.

Example. If C is given by

y2 = (x3 − x)2 + π,

then h ≡ 1, and C has a rational theta characteristic. The Weierstrass
points are all rational over K(

√
π), so the Galois action on J [2] factors

through a cyclic group of order 2. Atiyah [1, §5] showed that if the Galois
action on J [2] factors through a cyclic group, then C has a rational theta
characteristic; this verifies our result.

On the other hand, if C is given by

y2 = (x3 − x)2 + πx+ 2π,
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then h(x) = x+ 2, αi = 0,±1, and h(0)h(1) = 6, h(0)h(−1) = 2. Therefore
given p ≥ 5, the curve C has a rational theta characteristic over Qp if and
only if p ≡ ±1 (mod 24).

4.2. Calculating torsion on Jacobians when Γ = Bd. We now apply
Proposition 3.3 and the calculations in the proof of Theorem 4.1 to compute
the prime-to-p rational torsion on Jacobians of curves satisfying hypothesis
(H) under the additional hypothesis that g(x) factors completely over K.
We also give a complete description of the prime-to-p torsion when d = 3.
As far as the author knows, these results furnish the first known examples of
curves where the component group of the Jacobian is not a direct summand
of the rational torsion group; i.e., the exact sequence (3.1) does not split.

Theorem 4.2. Let C satisfy hypothesis (H), and suppose that g(x) splits
completely. Let αi be the roots of g. Let q = #k. Let H be the subgroup
of k× generated by the numbers h(αi)

h(α0) . Let n be the order of H·k×d

k×d and let
m = d/n. Then

J(K)(p′) ∼=
( Z

(q − 1)Z

)d−2
⊕ Z
n(q − 1)Z ⊕

Z
mZ

.

Proof. Since g splits completely, T is a split torus of dimension d − 1. By
Lemma 4.1, Φ ∼= Z/dZ. Then there is a generator δ for Φ represented by a
divisor D′ with (D′ ·C−) = −(D′ ·C+) = 1. Observe that deg(div(y−g)) =
(−d, d). Let γi be as in the statement of Lemma 4.3, and χi ∈ X(T ) the
corresponding character. Observe that we have an isomorphism

⊕χi : T (k) ∼−→ (k×)d−1 ∼=
( Z

(q − 1)

)d−1
.

Applying Proposition 3.3 with r = d, we have that χi(ν(δ)) equals γi(div(y−
g)). Furthermore

γi(div(y − g)) = h(α0)
h(αi)

.

It follows that the order of ν(δ) is n, and the order of ker ν is m. The claim
now follows from Proposition 3.3 and Lemma 3.5. �

Theorem 4.3. Let C satisfy hypothesis (H) with d = 3. Let α0, α1, α2 be
the roots of g(x) in k. Suppose the order of k is q. Let J(K)(p′) be the
largest torsion subgroup of the rational points on the Jacobian of C with
order coprime to p.

(1) Suppose g(x) has a single root in k, say α0. If q ≡ 1 (mod 3) and
h(α0)2

h(α1)h(α2) lies in k×3, or if q ≡ 2 (mod 3) and

h(α1)
q2−1

3 = 1,
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then
J(K)(p′) ∼=

Z
(q2 − 1)Z ⊕

Z
3Z .

Otherwise
J(K)(p′) ∼=

Z
3(q2 − 1)Z

(2) Suppose g(x) is irreducible over k. If q ≡ 2 (mod 3), or both q ≡ 1
(mod 3) and

h(α0)
q3−1

3 = 1,
then

J(K)(p′) ∼=
Z

(q2 + q + 1)Z ⊕
Z
3Z .

Otherwise
J(K)(p′) ∼=

Z
3(q2 + q + 1)Z .

Proof. According to Lemma 4.1, Φ ∼= Z/3Z. Let δ be a generator for Φ such
that δ is represented by a divisorD′ with (D′·C−) = −(D′·C+) = 1. We will
apply Proposition 3.3 with r = 3 to compute ν(δ). Since 3 degD′ = degD,
this is equivalent to computing γ(div(y − g)) for various choices of γ.

