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The number of solutions to the generalized Pillai
equation ±rax ± sby = c.

par Reese SCOTT et Robert STYER

Résumé. Nous considérons N , le nombre de solutions (x, y, u, v)
de l’équation (−1)urax +(−1)vsby = c en nombres entiers non né-
gatifs x, y, et nombres entiers u, v ∈ {0, 1}, pour des entiers donnés
a > 1, b > 1, c > 0, r > 0 et s > 0. Lorsque pgcd(ra, sb) = 1, nous
montrons que N ≤ 3, sauf pour un nombre fini de cas qui satis-
font à max(a, b, r, s, x, y) < 2 · 1015 pour chaque solution ; lorsque
pgcd(a, b) > 1, nous montrons que N ≤ 3 sauf pour trois familles
infinies de cas exceptionnels. Nous trouvons plusieurs façons de
générer un nombre infini de cas donnant N = 3 solutions.

Abstract. We consider N , the number of solutions (x, y, u, v)
to the equation (−1)urax + (−1)vsby = c in nonnegative integers
x, y and integers u, v ∈ {0, 1}, for given integers a > 1, b > 1,
c > 0, r > 0 and s > 0. When gcd(ra, sb) = 1, we show that
N ≤ 3 except for a finite number of cases all of which satisfy
max(a, b, r, s, x, y) < 2 · 1015 for each solution; when gcd(a, b) > 1,
we show thatN ≤ 3 except for three infinite families of exceptional
cases. We find several different ways to generate an infinite number
of cases giving N = 3 solutions.

1. Introduction
In this paper we consider N , the number of solutions (x, y, u, v) to the

equation

(1.1) (−1)urax + (−1)vsby = c

in nonnegative integers x, y and integers u, v ∈ {0, 1}, for given integers
a > 1, b > 1, c > 0, r > 0 and s > 0. When x ≥ 1, y ≥ 1, and (u, v) = (0, 1),
Equation (1.1) is the familiar Pillai equation which has been treated by
many authors (for example [1], [3], [5], [6], [15], [17], [18]). In [15] we treated
(1.1) with various additional restrictions on x, y, u, v, a, b. In this paper,
we treat (1.1) with no additional restrictions. Brief histories of the problem
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are given in [3] and [15], but see [2] and [19] for a much more extended
history.

Pillai [10] showed that (1.1) has only finitely many solutions (x, y) when
(u, v) = (0, 1). The case in which u and v are unrestricted was also consid-
ered by Pillai [11] when (a, b, r, s) = (2, 3, 1, 1).

Shorey [17] showed that (1.1) has at most nine solutions in positive in-
tegers (x, y) when (u, v) = (0, 1) and the terms on the left side of (1.1) are
large relative to c.

More recent results are given by (A), (B), (C), (D), and (E) which follow:
(A) N ≤ 3 when x ≥ 2, y ≥ 2, (u, v) = (0, 1), and gcd(ra, sb) = 1, except

possibly when either a or b is less than ee (Le [6]).
(B) N ≤ 2 when x ≥ 2, y ≥ 2, (u, v) = (0, 1), and gcd(ra, sb) = 1, except

possibly when (a, b) is one of 23 exceptions (Bo He and A. Togbé [5]).
(C) N ≤ 2 when x ≥ 1, y ≥ 1, u and v are unrestricted, and gcd(ra, sb) =

1, except for a finite number of cases which can be found in a finite number
of steps and for which max(a, b, r, s, x, y) < 8 · 1014 for each solution [15].

(D) N ≤ 3 when x ≥ 1, y ≥ 1, (u, v) = (0, 1), and gcd(ra, sb) = 1, with
no exceptions (Bo He and A. Togbé [5]).

(E) N ≤ 3 when x ≥ 0, y ≥ 0, (u, v) = (0, 1), and gcd(ra, sb) is unre-
stricted, with no exceptions [15].

In this paper we show that (E) still holds even when (u, v) is unrestricted,
with exceptions which are either completely designated or findable in a
finite number of steps; although this has already been done for the case
rs = 1 (see [14], which generalizes [1]), we found the case rs > 1 (with u and
v unrestricted) to be of interest since (unlike (E)) it requires establishing
more general results which not only help to obtain N ≤ 3 but also allow us
to say a good deal about the infinite number of cases for which N = 3 (see
Lemmas 2.1–2.11 in Section 2 and the discussion in Section 5). In particular,
we find that anomalous exceptional cases found in previous treatments of
the problem can be placed in the context of predictable infinite families.

For the case gcd(ra, sb) = 1, see Theorem 1.2 below, the proof of which
uses a theorem of Matveev (see Lemma 4.3 in Section 4). For the remaining
cases, we will need some simple observations and definitions and also a
preliminary lemma:

Observation 1.1. The choice of x and y uniquely determines the choice
of u and v.

Following Observation 1.1, we will usually refer to a solution (x, y).

Observation 1.2. There are at most two solutions to (1.1) having the
same value of x, similarly for y.
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In what follows we will often refer to a set of solutions to (1.1) which we
will write as

(a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN )

and by which we mean the (unordered) set of ordered pairs {(x1, y1),
(x2, y2), . . . , (xN , yN )}, with N > 2, where each pair (xi, yi) gives a solution
to (1.1) for given integers a, b, c, r, and s.

We now define our use of the word family. We say that two sets of solu-
tions (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) and (A,B,C,R, S;X1, Y1, X2, Y2,
. . . , XN , YN ) belong to the same family if there exists a positive rational
number k such that kc = C, and for every i there exists a j such that
kraxi = RAXj and ksbyi = SBYj , 1 ≤ i, j ≤ N .

Observation 1.3. It follows from the above definition of family that, if
(a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) and (A,B,C,R, S;X1, Y1, X2, Y2, . . . ,
XN , YN ) are in the same family with kc = C, then, by Observation 1.1, for
every i there exists a unique j such that kraxi = RAXj and ksbyi = SBYj ,
and for every j there exists a unique i such that kraxi = RAXj and ksbyi =
SBYj , 1 ≤ i, j ≤ N . Further, by Observation 1.2 (recalling N > 2), a and
A are both powers of the same integer, and b and B are both powers of the
same integer.

Lemma 1.1. Every family contains a unique member (a, b, c, r, s;x1, y1,
x2, y2, . . . , xN , yN ) with the following properties: gcd(r, sb) = gcd(s, ra) =
1; min(x1, x2, . . . , xN ) = min(y1, y2, . . . , yN ) = 0; and neither a nor b is a
perfect power.

If a set of solutions has the properties listed in Lemma 1.1, we say it is
in basic form.

Proof of Lemma 1.1. Suppose a family contains a member (a, b, c, r, s;
x1, y1, x2, y2, . . . , xN , yN ) in basic form, that is, with the properties
gcd(r, sb) = gcd(s, ra) = 1, min(x1, x2, . . . , xN ) = min(y1, y2, . . . , yN ) = 0,
and neither a nor b is a perfect power. Then there must exist at least
one i, 1 ≤ i ≤ N , such that gcd(raxi , sbyi) = 1. Assume (A,B,C,R, S;
X1, Y1, X2, Y2, . . . , XN , YN ) is another set of solutions in basic form be-
longing to the same family so that there exists a positive rational num-
ber k such that kc = C. Since for at least one i we have no common
factor dividing all of raxi , sbyi , c, and since, by the definition of family,
kraxi , ksbyi , and kc, are all integers, we must have k also an integer. But
then, if k > 1, there does not exist a j such that gcd(RAXj , SBYj ) = 1
so that (A,B,C,R, S;X1, Y1, X2, Y2, . . . , XN , YN ) cannot be in basic form.
So k = 1, and there must exist a j such that r = RAXj and Xj =
min(X1, X2, . . . , XN ); butXj = 0, so that r = R. Similarly s = S. But then,
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since none of a, A, b, B is a perfect power, (A,B,C,R, S;X1, Y1, X2, Y2,
. . . , XN , YN ) is not distinct from (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ). So
we have shown that a given family contains at most one basic form.