In the first case, let γ1, γ2 be as in Lemma 4.3, and let χ1, χ2 be the
corresponding characters. We see that T is an `-norm torus, where `/k is
the unique quadratic extension, and χ1 yields an isomorphism

χ1 : T (k) ∼−→ `× ∼=
Z

(q2 − 1)Z
Observe that 3 | (q2 − 1). By Proposition 3.3, ker ν ∼= Z/3Z if and only if
γi(div(y−g)) lies in `×3 for i = 1, 2, and ker ν = 0 otherwise. By Lemma 4.3,
γi(div(y − g)) = h(α0)/h(αi). If 3 | (q − 1), then the map induced by the
norm

`×

`×3 −→
k×

k×3

is an isomorphism, and the claim follows. If 3 - (q − 1), then h(α0) ∈ k× =
k×3, and since h(αi) for i = 1, 2 are conjugate over k, it suffices to determine
whether h(α1) lies in `×3. But `× is cyclic of order q2 − 1, so the first case
is proved.

In the second case, T is principal, but not a norm torus. As stated in the
proof of Theorem 4.1, the characteristic polynomial of Frobenius acting on
X(T ) is f(x) = x2 + x+ 1, and by Proposition 2.2,

T (k) ∼=
Z

(q2 + q + 1)Z
If q ≡ 2 (mod 3), then 3 - (q2 + q + 1) and T (k)/3T (k) = 0. Therefore
ker ν = Z/3Z, and we obtain the corresponding conclusion.
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Now suppose q ≡ 1 (mod 3). Without loss of generality αi = σiα0 for
i = 1, 2. Then γ1(div(y − g)) = h(α0)/h(α1); since µ(T ) is cyclic, this lies
in 3µ(T ) if and only if (

h(α0)
h(α1)

) q2+q+1
3

= 1.

Observe that
h(α0)
h(α1)

· σ
(
h(α0)
h(α1)

)
= h(α0)
h(α2)

and so h(α0)/h(α1) ∈ 3µ(T ) if and only if h(α0)/h(α2) ∈ 3µ(T ). Via α1 =
αq0, we have

(
h(α0)
h(α1)

) q2+q+1
3

=
(
h(α0)q+1)− q2+q+1

3 = h(α0)−
q3−1

3 .

This completes the proof. �

5. A genus 4 nonhyperelliptic family

In this section, we obtain similar results as in § 4 on a family of nonhy-
perelliptic genus 4 curves. As 2g − 2 = 6, one can also speak of cube roots
of the canonical class (also called 3-spin structures); we determine if any of
these are rational as well.

Let the base field K be a local field with discrete valuation ring OK ,
uniformizer π, and residue characteristic p with p ≥ 5. For any “integral”
element (x ∈ OK , f ∈ OK [X], etc.), we use a bar to denote reduction
modulo π (x, f , etc.). Our family will then be the intersection in P3

K of the
quadric surface XY = ZW and the family of cubics

(X − Y )(Z −W )(Z +W ) = πε

where ε varies in a subset of integral homogeneous cubic forms.
Given a projective variety V over K defined by integral equations, we

will use script V to denote the model of V over OK obtained by using the
same equations. We also write Vk for the special fiber of V .

The recipe is as follows. We first record some general facts about our
curves, including the shape of the special fiber. Then we compute the prime-
to-p rational torsion on the Jacobian of our curves. Finally, we will deter-
mine if there are any rational square roots and cube roots of the canonical
class.

5.1. General facts. A nonhyperelliptic genus 4 curve may be given as
the intersection of an irreducible quadric surface and an irreducible cubic
surface in P3; this in fact gives the curve in its canonical embedding (see
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for example [8, IV.5.2.2 and IV.5.5.2]). Our quadric Q will be given in
projective coordinates [X : Y : Z : W ] by

Q : XY = ZW.

Let Q be the corresponding arithmetic scheme in P3
OK

; i.e. we use the same
equation. Set

LXY = X − Y
LZW = Z −W
L−ZW = Z +W.

Let ε be a homogeneous cubic form in OK [X,Y, Z,W ]. Let S be the cubic
surface given by LXY · LZW · L−ZW = πε. Let S be the corresponding
arithmetic scheme in P3

OK
. Let C be the (scheme-theoretic) intersection

Q ∩S with generic fiber C.

Lemma 5.1. If ε ∈ k[X,Y, Z,W ] does not vanish at any of the points
[1 : 1 : 1 : 1], [−1 : −1 : 1 : 1]

[i : i : −1 : 1], [−i : −i : −1 : 1]
[1 : 0 : 0 : 0], [0 : 1 : 0 : 0]

where i denotes any fixed square root of −1 in k, then C is a minimal
regular arithmetic surface such that the components of the special fiber are
geometrically integral, and such that the dual graph of the special fiber is as
pictured in Figure 5.1.