It remains to show that each family contains at least one basic form. Now
suppose a given family contains a set of solutions (a, b, c, r, s;x1, y1, x2, y2,
. . . , xN , yN ) which is not necessarily in basic form. For any two solutions
(xi, yi) and (xj , yj), 1 ≤ i, j ≤ N , we have

(1.2) ramin (xi,xj)(a|xj−xi| + (−1)γ) = sbmin(yi,yj)(b|yj−yi| + (−1)δ)

where γ, δ ∈ {0, 1}. We can choose (i, j) so that min(xi, xj) = min(x1, x2,
. . . , xN ) = x0 and min(yi, yj) = min(y1, y2, . . . , yN ) = y0. For this choice of
(i, j), we have

rax0(at + (−1)γ) = sby0(bw + (−1)δ) > 0

where t = |xj − xi|, w = |yj − yi|, and γ, δ ∈ {0, 1}. Let g = gcd(rax0 , sby0)
and h = gcd(at + (−1)γ , bw + (−1)δ). Then, taking R = rax0

g = bw+(−1)δ
h ,

S = sby0
g = at+(−1)γ

h , C = c
g , we obtain a set of solutions (a, b, C,R, S;x1 −

x0, y1 − y0, . . . , xN − x0, yN − y0) in the same family as the original set. In
this set of solutions we can easily adjust a and b, if necessary, so that neither
a nor b is a perfect power. The resulting set of solutions is in basic form
except possibly when min(t, w) = 0, in which case without loss of generality
we can take t = 0, w > 0, and γ = 0 (recalling Observation 1.1). We need
to show gcd(a, S) = 1. Assume gcd(a, S) > 1. Then S = 2, 2|a, and R is
odd. For each i, 1 ≤ i ≤ N , we have |Raxi−x0 ± Sbyi−y0 | = C. Choosing i
so that xi = x0, we get C odd, while choosing i so that xi > x0 (which we
can do by Observation 1.2, noting that we have N > 2 by the definition
of a set of solutions), we get C even, a contradiction which completes the
proof of Lemma 1.1. �

Now we define the associate of a set of solutions (a, b, c, r, s;x1, y1, x2, y2,
. . . , xN , yN ) to be the set of solutions (b, a, c, s, r; y1, x1, y2, x2, . . . , yN , xN ).

We are now ready to state the following results:

Theorem 1.1. When gcd(a, b) > 1, (1.1) has at most three solutions (x, y,
u, v) where x and y are nonnegative integers and u, v ∈ {0, 1}, except for
sets of solutions (or associates of sets of solutions) which are members of
families containing one of the following basic forms: (2, 2, 4, 1, 3; 0, 0, 1, 1,
3, 2, 4, 2), (2, 2, 3, 1, 1; 0, 1, 0, 2, 1, 0, 2, 0), (6, 2, 8, 1, 7; 0, 0, 1, 1, 2, 2, 3, 5).

There are an infinite number of cases of three solutions to (1.1) when
gcd(a, b) > 1, even if we consider only sets of solutions in basic form.
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Theorem 1.2. When gcd(ra, sb) = 1, (1.1) has at most three solutions
(x, y, u, v) where x and y are nonnegative integers and u, v ∈ {0, 1}, except
for a finite number of cases all of which can be found in a finite number of
steps.

More precisely, if (1.1) has more than three solutions (x, y, u, v) when
gcd(ra, sb) = 1, then

max(a, b, r, s, x, y) < 2× 1015

for each solution, and, further,
max(r, s, x, y) < 8× 1014,min(max(a, b),max(b, c),max(a, c)) < 8× 1014

for each solution.

Theorem 1.3. There are an infinite number of cases of exactly three solu-
tions to (1.1) with gcd(ra, sb) = 1, even if we consider only sets of solutions
in basic form.

In the case gcd(a, b) > 1, Theorem 1.1 completely designates all excep-
tions. In the case gcd(a, b) = 1, since any basic form for which gcd(a, b) = 1
must also satisfy gcd(ra, sb) = 1, Theorem 1.2 reduces the problem to a
finite search for basic forms; another (somewhat lengthy) paper [16] com-
pletes the search using not only the methods of [4] and [18] as in previous
work by the authors but also using LLL basis reduction. The completion
of the search in [16] proves Theorem A below, for which we need one more
definition:

We define a subset of a set of solutions (a, b, c, r, s;x1, y1, x2, y2, . . . ,
xN , yN ) to be any set of solutions with the same a, b, c, r, s and with
all its pairs (x, y) among the pairs (xi, yi), 1 ≤ i ≤ N . Note that this
subset may be (and, in our usage, usually is) the set of solutions (a, b, c, r, s;
x1, y1, x2, y2, . . . , xN , yN ) itself.
Theorem A. [16] Any set of solutions (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN )
to (1.1) with N > 3 must be in the same family as a subset (or an associate
of a subset) of one of the following:

(3, 2, 1, 1, 2; 0, 0, 1, 0, 1, 1, 2, 2)
(3, 2, 5, 1, 2; 0, 1, 1, 0, 1, 2, 2, 1, 3, 4)

(3, 2, 7, 1, 2; 0, 2, 2, 0, 1, 1, 2, 3)
(5, 2, 3, 1, 2; 0, 0, 0, 1, 1, 0, 1, 2, 3, 6)

(5, 3, 2, 1, 1; 0, 0, 0, 1, 1, 1, 2, 3)(1.3)
(7, 2, 5, 3, 2; 0, 0, 0, 2, 1, 3, 3, 9)
(6, 2, 8, 1, 7; 0, 0, 1, 1, 2, 2, 3, 5)
(2, 2, 3, 1, 1; 0, 1, 0, 2, 1, 0, 2, 0)
(2, 2, 4, 3, 1; 0, 0, 1, 1, 2, 3, 2, 4)
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2. Preliminary Lemmas
Now we prove a number of results which deal with exceptional cases and

which culminate in Lemma 2.11 at the end of this section. The treatment
is essentially self-contained except for frequent use of results from [14].

Lemma 2.1. If (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) is a set of solutions
to (1.1), then min(xi, yi) = 0 for at most two choices of i, 1 ≤ i ≤ N ,
except when (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) is in the same family as
a subset (or an associate of a subset) of one of the following:

(3, 3, 2, 1, 1; 0, 0, 0, 1, 1, 0),
(5, 2, 3, 1, 2; 0, 0, 0, 1, 1, 0, 1, 2, 3, 6),
(2, 2, 5, 1, 3; 0, 1, 1, 0, 3, 0),
(2, 2, 3, 1, 1; 0, 1, 0, 2, 1, 0, 2, 0).

Proof. It suffices to show that, if (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) is a
set of solutions to (1.1) such that there are more than two values of i for
which min(xi, yi) = 0, the unique basic form in the same family is a subset
(or an associate of a subset) of one of the listed exceptions in Lemma 2.1.
By Observation 1.3, we can assume this basic form or its associate has a
subset (A,B,C,R, S;X1, Y1, X2, Y2, X3, Y3) for which either

(2.1) X1 = Y1 = X2 = Y3 = 0, X3 > 0, Y2 > 0,

or

(2.2) X1 = Y2 = Y3 = 0, X3 > X2 > 0, Y1 > 0,

where X3 > X2 follows from Observation 1.1.
If (2.1) holds, then, considering (1.2) with (A,B,R, S,Xi, Yi, Xj , Yj) re-

placing (a, b, r, s, xi, yi, xj , yj) and with (i, j) = (1, 2) and (1, 3), respec-
tively, and noting gcd(R,S) = 1 by the definition of basic form, we obtain
S ≤ 2 and R ≤ 2 (note that neither side of (1.2) can be zero). Suppose
R = S = 1. Then C = 2 and, considering the solution (X2, Y2), we get
B = 3 and Y2 = 1, and, considering the solution (X3, Y3), we get A = 3
and X3 = 1, giving the first exceptional case listed in Lemma 2.1; clearly
there are no further solutions. If R 6= S, then by symmetry we can take
R = 1 and S = 2. Then C = 1 or 3. If C = 1, then, considering the solution
(X2, Y2), we have a contradiction to (2.1). So C = 3, and, considering the
solution (X2, Y2), we get B = 2 and Y2 = 1, and, considering the solution
(X3, Y3), we get A = 5 and X3 = 1; for this choice of (A,B,C,R, S), any
further solutions (X,Y ) must have min(X,Y ) > 0, so that, by Theorem 1
of [14], the only further solutions are (X,Y ) = (1, 2) and (3, 6), giving the
second exceptional case listed in the formulation of Lemma 2.1.
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Now suppose (2.2) holds. Considering (1.2) as before with (i, j) = (2, 3),
we getR = 1,A = 2, andX2 = 1. Then considering (1.2) with (i, j) = (1, 2),
we get either

(2.3) S(BY1 + (−1)δ) = 3

or

(2.4) S(BY1 − 1) = 1.

Suppose (2.3) holds with S = 3. Then B = 2, Y1 = 1, and δ = 1. Con-
sidering the solution (X2, Y2), we get C = 1 or 5. Considering the solution
(X1, Y1), we get C = 7 or 5. So C = 5, so that X3 = 3, giving the third
exceptional case listed in the formulation of Lemma 2.1; clearly no further
solutions are possible.

Now suppose (2.3) holds with S = 1. Then (B, Y1, δ) = (2, 1, 0) or
(2, 2, 1). (B, Y1, δ) = (2, 1, 0) requires C = 1, making the solution (X3, Y3)
impossible by Observation 1.1. (B, Y1, δ) = (2, 2, 1) requires C = 3 and
X3 = 2. In this case there is a fourth solution (X,Y ) = (0, 1), giving the
fourth exceptional case listed in the formulation of Lemma 2.1; clearly no
further solutions are possible.

If (2.4) holds, then S = 1, B = 2, and Y1 = 1. As in the immediately
preceding case, we must have C = 3 and X3 = 2, and there exists the
further solution (X,Y ) = (0, 2), again giving the fourth exceptional case in
the formulation of Lemma 2.1, which has no further solutions. �

From Lemma 2.1 we immediately have the following:

Corollary 2.1. If a set of solutions to (1.1) is not in the same family as a
subset (or an associate of a subset) of one of the entries listed in Lemma
2.1, and, further, if this set of solutions has at least one x value equal to
zero and at least one y value equal to zero, then, letting (a, b, c, r, s;x1, y1,
x2, y2, . . . , xN , yN ) be this set of solutions or its associate, we can assume
one of the following holds:

(2.5) x1 = y1 = y2 = 0, xi > 0 for i > 1, yi > 0 for i > 2,

(2.6) x1 = y2 = 0, xi > 0 for i > 1, y1 > 0, yi > 0 for i > 2,

(2.7) x1 = y1 = 0, xi > 0 for i > 1, yi > 0 for i > 1.

Lemma 2.2. Let (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) be a set of solutions
to (1.1) for which gcd(a, b) > 1 and min(x1, x2, . . . , xN ) = min(y1, y2, . . . ,
yN ) = 0. If (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) is not in the same family
as a subset (or an associate of a subset) of one of the entries listed in
Lemma 2.1, then we must have (2.7).
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Proof. Let (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) be a set of solutions to (1.1)
for which gcd(a, b) > 1 and min(x1, x2, . . . , xN ) = min(y1, y2, . . . , yN ) = 0.
Suppose (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) is not in the same family as
a subset (or an associate of a subset) of one of the entries listed in Lemma
2.1. If Lemma 2.2 holds for a given set of solutions, it also holds for the
associate of that set of solutions, so, by Corollary 2.1, we can assume that
(2.5), (2.6), or (2.7) holds. Suppose that (2.5) or (2.6) holds. Then by
Observation 1.3 we can assume (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) is a
member of a family containing a basic form which has as a subset a basic
form (A,B,C,R, S;X1, Y1, X2, Y2, X3, Y3) for which either

(2.8) X1 = Y1 = Y2 = 0, X2 > 0, X3 > 0, Y3 > 0

or

(2.9) X1 = Y2 = 0, X2 > 0, X3 > 0, Y1 > 0, Y3 > 0.

Regardless of which of (2.8) or (2.9) holds, we have, considering (1.2) with
(i, j) = (2, 3),

(2.10) RAmin(X2,X3)(A|X3−X2| + (−1)γ) = S(BY3 + (−1)δ).

Let p be a prime dividing both A and B. Then p divides the left side
of (2.10) but not the right side of (2.10), since gcd(RA,S) = 1 by the
definition of basic form. This contradiction proves Lemma 2.2. �

Observation 2.1. If p is a prime such that p | a and p | b, and t is the
greatest integer such that pt | c, then, if (x, y) is a solution to (1.1), we
must have min(x, y) ≤ t.

Lemma 2.3. Let (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) be a set of solutions
satisfying (2.7). Then no two of x1, x2, . . . , xN are equal and no two of
y1, y2, . . . , yN are equal, except when (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN )
is in the same family as a subset (or an associate of a subset) of one of the
following:

(2, 2, 6, 1, 5; 0, 0, 2, 1, 4, 1),
(3, 3, 3, 1, 2; 0, 0, 1, 1, 2, 1),
(2, 6, 2, 1, 1; 0, 0, 2, 1, 3, 1),
(2, 2, 4, 1, 3; 0, 0, 3, 2, 4, 2, 1, 1).

Proof. By Observation 1.3, any set of solutions contradicting Lemma 2.3
must occur in the same family as a basic form (or the associate of a basic
form) which has as a subset a basic form (A,B,C,R, S;X1, Y1, X2, Y2, X3,
Y3) for which

(2.11) X1 = Y1 = 0, X3 > X2 > 0, Y2 = Y3 > 0.
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To prove Lemma 2.3, it suffices to find each possible basic form (A,B,C,R,
S;X1, Y1, X2, Y2, X3, Y3) satisfying (2.11), determine its further solutions if
any, and confirm that the list of exceptions in the formulation of Lemma
2.3 is complete.

Consider (1.2) with (A,B,R, S,Xi, Yi, Xj , Yj) replacing (a, b, r, s, xi, yi,
xj , yj), taking 1 ≤ i, j ≤ 3. Combining (1.2) for (i, j) = (1, 2) with (1.2) for
(i, j) = (1, 3), we get

(2.12) AX3 + (−1)γ3

AX2 + (−1)γ2
= BY2 + (−1)δ3

BY2 + (−1)δ2
,

where γ2, γ3, δ2, δ3 are in the set {0, 1}. Noting we cannot have RAXi +
SBYi = C for i > 1, we see that we must have
(2.13) |γ2 − δ2| = |γ3 − δ3|.
The left side of (2.12) must be greater than or equal to 1, with equality
when and only when A = 2, X2 = 1, X3 = 2, γ2 = 0, and γ3 = 1. Therefore
(2.14) (δ2, δ3) = (1, 0)
by (2.13) so that we have γ2 6= γ3 and, considering the right side of (2.12)
as a reduced fraction and letting m and n be positive integers, we find that
the right side of (2.12) must equal either n+2

n (when B is even) or m+1
m

(when B is odd). If AX3−X2 ≥ 5, then both sides of (2.12) are greater than
3, which is impossible. So we must have 2 ≤ AX3−X2 ≤ 4.

Assume first AX3−X2 = 4. If AX2 ≥ 8, then both sides of (2.12) are
greater than 3 which is impossible. If AX2 = 2, then the left side of (2.12)
must be either 9 or 7/3, neither of which is a possible value for the right side
of (2.12). So AX2 = 4. If (γ2, γ3) = (1, 0) then the left side of (2.12) equals
17/3, which is again impossible. So we are left with A = 2, X2 = 2, X3 = 4,
γ2 = 0, γ3 = 1, B = 2, Y2 = 1, δ2 = 1, and δ3 = 0. Considering (1.2)
with (i, j) = (1, 2) and recalling gcd(R,S) = 1 since we are dealing with a
basic form, we find R = 1, S = 5, and C = 6, giving the first exceptional
case in the formulation of the lemma, which has no further solutions by
Observation 2.1.

Now assume AX3−X2 = 3. If AX2 ≥ 9, then the left side of (2.12) is
greater than 2 but not equal to 3, which is impossible by (2.14). So we have
A = 3, X2 = 1, and X3 = 2. Since neither side of (2.12) can be greater
than 3, we must have (γ2, γ3) = (0, 1), giving B = 3 and Y2 = 1. As in the
previous paragraph, we find R, S, and C, obtaining the second exceptional
case in the formulation of the lemma; applying Observation 2.1, we find
that there are no further solutions.

It remains to consider AX3−X2 = 2. Consider first the case (γ2, γ3) =
(0, 1). If AX2 ≥ 16, the left side of (2.12) is greater than 5/3 and less than
2, which is impossible by (2.14). If X2 = 1, the left side of (2.12) is equal
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to 1, contradicting (2.14). So we are left with either X2 = 2 or X2 = 3,
so that, respectively, BY2 = 6 or BY2 = 4. In each of these two cases,
we find R, S, and C as in the preceding cases: when X2 = 2, we obtain
the third exceptional case in the formulation of the lemma, which has no
further solutions by Observation 2.1; when X2 = 3, we obtain a subset of
the fourth exceptional case, which has no further solutions by Observation
2.1.

Finally consider the case AX3−X2 = 2 with (γ2, γ3) = (1, 0). If AX2 ≥ 8,
then the left side of (2.12) is greater than 2 and less than 3, contradicting
(2.14). If X2 = 1, the left side of (2.12) equals 5, again contradicting (2.14).
So we are left with X2 = 2, so that BY2 = 2, and, proceeding as in the
preceding paragraphs, we obtain (A,B,C,R, S;X1, Y1, X2, Y2, X3, Y3) =
(2, 2, 2, 1, 3; 0, 0, 2, 1, 3, 1), which has no further solutions by Observation
2.1 and which is in the same family as (2, 2, 4, 1, 3; 1, 1, 3, 2, 4, 2), which
is a subset of the fourth exceptional case listed in the formulation of the
lemma. �

To obtain results similar to that of Lemma 2.3 for the cases (2.5) and
(2.6), we will need the following

Lemma 2.4. Suppose gcd(ra, sb) = 1 and (1.1) has two solutions (x1, y1)
and (x2, y2) with x1 = 0 and x2 > 0. Then, if a is even, r must be even.

Proof. If a is even, then the solution (x2, y2) requires sb odd and c odd, so
that the solution (x1, y1) requires r even. �

Corollary 2.2. Suppose gcd(ra, sb) = 1 and (1.1) has three solutions
(x1, y1), (x2, y2), (x3, y3) with x1 < x2 and x1 < x3. Then y2 6= y3.