As an example of such an ε when p ≥ 7, let
ε0 = X3 + Y 3 +WZ2.

Proof. We first compute the dual graph. The special fiber of C is given by
XY = ZW, LXY · LZW · L−ZW = 0.

Write CXY for the intersection of Qk and LXY = 0 on the special fiber;
define CZW and C−ZW similarly. Then the special fiber has 3 components:
CXY , CZW , and C−ZW . These are each type (1, 1) divisors on the quadric,
and so every pair intersects in two points. Solving for these intersections,
we obtain the dual graph in the figure.

For regularity, we need only check that C is regular at the nodes of
the special fiber. By hypothesis, ε does not vanish at any of the nodes,
whence the claim follows. Minimality follows from checking Castelnuovo’s
criterion. �

In the figure, four loops are labeled γ1, γ2, γ3 and γ̃, where γ3 is the loop
consisting of the three outside edges; we orient each loop counterclockwise.
We define a fifth loop γ4 as γ3 − γ̃.
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CZW
• •C−ZW

CXY•

γ1 γ̃

γ2

γ3

[1:1:1:1]

[−1:−1:1:1] [−i:−i:−1:1]

[i:i:−1:1]

[1:0:0:0]

[0:1:0:0]

Figure 5.1. Dual graph of Ck

Henceforth, we will assume that ε satisfies the lemma.
The Jacobian J of C is an extension of a torus T by the component group

Φ; see Lemma 5.3 for the computation of Φ. The torus T is a normal torus:
if i ∈ k×, then T is split, and γ1, γ2, γ3, γ4 form a basis for H1(Γ,Z)g =
H1(Γ,Z). If i /∈ k×, then T is the product of G2

m with the k(i)-norm torus.
We have σγ3 = γ4 and H1(Γ,Z)g is generated by γ1, γ2, and γ3 + γ4.

5.2. Setup for descent. Given a divisor D ∈ Div{1}C, we wish to deter-
mine how to evaluate γi(D) for each i. For each loop, we construct on each
component a local parameter which is supported on the nodes. The specific
support is determined by the loop. Furthermore, each function must be
normalized so as to lie in F1(γ, k) for the appropriate choice of γ. An easy,
if lengthy, calculation yields Table 5.1 below.

Each function is written as one on P3
k, which we then restrict to the

appropriate component. When two functions are listed, they agree on an
open dense set; one can go from one to the other by using the equations
for the given component. For example, on CXY one has X2 = ZW . We
have omitted γ4; it can be obtained from γ3 by applying the substitution
i 7→ −i. (Warning: this map is not in general a homomorphism on k×; for
example, let k = F5, i = 2, and compare 1 + i with 1 − i.) The functions
for γ3 +γ4 are obtained by computing Nm(γ3, (ti)). As every component in
γ3 + γ4 appears with multiplicity 2, it makes sense that the functions are
of degree 2 (when interpreted as maps from the relevant component to P1

k).
The divisors for γ3 + γ4 are omitted, but may be obtained as the sum of
the divisors of γ3 and γ4.
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Loop Component Divisor Local function

γ1 CXY [−1 : −1 : 1 : 1]− [1 : 1 : 1 : 1] Z +X

Z −X
≡ X +W

X −W

CZW [1 : 1 : 1 : 1]− [−1 : −1 : 1 : 1] Z −X
Z +X

γ2 CZW [1 : 0 : 0 : 0]− [0 : 1 : 0 : 0] Z − Y
Z −X

C−ZW [0 : 1 : 0 : 0]− [1 : 0 : 0 : 0] Z −X
Z + Y

≡ X + Z

Y − Z

γ3 CXY [i : i : −1 : 1]− [1 : 1 : 1 : 1] Z − iX
Z −X

≡ X − iW
X −W

CZW [1 : 1 : 1 : 1]− [0 : 1 : 0 : 0] Z − Y
Z

C−ZW [0 : 1 : 0 : 0]− [i : i : −1 : 1] X

Z − iX

γ3 + γ4 CXY − Z2 +X2

(Z −X)2

CZW − (Z − Y )2

Z2

C−ZW − X2

Z2 +X2

Table 5.1. Local functions for a basis of H1(Γ,Z)g

Each function must also be normalized properly. If i ∈ k, then every
node is rational over k, and the normalization condition is simply that each
function is also defined over k. Clearly, this is satisfied. If i /∈ k, then we
will use evaluation on the cycles γ1, γ2, and γ3 + γ4. Our construction of
the functions for γ3 + γ4 guarantees that the normalization is correct.