Proof. Suppose gcd(ra, sb) = 1 and (1.1) has three solutions (x1, y1),
(x2, y2), (x3, y3) with x1 < x2 and x1 < x3. Suppose y2 = y3. Then consid-
ering (1.2) with (i, j) = (2, 3), we find ramin(x2,x3)|2, so that a = 2, r = 1,
min(x2, x3) = 1, and x1 = 0, contradicting Lemma 2.4. �

We are now ready to prove Lemmas 2.5 and 2.6 which follow.

Lemma 2.5. Let (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) be a set of solutions
for which (2.5) holds. Then no two of x1, x2, . . . , xN are equal and, except
for y1 = y2, no two of y1, y2, . . . , yN are equal, unless (a, b, c, r, s;x1, y1,
x2, y2, . . . , xN , yN ) is in the same family as a subset of one of the following:

(3, 5, 2, 1, 1; 0, 0, 1, 0, 1, 1, 3, 2),
(3, 2, 1, 1, 2; 0, 0, 1, 0, 1, 1, 2, 2),
(5, 2, 3, 1, 2; 0, 0, 1, 0, 1, 2, 3, 6),
(2, 7, 3, 2, 1; 0, 0, 1, 0, 1, 1).
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Proof. Let (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) be a set of solutions sat-
isfying (2.5), and assume there exists at least one pair (i, j) where 2 ≤
i < j ≤ N such that either xi = xj or yi = yj . Then by Observation 1.3
(a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) must be in the same family as a basic
form (A,B,C,R, S;X1, Y1, X2, Y2, . . . , XN , YN ) for which X1 = Y1 = Y2 =
0, Xi > 0 for i > 1, Yi > 0 for i > 2, and there exists at least one pair (i, j),
where 2 ≤ i < j ≤ N , for which Xi = Xj or Yi = Yj . By Lemma 2.2 we can
assume gcd(a, b) = gcd(A,B) = 1. By the definition of basic form, we have
gcd(RA,SB) = 1. By Corollary 2.2, we can assumeXi 6= Xj and Yi 6= Yj for
every pair (i, j) such that min(i, j) ≥ 3. Thus we can assume without loss of
generality that X2 = X3, so that (A,B,C,R, S;X1, Y1, X2, Y2, . . . , XN , YN )
has as a subset a basic form (A,B,C,R, S;X1, Y1, X2, Y2, X3, Y3) for which
(2.15) X1 = Y1 = Y2 = 0, X2 = X3 > 0, Y3 > 0.
It suffices to find each possible basic form (A,B,C,R, S;X1, Y1, X2, Y2, X3,
Y3) satisfying (2.15), determine its further solutions if any, and thus verify
the list of exceptions in the formulation of Lemma 2.5.

Assume (2.15) holds, and consider (1.2) with (A,B,R, S,Xi, Yi, Xj , Yj)
replacing (a, b, r, s, xi, yi, xj , yj). Take 1 ≤ i, j ≤ 3. Then considering (1.2)
with (i, j) = (2, 3), we have S ≤ 2. And considering (1.2) with (i, j) = (1, 2),
we have R ≤ 2.

If R = S = 1, then, considering the solution (X1, Y1) to (1.1), we find
C = 2. Considering the solution (X2, Y2), we find A = 3 and X2 = 1.
Considering the solution (X3, Y3), we find B = 5 and Y3 = 1. Clearly, when
(A,B,C,R, S) = (3, 5, 2, 1, 1), any further solution to
(2.16) (−1)URAX + (−1)V SBY = C,

where U, V ∈ {0, 1}, must have
(2.17) X > 0, Y > 0,
and
(2.18) (U, V ) 6= (0, 0).
By Theorem 7 of [14], the only further solution is (X4, Y4) = (3, 2), giving
the first exceptional case listed in the formulation of Lemma 2.5.

If R = 1 and S = 2, then, considering (2.16) with (X,Y ) = (X1, Y1),
we have either C = 1 or C = 3. If C = 1 then, considering the solution
(X2, Y2), we find A = 3 and X2 = 1. Considering the solution (X3, Y3), we
find B = 2 and Y3 = 1. Any further solution must satisfy (2.17) and (2.18).
By Theorem 7 of [14], the only remaining solution is (X4, Y4) = (2, 2),
giving the second exceptional case in the formulation of Lemma 2.5. So we
now consider C = 3. Considering the solution (X2, Y2), we find A = 5 and
X2 = 1. Considering (X3, Y3), we find B = 2 and Y3 = 2. Any further
solution must satisfy (2.18), and, since we are dealing with (2.5), it suffices
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to consider only further solutions which satisfy (2.17). Theorem 7 of [14]
shows that the only further solution with min(X,Y ) > 0 is (X4, Y4) = (3, 6),
giving the third exceptional case in the formulation of Lemma 2.5.

Finally, considering R = 2 and S = 1, we find C = 1 or C = 3 again. If
C = 1, then, considering the solution (X2, Y2), we find X2 = 0, a contra-
diction. So we must have C = 3. Considering the solution (X2, Y2), we find
A = 2 and X2 = 1. Considering (X3, Y3), we find B = 7 and Y3 = 1. Any
further solution must satisfy (2.17) and (2.18). Once again we can use The-
orem 7 of [14], this time finding there are no further solutions; we obtain
the fourth exceptional case listed in the formulation of Lemma 2.5. �

Lemma 2.6. Let (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) be a set of solutions
for which (2.6) holds. Then no two of x1, x2, . . . , xN are equal and no two
of y1, y2, . . . , yN are equal, unless (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) is
in the same family as a subset (or an associate of a subset) of one of the
following:

(3, 2, 5, 1, 2; 0, 1, 1, 0, 1, 2, 2, 1, 3, 4),(2.19)
(5, 3, 4, 1, 1; 0, 1, 1, 0, 1, 2),(2.20)
(3, 2, 7, 1, 2; 0, 2, 2, 0, 2, 3, 1, 1),(2.21)
(5, 2, 3, 1, 2; 0, 1, 1, 0, 1, 2, 3, 6),(2.22)
(2g + (−1)ε, 2, 2g − (−1)ε, 1, 2; 0, g − 1, 1, 0, 1, g).(2.23)

where ε ∈ {0, 1} and g > 1 is a positive integer.

Proof. Proceeding as in the proof of Lemma 2.5, we see that it suffices
to find each possible basic form (A,B,C,R, S;X1, Y1, X2, Y2, X3, Y3) with
gcd(RA,SB) = 1 for which
(2.24) X1 = Y2 = 0, X2 = X3 > 0, Y1 > 0, Y3 > 0,
determine further solutions if any, and thus verify the list of exceptions in
the formulation of Lemma 2.6. Note that we can use (2.24) without loss of
generality, since, if Lemma 2.6 holds for the associate of a set of solutions,
it holds for the set of solutions itself.

Suppose (2.24) holds. Considering (1.2) with (i, j) = (2, 3), we get

(2.25) RAX2 = S

2
(
BY3 + (−1)δ

)
where δ ∈ {0, 1}, so that
(2.26) C = RAX2 − (−1)δS = SBY3 −RAX2 .

Note that (2.25) implies S ≤ 2.
Combining (2.25) and (2.26), we find

(2.27) C = S

2
(
BY3 − (−1)δ

)
.
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Suppose Y1 ≥ Y3. Then SBY1 ≥ SBY3 > RAX2 > R, so that C = SBY1 ±
R > SBY3 − RAX2 = C, a contradiction. So we have a positive integer
d = Y3 − Y1. Considering the solution (X1, Y1) and using (2.27), we find
that one of the following three equations must hold:

(2.28) R = S

2
((
Bd − 2

)
BY1 − (−1)δ

)
,

(2.29) R = S

2
((
Bd + 2

)
BY1 − (−1)δ

)
,

(2.30) R = S

2
((

2−Bd
)
BY1 + (−1)δ

)
.

Suppose (2.28) holds. Then, since 2
SR divides 2

SRA
X2 − 2

SR, we have,
using (2.25) and (2.28),

(2.31)
(
Bd − 2

)
BY1 − (−1)δ | 2BY1 + (−1)δ2 > 0.

From this we get (
Bd − 4

)
BY1 ≤ 3,

so that Bd ≤ 5. If Bd = 5, then BY1 = 2 or 3, which is impossible. So we
have 2 ≤ Bd ≤ 4.

If Bd = 2, then, by Lemma 2.4, S = 2, and by (2.28), R = 1 and
δ = 1; further, by (2.25) we have AX2 = 2Y1+1 − 1 and by (2.27) we have
C = 2Y1+1 + 1. It is a well known elementary result that we must have
X2 = 1. Thus we find that (A,B,C,R, S;X1, Y1, X2, Y2, X3, Y3) must be
(2.23) with ε = 1 and g = Y1 + 1. To see if there are any further solutions,
we consider solutions (Xi, Yi) with i > 1 and apply Theorem 1 of [14],
noting that c must be a Fermat number greater than 3; we find that the
only cases with further solutions are given by subsets of (2.19).