5.3. Calculation of torsion on Jacobian. As observed earlier, the
prime-to-p rational torsion in the Jacobian J(K)(p′) contains a subgroup
isomorphic to T (k); we now compute this latter group.

Lemma 5.2. Let i be any square root of −1 in k. If i ∈ k×, then

T (k) ∼=
( Z

(q − 1)Z

)4
.
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If i /∈ k×, then

T (k) ∼=
( Z

(q − 1)Z

)2
⊕ Z

(q2 − 1)Z .

Proof. As observed in the end of §5.1, if i ∈ k×, then T is a split torus, and
so T ∼= G4

m; the first claim follows. Note that if we fix an identification of
k× with Z/(q−1)Z, then by abuse of notation the isomorphism is given by

⊕χi : T (k) −→
( Z

(q − 1)Z

)4
.

We also observed that if i /∈ k×, then T ∼= G2
m × Rk(i)/kGm. As

Rk(i)/kGm(k) ∼= Gm(k(i)) ∼= Z/(q2 − 1)Z, the second assertion follows.
The isomorphism is given by

(χ1, χ2, χ3) : T (k) −→ Z
(q − 1)Z ⊕

Z
(q − 1)Z ⊕

Z
(q2 − 1)Z .

�

We now use the descent map to compute the remaining factor in the
prime-to-p torsion. Let τ : Div{1}C −→ DivCk be the specialization map,
as in § 3.1. We define our degree map by

deg : DivCk −→ Z3

D 7−→ ((D · CXY ), (D · CZW ), (D · C−ZW )).

Lemma 5.3. The component group of the Jacobian of C over K is

Φ ∼=
Z
6Z ×

Z
2Z .

There are generators δ1, δ2 for the respective cyclic subgroups represented
by divisors D1, D2 ∈ Div{1}C respectively such that

deg τ(D1) = (0, 1,−1)
deg τ(D2) = (1,−1, 2).

Proof. The intersection matrix for Ck is −4 2 2
2 −4 2
2 2 −4

 .
One then verifies the claims via [16, Proposition 8.1.2]. �

Consider the pullback of O(1) to C. Given a linear form L in X,Y, Z,W ,
we write divL to mean the divisor of the corresponding section of the
pullback sheaf; as observed earlier, this is a section of the canonical bundle
of C. Similarly, for any function f on P3, div f means the divisor of the
restriction of f to C.
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Lemma 5.4. We have

deg
(
τ

(
div Z −W

Z +W

))
= (0, 6,−6)

deg
(
τ

(
div X + Y

Z +W

))
= (2, 2,−4).

Proof. The divisor of each linear section is effective of degree 6. Clearly the
specialization of the divisor of Z −W lies entirely on CZW , and similarly
for Z + W and C−ZW . As for X + Y , we consider the special fiber Ck as
the intersection of Qk with the degenerate cubic form LXY LZWL−ZW = 0.
Each of LXY , LZW , L−ZW gives rise to a type (1, 1) divisor on Qk, as does
X + Y = 0. Thus the divisor of X + Y intersects each component of Ck in
two points (up to multiplicity). The claim follows. �

To calculate the prime-to-p torsion of J(K), we will evaluate the func-
tions in Table 5.1 on the specializations of the divisors of X + Y , Z −W ,
and Z +W .

Lemma 5.5. The specialization of the divisor div(X + Y ) on Ck is
[0 : 0 : 1 : 0] + [0 : 0 : 0 : 1]

+[i : −i : 1 : 1] + [−i : i : 1 : 1]
+[−1 : 1 : −1 : 1] + [1 : −1 : −1 : 1].

The first pair lies on CXY , the second on CZW , and the third on C−ZW .

Proof. As mentioned earlier, the hyperplane X + Y = 0 in P3
k intersects

every component transversely in two points, and so the calculation of
div(X + Y ) is straightforward. The second claim is easily verified. �

Let

hZW (x) = x3ε

(
x,

1
x
, 1, 1

)
h−ZW (x) = x3ε

(
x,−1

x
,−1, 1

)
Let α1, · · · , α6 be the roots of hZW (x) counted with multiplicity, and sim-
ilarly let β1, · · · , β6 be the roots of h−ZW (x).