Now suppose Bd = 3. Then, from (2.31), we get
3Y1 − (−1)δ | 2 · 3Y1 + (−1)δ2 = 2 · 3Y1 − (−1)δ2 + (−1)δ4,

so that 3Y1−(−1)δ | 4, so that Y1 = 1. If δ = 0, we find, using (2.28), (2.27),
and (2.25), that (A,B,C,R, S;X1, Y1, X2, Y2, X3, Y3) must be (2.20), which
has no further solutions by Theorem 7 of [14] (noting that we cannot have
RAX4 + SBY4 = C). If δ = 1, we find that (A,B,C,R, S;X1, Y1, X2, Y2,
X3, Y3) = (2, 3, 5, 2, 1; 0, 1, 1, 0, 1, 2); by Theorem 1 of [14], we see that there
are only two further solutions, giving (2.19) with the roles of A and B
reversed.

Now suppose Bd = 4. From (2.31) we have
2BY1 − (−1)δ | 2BY1 + (−1)δ2 = 2BY1 − (−1)δ + (−1)δ3,

so that 2BY1 − (−1)δ | 3, so that, since Y1 > 0, we must have (B, Y1, δ) =
(2, 1, 0), from which we find that (A,B,C,R, S;X1, Y1, X2, Y2, X3, Y3) =
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(3, 2, 7, 3, 2; 0, 1, 1, 0, 1, 3), which has no further solutions by Theorem 1 of
[14], and which is in the same family as (3, 2, 7, 1, 2; 1, 1, 2, 0, 2, 3), which is
a subset of (2.21). So it suffices to consider (2.29) and (2.30).

Suppose (2.29) holds. Then 0 < 2
SRA

X2 − 2
SR = −2BY1 + (−1)δ2, which

is impossible.
Finally, suppose (2.30) holds. Then Bd = 2, S = 2, R = 1, and δ =

0. Further, by (2.25) we have AX2 = 2Y1+1 + 1 and by (2.27) we have
C = 2Y1+1 − 1. Here we have the possibility X2 = 2, which gives Y1 = 2,
A = 3, and C = 7 and we obtain (A,B,C,R, S;X1, Y1, X2, Y2, X3, Y3) =
(3, 2, 7, 1, 2; 0, 2, 2, 0, 2, 3), which has as its only further solution (X,Y ) =
(1, 1) by Theorem 1 of [14], so we obtain (2.21). If X2 6= 2, then we have
X2 = 1 and find that (A,B,C,R, S;X1, Y1, X2, Y2, X3, Y3) must be (2.23)
with ε = 0 and g = Y1 + 1; we apply Theorem 1 of [14] as above to see
that, when ε = 0 and 2g + 1 is not a perfect power, the only case of (2.23)
allowing further solutions is given by (2.22). (Note that (2.22) also has the
solution (0, 0) which does not need to be taken into account here, since we
are dealing with (2.6).) �

Lemma 2.7. Let (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) be a basic form sat-
isfying (2.5) with no two of x2, x3, . . . , xN equal, and no two of y3, . . . , yN
equal. Then x2 = min(x2, x3, . . . , xN ) except when (a, b, c, r, s;x1, y1, x2, y2,
. . . , xN , yN ) is a subset of either (3, 2, 5, 1, 4; 0, 0, 2, 0, 1, 1, 3, 3) or (2, 3, 5,
2, 3; 0, 0, 2, 0, 1, 1, 4, 2).

Proof. Let (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) be a basic form satisfying
(2.5) with no two of x2, x3, . . . , xN equal, and no two of y3, . . . , yN
equal, and suppose x2 6= min(x2, x3, . . . , xN ). Without loss of generality
take x3 = min(x2, x3, . . . , xN ). Combining (1.2) for (i, j) = (1, 2) and (1.2)
for (i, j) = (1, 3), we get

(2.32) ax3 + (−1)γ3

ax2 + (−1)γ2
= by3 + (−1)δ3

2 ,

where γ2, γ3, and δ3 are in the set {0, 1}. Since 0 < x3 < x2, the left side
of (2.32) is less than or equal to one, with equality when and only when
a = 2, x2 = 2, x3 = 1, γ2 = 1, and γ3 = 0. The right side of (2.32) is an
integer or half integer greater than or equal to 1/2. So we have both sides
of (2.32) equal either to 1/2 or to 1.

If both sides of (2.32) equal 1/2, we must have by3 = 2 and δ3 = 1. If
also γ3 = 1, the left side of (2.32) is less than 1/2, so we have γ3 = 0.
If ax2−x3 = 2, the left side of (2.32) is greater than 1/2; if ax2−x3 ≥ 4,
the left side of (2.32) is less than 1/2. So we have ax2−x3 = 3, in which
case, if x3 > 1, the left side of (2.32) is less than 1/2. This leaves as the
only possibility a = 3, x3 = 1, x2 = 2, γ3 = 0, γ2 = 1, b = 2, y3 = 1,
δ3 = 1. Considering (1.2) with (i, j) = (1, 2), we find r/s = 1/4. By the
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definition of basic form, gcd(r, s) = 1, so r = 1, s = 4, and c = 5, giving
(a, b, c, r, s;x1, y1, x2, y2, x3, y3) = (3, 2, 5, 1, 4; 0, 0, 2, 0, 1, 1); if there exists a
further solution (x4, y4) we must have x4 > 0, so that Theorem 1 of [14],
in combination with the fact that 3 + 2 = 5, shows that the only possible
further solution is (x4, y4) = (3, 3), giving the first exceptional case listed
in the formulation of the lemma.

Now suppose both sides of (2.32) are equal to 1. Then we must have
a = 2, x2 = 2, x3 = 1, γ2 = 1, γ3 = 0, b = 3, y3 = 1, δ3 = 1. Considering
(1.2) with (i, j) = (1, 2), we find r/s = 2/3, so that r = 2, s = 3, and
c = 5, giving (a, b, c, r, s;x1, y1, x2, y2, x3, y3) = (2, 3, 5, 2, 3; 0, 0, 2, 0, 1, 1);
by Theorem 1 of [14] there is only one possible further solution (x4, y4) =
(4, 2), giving the second exceptional case listed in the lemma. �

Lemma 2.8. Let (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) be a basic form sat-
isfying (2.6) with no two of x2, x3, . . . , xN equal and no two of y1, y3,
y4, . . . , yN equal. Then x2 = min(x2, x3, . . . , xN ) and y1 = min(y1, y3, y4,
. . . , yN ), except when (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) or its associate
is (3, 2, 7, 1, 2; 0, 2, 2, 0, 1, 1).

Proof. Assume (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) is a basic form satisfy-
ing (2.6) with no two of x2, x3, . . . , xN equal and no two of y1, y3, y4,
. . . , yN equal, and assume further that x2 6= min(x2, x3, . . . , xN ). Without
loss of generality we can take x3 = min(x2, x3, . . . , xN ). Choose i ∈ {1, 3}
so that yi = max(y1, y3), and let n = 1 or 2 according as i = 3 or 1. Let
k = s/c. Then

kc = s ≥ rax2 − c ≥ anraxi − c ≥ an(sbyi − c)− c ≥ an(b2kc− c)− c
so
(2.33) kc ≥ (anb2k − (an + 1))c
so that

(2.34) k ≤ an + 1
anb2 − 1 .

Note that

(2.35) c >

(1 + k

a

)
c = c+ s

a
≥ rax2

a
≥ rax3

Assume i = 3. Then

(2.36) b ≤ sby3

sby1
≤ c+ rax3

c− r
≤
c+ rax2

a

c− rax2
a2
≤
c+ (1+k)c

a

c− (1+k)c
a2

=
1 + 1+k

a

1− 1+k
a2

.

If a ≥ 3 then (2.34) gives k ≤ 4/11 so that (2.36) gives b < 2, a contradic-
tion. So a = 2, (2.34) gives k ≤ 3/17, so that (2.36) gives b < 3, again a
contradiction.
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So we must have i = 1, n = 2, giving

(2.37) b ≤ sby1

sby3
≤ c+ r

c− rax3
≤
c+ rax2

a2

c− rax2
a

≤
c+ (1+k)c

a2

c− (1+k)c
a

=
1 + 1+k

a2

1− 1+k
a

.

Suppose a ≥ 3. Then (2.34) gives k ≤ 2/7 and (2.37) gives b ≤ 2, with
equality only when a = 3 and s = (2/7)c, so that, since gcd(s, c) = 1, we
have s = 2 and c = 7, so that, considering the solution (x2, y2) and noting
x2 > 1, we get r = 1 and x2 = 2, so that x3 = 1, and, considering the
solution (x1, y1), we get y1 = 2, so that y3 = 1, giving the exceptional set
of solutions in the formulation of the lemma.