Lemma 5.6. The specialization of the divisor of Z −W is∑[
αi : 1

α i
: 1 : 1

]
.

The specialization of the divisor of Z +W is∑[
βi : − 1

β i
: −1 : 1

]
.



Descent for degenerating curves 239

Proof. We first consider Z −W . Generically, we wish to solve the system

XY = ZW, Z = W, ε(X,Y, Z,W ) = 0.

Lemma 5.1 implies that ε = aX3 + bY 3 + · · · , where a, b ∈ OK are units.
If Z = W = 0, this implies that X = Y = 0, which does not occur in P3.
Therefore we may assume that Z = W = 1. Together with the fact that
the coefficient b 6= 0, the claim for Z −W now follows.

Similar reasoning holds for the divisor of Z +W . �

Lemma 5.7. For c 6= 0, the following equalities hold:

∏
(c− αi) =

∏
(αi − c) = c3 ε

(
c, 1
c , 1, 1

)
ε(1, 0, 0, 0)∏

(c− βi) =
∏

(βi − c) = c3 ε
(
c,−1

c ,−1, 1
)

ε(1, 0, 0, 0)∏
αi = −

∏
βi = ε(0, 1, 0, 0)

ε(1, 0, 0, 0)

Proof. Observe that the lead coefficients of hZW and of h−ZW are the coef-
ficient of X3 in ε, which equals ε(1, 0, 0, 0). From this, the first two claims
are trivial. To evaluate

∏
αi, we see that the product equals hZW (0) divided

by its lead coefficient, which is the constant term of x3ε(x, 1
x , 1, 1) divided

by its lead coefficient. Since ε is a homogeneous cubic, the constant term
is the coefficient of Y 3, which equals ε(0, 1, 0, 0). The argument for

∏
βi is

similar. �

We now evaluate the γi on the divisors discussed above, as well as on
certain linear combinations of these divisors. For convenience, we only sum-
marize the results in Table 5.2 below—the calculations are routine. The only
two “tricks” are liberal use of Lemma 5.7 and that, for each point in the
support of the given divisor, one should choose the local parameter in Ta-
ble 5.1 which is regular and nonvanishing at that point. (The Table 5.1 is
constructed so that there is always such a choice for the divisors below.) In
Table 5.2, we write ε in place of ε for convenience. In the interests of space,
we omit γ4(D), which can be obtained by replacing i with −i in γ3(D).

Theorem 5.1. Let K be a local field with uniformizer π and residue field
k of characteristic p ≥ 5 and order q. Let i ∈ k× be a fixed square root of
−1. Let C be the locus in P3

K given by XY = ZW and

(X − Y )(Z −W )(Z +W ) = πε

with ε ∈ OK [X,Y, Z,W ] a homogeneous cubic satisfying Lemma 5.1. Let J
be its Jacobian, J(K)(p′) the largest torsion subgroup of J(K) with order
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D γ1(D) γ2(D) γ3(D) γ4(D)

divX + Y −1 −1 −i −

divZ −W
ε(1, 1, 1, 1)

ε(−1,−1, 1, 1)
ε(1, 0, 0, 0)
ε(0, 1, 0, 0)

ε(1, 1, 1, 1)
ε(0, 1, 0, 0) −

divZ +W 1 −ε(0, 1, 0, 0)
ε(1, 0, 0, 0) i

ε(0, 1, 0, 0)
ε(i, i,−1, 1) −

div Z−W
Z+W

ε(1, 1, 1, 1)
ε(−1,−1, 1, 1) −ε(1, 0, 0, 0)2

ε(0, 1, 0, 0)2 −i ε(1, 1, 1, 1)ε(i, i,−1, 1)
ε(0, 1, 0, 0)2 −

div X+Y
Z+W

−1 ε(1, 0, 0, 0)
ε(0, 1, 0, 0) −ε(i, i,−1, 1)

ε(0, 1, 0, 0) −

div Z−W
X+Y

− ε(1, 1, 1, 1)
ε(−1,−1, 1, 1) −ε(1, 0, 0, 0)