If a = 2, (2.34) gives k ≤ 1/7 and (2.37) gives b ≤ 3, with equality only
when s = (1/7)c, so that s = 1, c = 7, and, considering the solution (x2, y2)
and noting that x2 > 1 and 2 | r (by Lemma 2.4), we get r = 2 and x2 = 2,
so that x3 = 1, and, considering the solution (x1, y1), we get y1 = 2, y3 = 1,
giving the set of solutions in the formulation of the lemma with the roles
of a and b reversed.

In each of these two exceptional cases, Theorem 1 of [14] shows there is
only one possible further solution (x, y), given by 16 − 9 = 7, which vio-
lates the assumption that no two positive x values are equal and no two
positive y values are equal. So we must have x2 = min(x2, x3, . . . , xN ) ex-
cept when (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) = (3, 2, 7, 1, 2; 0, 2, 2, 0, 1, 1)
or (2, 3, 7, 2, 1; 0, 2, 2, 0, 1, 1).

The same argument shows y1 = min(y1, y3, y4, . . . , yN ) except when
(a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) = (2, 3, 7, 2, 1; 0, 2, 2, 0, 1, 1) or (3, 2, 7,
1, 2; 0, 2, 2, 0, 1, 1). �

Lemma 2.9. Let (a, b, c, r, s;xt, yt, xh, yh, xk, yk) be a set of solutions for
which xt < xh < xk, yt < yh, yt < yk, and yh 6= yk. Then yh < yk, except
when (a, b, c, r, s;xt, yt, xh, yh, xk, yk) is in the same family as (2, 2, 2, 1, 1;
0, 0, 1, 2, 2, 1).

Proof. Assume (a, b, c, r, s;xt, yt, xh, yh, xk, yk) is a set of solutions for which
xt < xh < xk, yt < yh, and yt < yk, and assume further yk < yh. Combining
(1.2) for (i, j) = (t, h) with (1.2) for (i, j) = (t, k), we have

(2.38) axk−xt + (−1)γ2

axh−xt + (−1)γ1
= byk−yt + (−1)δ2

byh−yt + (−1)δ1
,

where γ1, γ2, δ1, δ2 ∈ {0, 1}. The left side of (2.38) must be greater than or
equal to one, with equality if and only if a = 2, xh − xt = 1, xk − xt = 2,
γ1 = 0, γ2 = 1. But the right side of (2.38) must be less than or equal to
one, with equality if and only if b = 2, yh − yt = 2, yk − yt = 1, δ1 = 1,
δ2 = 0, so we have (a, b, c, r, s;xt, yt, xh, yh, xk, yk) in the same family as the
basic form (2, 2, 2, 1, 1; 0, 0, 1, 2, 2, 1). �
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Lemma 2.10. Let (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) be a set of solu-
tions for which min(x1, x2, . . . , xN ) = min(y1, y2, . . . , yN ) = 0, no two so-
lutions (x, y) have the same positive x, and no two solutions (x, y) have
the same positive y. Let i and j be distinct integers, 1 ≤ i, j ≤ N . Then
0 < xi < xj implies yi < yj, and 0 < yi < yj implies xi < xj, except when
(a, b, c, r, s;x1, y1, x2, . . . , xN , yN ) is in the same family as a subset (or an
associate of a subset) of one of the following:

(3, 2, 7, 1, 2; 0, 2, 2, 0, 1, 1),
(3, 2, 5, 1, 2; 0, 1, 1, 0, 1, 2, 2, 1, 3, 4),
(2, 2, 2, 1, 1; 0, 0, 1, 2, 2, 1),
(2, 2, 5, 1, 3; 0, 1, 1, 0, 3, 0),
(2, 2, 3, 1, 1; 0, 1, 0, 2, 1, 0, 2, 0).

Proof. Assume (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) is a set of solutions for
which min(x1, x2, . . . , xN ) = min(y1, y2, . . . , yN ) = 0, no two solutions
(x, y) have the same positive x, and no two solutions (x, y) have the same
positive y.

Note that, if Lemma 2.10 holds for a given set of solutions, it holds for
the associate of that set of solutions. Note also that, of the exceptional sets
of solutions in Lemma 2.1, the first two cases (and any subset of the second
case) have no members of their families contradicting Lemma 2.10, and the
last two are listed in Lemma 2.10. Thus, by Corollary 2.1, it suffices to show
that Lemma 2.10 holds for (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) under the
assumption that (2.5), (2.6), or (2.7) holds.

If (2.7) holds, let t = 1, 2 ≤ h ≤ N , 2 ≤ k ≤ N , and take xh < xk. Then
we have (2.38) with the conditions given in Lemma 2.9, so that Lemma 2.9
applies to prove Lemma 2.10 unless (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN )
has a subset in the same family as (2, 2, 2, 1, 1; 0, 0, 1, 2, 2, 1); since xt =
yt = 0, this subset has no further solutions since (2, 2, 2, 1, 1; 0, 0, 1, 2, 2, 1)
has no further solutions by Observation 2.1 (immediately preceding Lemma
2.3). Thus (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) itself is in the same family
as (2, 2, 2, 1, 1; 0, 0, 1, 2, 2, 1). This proves Lemma 2.10 when (2.7) holds.

Suppose (2.5) holds with x2 6= min(x2, x3, . . . , xN ). Then, by Lemma 2.7
and Observation 1.3, (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) must be in the
same family as a subset of one of the basic forms (3, 2, 5, 1, 4; 0, 0, 2, 0, 1, 1,
3, 3) or (2, 3, 5, 2, 3; 0, 0, 2, 0, 1, 1, 4, 2), and therefore in the same family as
a subset (or an associate of a subset) of the second exceptional case of the
formulation of Lemma 2.10. So we can assume x2 = min(x2, x3, . . . , xN ).

Suppose (2.6) holds with either x2 6= min(x2, x3, . . . , xN ) or y1 6= min(y1,
y3, . . . , yN ). Then, by Lemma 2.8 and Observation 1.3, (a, b, c, r, s;x1, y1,
x2, y2, . . . , xN , yN ) must be in the same family as the basic form (3, 2, 7, 1, 2;
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0, 2, 2, 0, 1, 1) or its associate; since (3, 2, 7, 1, 2; 0, 2, 2, 0, 1, 1) is the first ex-
ception listed in Lemma 2.10, we can assume x2 = min(x2, x3, . . . , xN ) and
y1 = min(y1, y3, . . . , yN ).

Thus, when (2.5) or (2.6) holds it suffices to show that Lemma 2.10 holds
for 3 ≤ i, j ≤ N . Take t ≤ 2, h ≥ 3, k ≥ 3, and take xh < xk. We have (2.38)
as in Lemma 2.9, so that Lemma 2.9 proves Lemma 2.10 since, by Lemma
2.2, gcd(a, b) = 1 and the exceptional case of Lemma 2.9 is impossible. �

Lemma 2.11. Assume a set of solutions is not in the same family as a
subset (or an associate of a subset) of one of the following:

(3, 2, 1, 1, 2; 0, 0, 1, 0, 1, 1, 2, 2)
(5, 3, 2, 1, 1; 0, 0, 0, 1, 1, 1, 2, 3)
(5, 2, 3, 1, 2; 0, 0, 0, 1, 1, 0, 1, 2, 3, 6)
(3, 2, 5, 1, 2; 0, 1, 1, 0, 1, 2, 2, 1, 3, 4)
(3, 2, 7, 1, 2; 0, 2, 2, 0, 1, 1, 2, 3)
(5, 3, 4, 1, 1; 0, 1, 1, 0, 1, 2)
(7, 2, 3, 1, 2; 0, 0, 0, 1, 1, 1)
(2, 2, 2, 1, 1; 0, 0, 1, 2, 2, 1)
(2, 2, 4, 3, 1; 0, 0, 1, 1, 2, 3, 2, 4)(2.39)
(6, 2, 2, 1, 1; 0, 0, 1, 2, 1, 3)
(2, 2, 6, 5, 1; 0, 0, 1, 2, 1, 4)
(3, 3, 3, 2, 1; 0, 0, 1, 1, 1, 2)
(2, 2, 3, 1, 1; 0, 1, 0, 2, 1, 0, 2, 0)
(2, 2, 5, 3, 1; 0, 1, 1, 0, 0, 3)
(3, 3, 2, 1, 1; 0, 0, 0, 1, 1, 0)
(2g + (−1)ε, 2, 2g − (−1)ε, 1, 2; 0, g − 1, 1, 0, 1, g).

where ε ∈ {0, 1} and g is an integer with g+ε > 3. Then, letting (a, b, c, r, s;
x1, y1, x2, y2, . . . , xN , yN ) be this set of solutions or its associate, we can
assume one of the following must hold:
(2.40) x1 < x2 < · · · < xN , y1 = y2 < y3 < · · · < yN ,

(2.41) x1 < x2 < · · · < xN , y2 < y1 < y3 < · · · < yN .