ε(0, 1, 0, 0) i
ε(1, 1, 1, 1)
ε(0, 1, 0, 0) −

div Z2−W 2

X+Y
− ε(1, 1, 1, 1)
ε(−1,−1, 1, 1) 1 − ε(1, 1, 1, 1)

ε(i, i,−1, 1) −

div (Z+W )2

Z−W

ε(−1,−1, 1, 1)
ε(1, 1, 1, 1)

ε(0, 1, 0, 0)3

ε(1, 0, 0, 0)3 − ε(0, 1, 0, 0)3

ε(i, i,−1, 1)2ε(1, 1, 1, 1) −

Table 5.2. Evaluation of loops on certain divisors

not divisible by p, and T the toric part of the reduction of a Néron model
for J over OK . Then J(K)(p′) lies in a short exact sequence

0 −→ T (k) −→ J(K)(p′) −→ Z
6Z ⊕

Z
2Z −→ 0.

More precisely, we have the following.
(1) Suppose i ∈ k×. Then J(K)(p′) is isomorphic to

Z
a0Z
⊕ Z
b0Z
⊕ Z
a1(q − 1)Z ⊕

Z
b1(q − 1)Z ⊕

( Z
(q − 1)Z

)2

where a0a1 = 6, b0b1 = 2, and these constants are computed as
follows:

Let H1 ⊆ k× be the subgroup generated by the entries in the row
div Z−W

Z+W of Table 5.2, let H2 be the group generated by the entries
in the row div X+Y

Z+W , and let H3 be the group generated by the entries
in the row div Z−W

X+Y . (Recall that the last entry γ4(D) is obtained
from γ3(D) by replacing i with −i.)

Then a1 is the order of H1·k×6

k×6 and a0 = 6/a1.
If H3 ⊆ k×2, set b1 = 1 and b0 = 2. Otherwise, b1 is the order of

H2·k×2

k×2 and b0 = 2/b1.
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(2) Suppose i /∈ k×. Then J(K)(p′) is isomorphic to
Z
a0Z
⊕ Z
c0Z
⊕ Z
a1(q − 1)Z ⊕

Z
b1(q − 1)Z ⊕

Z
b3c3(q2 − 1)Z

where a0a1 = b1b3 = 2, c0c3 = 3, and these constants are computed
as follows:

Let ` = k(i). Let H1 ⊆ k× be the subgroup generated by the first
two entries of row div Z−W

Z+W of Table 5.2 and the norm from ` to k
of the third entry. Let H3 ⊆ k× be the subgroup generated by the
first two entries of row div Z−W

X+Y and the norm from ` to k of the
third entry.

If 3 | (q − 1) and H1 ⊆ k×3, or 3 - (q − 1) and

ε(i, i,−1, 1)(q2−1)/3 = 1,
then c0 = 3. Otherwise c0 = 1. In either case, c3 = 3/c0.

If Nm`/k ε(i, i,−1, 1) ∈ k×2, then b1 = 2 and b3 = 1. Otherwise,
b1 = 1 and b3 = 2.

If H3 ⊆ k×2, then a0 = 2 and a1 = 1. Otherwise, a0 = 1 and
a1 = 2.

A word about the notation: letting δ1 and δ2 be generators for Φ as in
Lemma 5.3, the aj give the contribution of δ1 to J(K)(p′) and the bj give
the contribution of δ2 in the case i ∈ k×. When i /∈ k×, the aj give the
contribution of 3δ1 while the cj give the contribution of 2δ1. The subscripts
on the constants roughly refer to the subscript on the corresponding one-
cycle, except the subscript 0 refers to contributions coming from the kernel
of ν as in Proposition 3.3. For example, letting r = 2 in that proposition, if
γ1(3δ1) is nontrivial, then a1 = 2. This is not quite correct in all cases; for
example, when i ∈ k×, we use a1 = 2 if γj(3δ1) is nontrivial for any j. By
the symmetry of the factors in T (k) (according to Lemma 5.2), it doesn’t
matter which γj yields a nontrivial value.

Proof. The short exact sequence follows from Proposition 3.2 and the cal-
culation of the component group Φ in Lemma 5.3.

Suppose i ∈ k×. Let r = 2 in Proposition 3.3. Note that the nontrivial
elements of Φ[2] are 3δ1, δ2, and 3δ1−δ2, with notation as in Lemma 5.3. By
Lemma 5.4, the relevant functions in Proposition 3.3 are div Z−W

Z+W , div X+Y
Z+W ,

and div Z−W
X+Y respectively. The conditions on the bj and the 2-part of the

aj now follow from the latter proposition and Corollary 3.2. For example,
ν(δ2) = 0 if and only if γj

(
div X+Y

Z+W
)
≡ 1 (mod k×2) for all j, which is

equivalent to [H2 · k×2 : k×2] = 1.
For r = 3, we wish to determine whether ν(2δ1) is trivial or not; if it is,

3 | a0 and 3 - a1. If it is not, then 3 | a1 and 3 - a0. The determination of
ν(2δ1) proceeds in a similar way as in the r = 2 case above.
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The i 6∈ k× case is similar, but with the following additional com-
plications. First, suppose r = 2. Observe that neither γ2

(
div Z−W

Z+W
)
nor

γ1
(

div X+Y
Z+W

)
lie in k×2 in this case. Next, the factors µ(Tj) := χj(T (k)) for

j = 1, 2, 3 are not all isomorphic to each other by Lemma 5.2. Let x ∈ J(k)
be any element mapping to 3δ1 ∈ Φ[2]. Then even though ν(3δ1) 6= 0, the
2-part of the order of x depends on whether γ3

(
div Z−W

Z+W
)
lies in 2µ(T3) or

not. Since µ(T3) = `× and the norm gives an isomorphism

`×

`×2 −→
k×

k×2

one sees that γ3
(

div Z−W
Z+W

)
lies in 2µ(T3) if and only if Nm`/k ε(i, i,−1, 1) ∈

k×2. This explains the condition on the bj ; the condition on the aj follows
easily.

Lastly, let r = 3. If 3 - (q − 1), then γ1 and γ2 automatically take values
in k×3 = k×. Therefore in order to determine if ν(2δ1) = 0, we need to
determine if γ3

(
div Z−W

Z+W
)
lies in `×3. The condition for the cj now follows

from the observations that i3 = −i and k× ⊆ `×3. �

5.4. Rationality of theta characteristics and cube roots of the
canonical class.

Theorem 5.2. Let C be as in the hypotheses of Theorem 5.1. Let i ∈ k×

be a fixed square root of −1. Define groups Tj ⊆ k× for j = 1, . . . , 4 as
follows.

If i ∈ k×, let T1 be the subgroup generated by the entries in row
div(X + Y ) of Table 5.2. Similarly, let T2, T3, T4 be the subgroups gen-
erated by rows div(Z −W ), div(Z +W ), and div Z2−W 2

X+Y respectively.
If i /∈ k×, let ` = k(i), and let each Tj be computed for the corresponding

row as above, but this time taking the subgroup generated by the first two
entries of the row, plus the norm from ` to k of the third entry.

Then C has a rational theta characteristic if and only if some Tj lies in
k×2.

Proof. We apply Corollary 3.2. The canonical divisor may be given by
divX + Y , which lies in Div{2}C. There are 4 elements in Φ[2]; the cor-
responding functions as in Corollary 3.2 are 1, Z−W

X+Y , Z+W
X+Y , and Z2−W 2

(X+Y )2 .
Observe that

γi

(
div(X + Y ) + div Z −W

X + Y

)
= γi(divZ −W );

one does similar calculations for the other functions.
When i /∈ k×, by Corollary 3.3 we need to evaluate γ1, γ2, and γ3 + γ4.

This explains why we take the norm of the third entry. �
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Theorem 5.3. Let C be as in Theorem 5.1. If i ∈ k×, let S1 ⊆ k× be the
subgroup generated by the entries of row div(Z−W ) in Table 5.2. Similarly,
let S2, S3 be the subgroups generated by the rows divZ +W and div (Z+W )2

Z−W
respectively. If i 6∈ k× and 3 | (q − 1), let Si be the subgroups generated by
the first two entries of the corresponding rows and the norm from ` to k
of the third entry. In these two cases, C has a rational cube root of the
canonical class if and only if some Si lies in k×3.

If i 6∈ k× and 3 - (q−1), then C has a rational cube root of the canonical
class if and only if ε(i, i,−1, 1)(q2−1)/3 = 1.