(2.42) x1 < x2 < · · · < xN , y1 < y2 < · · · < yN ,

Proof. Each exceptional case (and therefore each subset of each exceptional
case) in the formulations of Lemmas 2.1, 2.3, 2.5, 2.6, and 2.10 is in the
same family as a subset (or an associate of a subset) of one of the entries
in (2.39).
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On the other hand, the basic form (A,B,C,R, S;X1, Y1, X2, Y2, . . . ,
XN , YN ) in the same family as (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) must
not be in the same family as a subset (or an associate of a subset) of one of
the entries in (2.39). Therefore, (A,B,C,R, S;X1, Y1, X2, Y2, . . . , XN , YN )
cannot be in the same family as a subset (or an associate of a subset) of one
of the exceptional cases of Lemmas 2.1, 2.3, 2.5, 2.6, or 2.10. By Lemmas
2.1, 2.3, 2.5, 2.6, and 2.10, we can assume that we have one of the following:

(2.43) 0 = X1 < X2 < · · · < XN , 0 = Y1 = Y2 < Y3 < · · · < YN ,

(2.44) 0 = X1 < X2 < · · · < XN , 0 = Y2 < Y1 < Y3 < · · · < YN .

(2.45) 0 = X1 < X2 < · · · < XN , 0 = Y1 < Y2 < · · · < YN ,

Applying Observation 1.3 proves the lemma. �

3. Proof of Theorem 1.1
Proof of Theorem 1.1. To handle the first paragraph of Theorem 1.1, it
suffices to prove that there are no sets of solutions in basic form with
N > 3 when gcd(a, b) > 1, except for cases (or associates of cases) listed in
the formulation of the theorem.

Assume there exists a set of solutions (a, b, c, r, s;x1, y1, x2, y2, . . . ,
xN , yN ) in basic form with N ≥ 4 and gcd(a, b) > 1. The first two ex-
ceptional cases in the formulation of the theorem are the only entries (or
associates of entries) in (2.39) with gcd(a, b) > 1 and N > 3, so from here
on we can assume, by Lemma 2.11 and Lemma 2.2, that (2.42) holds, and
we must have

(3.1) 0 = x1 < x2 < · · · < xN , 0 = y1 < y2 < · · · < yN .

Suppose for some prime p we have pα||a and pβ||b with α, β > 0. Recall
that, by the definition of basic form, we have gcd(r, sb) = gcd(s, ra) = 1.
Let i and j be integers such that 1 ≤ i < j ≤ N . Then, since xi < xj and
yi < yj , we have from (1.2)

(3.2) αxi = βyi.

Since x2 > 0 and y2 > 0, we have, for i = 2 and 3,

(3.3) xi
yi

= β

α
.

Let α0 = α/ gcd(α, β) and β0 = β/ gcd(α, β). Then for i = 2 or 3 we have

(3.4) xi = kiβ0, yi = kiα0
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where ki is a positive integer. Now combining (1.2) for (i, j) = (1, 2) with
(1.2) for (i, j) = (1, 3) we obtain

(3.5) aβ0k3 + (−1)γ3

aβ0k2 + (−1)γ2
= bα0k3 + (−1)δ3

bα0k2 + (−1)δ2

where γ2, γ3, δ2 and δ3 are in the set {0, 1}.
Since c ≤ r + s, we must have

(3.6) ui 6= vi, 2 ≤ i ≤ 4,

where ui and vi are the values of u and v in (1.1) when (x, y) = (xi, yi).
If aβ0 = bα0 , then we have γ3 = δ3 and γ2 = δ2 in (3.5) and, from

(3.4), ax2 = by2 . Considering (1.2) with (i, j) = (1, 2) and letting h =
gcd(ax2 + (−1)γ2 , by2 + (−1)δ2), we have r = (by2 + (−1)δ2)/h and s =
(ax2 + (−1)γ2)/h so that r = s. But then, by (3.6), we have c = 0, a
contradiction. So aβ0 6= bα0 . For convenience of notation let A = aβ0 ,
B = bα0 , n = k2, m = k3. Then (3.5) becomes

(3.7) Am + (−1)γ3

An + (−1)γ2
= Bm + (−1)δ3

Bn + (−1)δ2
.

We have already shown A = B implies c = 0 so A 6= B. Assume A > B.
(The remainder of the proof works also for B > A. Indeed, since we have
(3.1), the roles of a and b are interchangeable.)

(3.7) implies

(3.8) Am − 1
An + 1 ≤

Bm + 1
Bn − 1 .

If n ≥ 2 then (3.8) implies

(3.9) (B + 2)3 − 1
(B + 2)2 + 1 ≤

B3 + 1
B2 − 1

noting that A ≥ B + 2 since gcd(A,B) > 1. But (3.9) does not hold for
B ≥ 2, so we must have n = 1 so that

Am − 1
A+ 1 ≤

Bm + 1
B − 1

which implies, when m ≥ 3,

(3.10) (B + 2)3 − 1
B + 3 ≤ B3 + 1

B − 1 .

But (3.10) does not hold for B ≥ 2 so we must have m = 2 and n = 1. By
(3.6), we can let D = |γ3 − δ3| = |γ2 − δ2| (note D = 0 when u1 6= v1, and
D = 1 when (u1, v1) = (0, 0), where u1 and v1 are the values of u and v
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in (1.1) when (x, y) = (x1, y1)). If D = 0 then the only possible choice of
signs is given by

(3.11) A2 + 1
A− 1 = B2 + 1

B − 1 .

Since the function (w2 + 1)/(w−1) is monotone increasing for w > 1 +
√

2,
the only possible solution to (3.11) is (A,B) = (3, 2) which is not under
consideration here since we are taking gcd(a, b) > 1.

So D = 1. If γ2 = γ3 then we have

A2 + 1
A+ 1 = B2 − 1

B − 1
which, since the right side is the integer B + 1, requires A = 0 or 1, a
contradiction. So we must have γ2 6= γ3 so that

(3.12) A2 − 1
A+ 1 = B2 + 1

B − 1
which, since the left hand side is the integer A − 1, requires B = 2 or 3.
If B = 2 then from (3.12) we see that A = 6 and we obtain a = 6, b = 2,
r = (2− 1)/ gcd((2− 1), (6 + 1)) = 1, s = (6 + 1)/ gcd((2− 1), (6 + 1)) = 7,
c = 8 (since D = 1 implies (u1, v1) = (0, 0)), x1 = 0, y1 = 0, x2 = 1, y2 = 1,
x3 = 2, y3 = 2. We find there is a fourth solution x4 = 3, y4 = 5. Noting that
23||c, we easily see there can be no further solutions (by Observation 2.1
immediately preceding Lemma 2.3). We obtain the third of the exceptions
in the formulation of Theorem 1.1. If B = 3, then, from (3.12), we find
A = 6 and we obtain a = 6, b = 3, r = (3 − 1)/ gcd((6 + 1), (3 − 1)) = 2,
s = (6 + 1)/ gcd((6 + 1), (3− 1)) = 7, c = 9, x1 = 0, y1 = 0, x2 = 1, y2 = 1,
x3 = 2, y3 = 2. Noting 32||c, we easily see there are no further solutions.

This ends the proof of the first part of Theorem 1.1.
For the proof of the second part of Theorem 1.1, we note that there are an

infinite number of choices of a no two of which have a common factor and for
each of which there are an infinite number of choices of m such that a set of
solutions to (1.1) with N = 3 is given by (a, b, c, r, s;x1, y1, x2, y2, x3, y3) =

(3.13) (a, ta, a(t+ (−1)u+v+1)
h

,
ta+ (−1)v

h
,
a+ (−1)u

h
; 0, 0, 1, 1,m+ 1, 2)

where m ≥ 0 is an integer, t = am + (−1)v

a+ (−1)u is an integer, h =

gcd(ta+(−1)v, a+(−1)u), and u and v are in the set {0, 1}. Thus there are
an infinite number of families with N = 3. (Note that we do not actually
need the fact that there are an infinite number of choices of m for each
choice of a, although this is easily verified.) This completes the proof of
Theorem 1.1. �
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A further example giving an infinite number of sets of solutions with
N = 3 is the following (a, b, c, r, s;x1, y1, x2, y2, x3, y3) (closely related to
(3.13)):

(3.14) (2, 4t, 4t+ 4
h1

,
4t+ 1
h1

,
3
h1

; 0, 0, 2, 1,m1 + 2, 2)

where m1 ≥ −1 is an odd integer, t = 2m1 +1
3 , h1 = 3 or 1 according as

m1 ≡ 5 mod 6 or not, and u, v ∈ {0, 1}.

4. Proof of Theorem 1.2
To prove Theorem 1.2 we will show that if (1.1) has more than three

solutions (x, y, u, v) when gcd(ra, sb) = 1, then for each solution

(4.1) max(a, b, r, s, x, y) < 2× 1015

and
(4.2)
max(r, s, x, y) < 8× 1014,min(max(a, b),max(b, c),max(a, c)) < 8× 1014.