Proof. The proof is analogous to that of Theorem 5.2. Here, we use
div(Z − W ) as our canonical divisor, observing that it lies in Div{3}C.
We have Φ[3] has 3 elements with corresponding functions 1, Z+W

Z−W , and
(Z+W )2

(Z−W )2 . Thus in Theorem 3.1, we set r = 3 and use the divisors of the
sections in the statement above. The case when i ∈ k× follows from Theo-
rem 3.1. The case when i 6∈ k× but 3 | (q − 1) follows from Corollary 3.3.

Now suppose that i 6∈ k× and 3 - (q − 1). Since k×3 = k×, we automati-
cally have γ1(D) = γ2(D) = 1 for D the three relevant divisors. Therefore
C has a rational cube root of the canonical class if and only if γ3(D) and
γ4(D) lie in `×3. Since these are conjugate, it suffices that γ3(D) ∈ `×3. The
claim now follows from the observations that k× ⊆ `×3 and i3 = −i. �

Example. If K = Qp with p ≡ 5 (mod 12), then i ∈ F×p and F×
p

F×3
p

= 1.
Therefore C has a rational cube root of the canonical class for every ε
satisfying Lemma 5.1.

References
[1] M. F. Atiyah, Riemann surfaces and spin structures. Ann. Sci. École Norm. Sup. 4 (1971),

47–62.
[2] M. Baker, Specialization of linear systems from curves to graphs. Algebra Number Theory

2 (2008), 613–653.
[3] S. Bosch and Q. Liu, Rational points of the group of components of a Néron model.

Manuscripta Math. 98 (1999), 275–293.
[4] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models. Springer-Verlag, 1990.
[5] A. Chiodo, Stable twisted curves and their r-spin structures. Ann. Inst. Fourier 58 (2008),

1635–1689.
[6] O. Gabber, Q. Liu, and D. Lorenzini, The index of an algebraic variety. Inventiones

mathematicae (2012), 1–60.
[7] B. H. Gross and J. Harris, On some geometric constructions related to theta character-

istics. Contributions to automorphic forms, geometry, and number theory, Johns Hopkins
Univ. Press, 2004, 279–311.

[8] R. Hartshorne, Algebraic geometry. Springer-Verlag, 1977.
[9] N. M. Katz, Galois properties of torsion points on abelian varieties. Inventiones Mathe-

maticae 62 (1981), 481–502.
[10] Q. Liu, Algebraic geometry and arithmetic curves. Oxford Graduate Texts in Mathematics

6, Oxford, 2002.



244 Shahed Sharif

[11] D. Mumford, Theta characteristics of an algebraic curve. Ann. Sci. École Norm. Sup. 4
(1971), 181–192.

[12] T. Ono, Arithmetic of algebraic tori. Ann. of Math. 74 (1961), 101–139.
[13] M. Pacini, On Néron models of moduli spaces of theta characteristics. J. Algebra 323

(2010), 658–670.
[14] R. Parimala and W. Scharlau, On the canonical class of a curve and the extension

property for quadratic forms. Recent advances in real algebraic geometry and quadratic
forms, AMS, Providence, 1994, 339–350.

[15] B. Poonen and E. Rains, Self cup products and the theta characteristic torsor. Math. Res.
Letters 18 (2011), 1305–1318.

[16] M. Raynaud, Spécialisation du foncteur de Picard. Inst. Hautes Études Sci. Publ. Math.
38 (1970), 27–76.

[17] V. Suresh, On the canonical class of hyperelliptic curves. Recent advances in real algebraic
geometry and quadratic forms, AMS, Providence, 1994, 399–404.

Shahed Sharif
California State University San Marcos
333 S. Twin Oaks Valley Rd.
San Marcos, CA 92096, USA
E-mail: ssharif@csusm.edu
URL: http://public.csusm.edu/ssharif

mailto:ssharif@csusm.edu
http://public.csusm.edu/ssharif

	1. Introduction
	2. Basic facts on algebraic tori over finite fields
	3. The descent map
	3.1. Overview
	3.2. One-cycles on 
	3.3. Evaluation of divisors on 1-cycles
	3.4. Torsion and descent
	3.5. Simplifications for normal tori

	4. Curves with = Bd
	4.1. Rationality of theta characteristics when = Bd
	4.2. Calculating torsion on Jacobians when = Bd

	5. A genus 4 nonhyperelliptic family
	5.1. General facts
	5.2. Setup for descent
	5.3. Calculation of torsion on Jacobian
	5.4. Rationality of theta characteristics and cube roots of the canonical class

	References