To do this, we require a few additional lemmas.

Lemma 4.1. Suppose gcd(ra, sb) = 1 and suppose (1.1) has four solu-
tions (x1, y1), (x2, y2), (x3, y3), (x4, y4) with x1 < x2 < x3 < x4. Let
Z = max(x4, y1, y2, y3, y4). Then

ax3−x2 ≤ Z, s ≤ Z + 1,

and, if a > b,
x2a

x3−x2 ≤ Z.

Proof. By Corollary 2.2, we see that no two of y2, y3, y4 are equal. By
considering (1.2) with (i, j) = (2, 3) and δ = δ1 ∈ {0, 1}, we find that(
b|y3−y2| + (−1)δ1

)
/ (rax2) is an integer prime to a. Considering (1.2) with

(i, j) = (3, 4) and δ = δ2 ∈ {0, 1}, we find
(
b|y4−y3| + (−1)δ2

)
/ (rax3) is an

integer. There must be a least positive integer n such that (bn ± 1)/(rax2)
is an integer prime to a. Now we can apply Lemma 1 of [15] to get

n
ax3−x2

2g+h−1 ≤ max(y3, y4) ≤ Z,

where g = 1 and h = 0 unless r is odd, a ≡ 2 mod 4, and x2 = 1, in which
case x1 = 0. But by Lemma 2.4 we cannot have r odd and a ≡ 2 mod 4
when x1 = 0, so that we can simply take g + h− 1 = 0. Also if a > b, then
n > x2.

Finally, considering (1.2) with (i, j) = (2, 3) we find s ≤ ax3−x2 + 1 ≤
Z + 1. �
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Lemma 4.2. Suppose gcd(ra, sb) = 1 and suppose (1.1) has 2 solutions
(x1, y1) and (x2, y2), with x1 < x2. Then, if r > 1 or if x1 > 0,

rax2 > c/2,
and, if r = 1 and x1 = 0,

ax2 > (c− 2)/2.

Proof. Suppose rax2 ≤ c/2. Then sby2 ≥ c/2 and also rax1 < c/2 so that
sby1 > c/2. But we have, considering (1.2) with (i, j) = (1, 2),

rax1(ax2−x1 + (−1)γ) = sbmin(y1,y2)
(
b|y2−y1| + (−1)δ

)
> 0.

If r > 1, or if x1 > 0, this gives c/2 ≥ rax2 > ax2−x1 +1 ≥ sbmin(y1,y2) ≥ c/2,
a contradiction, so rax2 > c/2 when r > 1 or x1 > 0.

If r = 1 and x1 = 0, suppose ax2 ≤ c/2 − 1, so that sby2 ≥ c/2 + 1.
Proceeding in the same way we obtain c/2 ≥ ax2 +1 ≥ sbmin(y1,y2) ≥ c/2+1,
a contradiction. So ax2 > c/2− 1 when r = 1 and x1 = 0. �

Lemma 4.3. Suppose (1.1) has a solution (x, y, u, v) for some (a, b, c, r, s),
and suppose we have the following conditions:

min(x, y) > 0, (u, v) 6= (0, 0), gcd(ra, sb) = 1.
Let Z = max(x, y), J = max(a, b), and d = min(rax, sby). Then one of the
following inequalities must hold:

(4.3) Z <
log(1 + c/d) + log(c)

log(2)
+ 1.6901816335 · 1010 log(max(r, s, 2)) log(J) log(1.5eZ),

(4.4) Z <
log(1 + c/d) + log(c)

log(2) + 22.997
(

log
(

Z

log(2)

)
+ 2.405

)2
log(J).

When rs = 1, then either (4.4) holds or Z < 2409.08 log(J).

Proof. Suppose gcd(ra, sb) = 1. Let Z = max(x, y) where (x, y, u, v) is a
solution in positive integers to (1.1). Let D = max(rax, sby), d =
min(rax, sby), J = max(a, b), and j = min(a, b). Assume (u, v) 6= (0, 0)
so that

|rax − sby| = D − d = c.

Assume rs > 1 and also assume there do not exist integers a0, b0, m, n, t,
and w such that r = am0 , a = at0, s = bn0 , and b = bw0 . Let
Λ = | log(r/s) + x log(a)− y log(b)| = log(D)− log(d) = log(1 + c/d) < c/d

so that
(4.5) log(1/Λ) > log(d)− log(c).
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Now we can apply a result of Matveev [7], as given by Mignotte in The-
orem 1 of [9], with (α1, α2, α3) = (r/s, a, b), (A1, A2, A3) = (log(max(r, s)),
log(a), log(b)), and B = Z to get

(4.6) log(1/Λ) < KA1A2A3 log(1.5eB),

where K = 1.6901816335 · 1010. Combining (4.5) and (4.6) we get

(4.7) log(d) < log(c) +K log(max(r, s)) log(a) log(b) log(1.5eZ).

Also Λ = log(1 + c/d), so that, adding Λ to both sides of (4.7), we get

log(D) < log(1 + c/d) + log(c) +K log(max(r, s)) log(a) log(b) log(1.5eZ).

From this, noting that Z log(j) ≤ log(D), we have

Z log(j) < log(1 + c/d) + log(c) +K log(max(r, s)) log(a) log(b) log(1.5eZ).

Dividing through by log(j) and noting j ≥ 2, we get (4.3).
Now suppose rs = 1. Let G = max(x/ log(b), y/ log(a)) and let Λ =

|x log(a)− y log(b)|. Using a theorem of Mignotte [8] as given in Section 3
of [1] and using the parameters chosen by Bennett in Section 6 of [1], we
see that we must have either

(4.8) G < 2409.08

or

(4.9) log(Λ) > −22.997(log(G) + 2.405)2 log(a) log(b).

If (4.8) holds then Z < 2409.08 log(J), which implies (4.3). When (4.9)
holds, proceeding as in the case rs > 1 above and noting G ≤ Z/ log(2),
we obtain (4.4).

Suppose rs > 1 and there exist integers a0, b0, m, n, t, and w such that
r = am0 , a = at0, s = bn0 , and b = bw0 . Then we can rewrite (1.1) as

(−1)uatx+m
0 + (−1)vbwy+n

0 = c.

From this we obtain, using the same method as above when rs = 1, and
letting Z0 = max(tx+m,wy + n), and J0 = max(a0, b0),

(4.10) Z ≤ Z0 < 2409.08 log(J0) ≤ 2409.08 log(J)

or
(4.11)

Z0 <
log(1 + c/d) + log(c)

log(2) + 22.997
(

log
(

Z0
log(2)

)
+ 2.405

)2
log(J0).

(4.10) implies (4.3), and, if (4.11) holds, then (4.4) holds since Z ≤ Z0 and
J ≥ J0. �
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Lemma 4.4. Let (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) and (A,B,C,R, S;
X1, Y1, X2, Y2, . . . , XN , YN ) be any two sets of solutions in the same family
for which gcd(ra, sb) = gcd(RA,SB) = 1. Then for every i there exists a
unique j and for every j there exists a unique i such that raxi = RAXj and
sbyi = SBYj .

Proof. Suppose (a, b, c, r, s;x1, y1, x2, y2, . . . , xN , yN ) and (A,B,C,R, S;X1,
Y1, X2, Y2, . . . , XN , YN ) are any two sets of solutions in the same fam-
ily, so that C = kc for some positive rational k. Suppose gcd(ra, sb) =
gcd(RA,SB) = 1. Since gcd(ra, sb) = 1, by the definition of family k is an
integer and, since gcd(RA,SB) = 1, we must have k = 1. By Observation
1.3, the lemma holds. �

Proof of Theorem 1.2: It suffices to prove that (4.1) and (4.2) hold when
N ≥ 4 and gcd(ra, sb) = 1.

If (4.1) or (4.2) fails to hold for a given set of solutions for which N > 4,
then that set of solutions has a subset for which N = 4 and for which (4.1)
or (4.2) fails to hold. So it suffices to consider only N = 4. By Lemma
4.4, both (4.1) and (4.2) hold for any set of solutions with gcd(ra, sb) = 1
in the same family as a subset (or an associate of a subset) of one of
the entries listed in (2.39), so by Lemma 2.11 it suffices to consider a set
of solutions (a, b, c, r, s;x1, y1, x2, y2, x3, y3, x4, y4) for which one of (2.40),
(2.41), or (2.42) holds (note that if (4.1) or (4.2) holds for the associate of
a set of solutions, it holds for the set of solutions itself). If (2.42) holds, or
if (2.40) holds with y1 = y2 > 0, we can apply Theorem 1 of [15] to the
solutions (x2, y2), (x3, y3), and (x4, y4) to obtain (4.1) and (4.2). Similarly,
if (2.41) holds with either x1 > 0 or y2 > 0, we can apply Theorem 1 of
[15] to obtain (4.1) and (4.2). So it suffices to consider only two cases:

(4.12) x1 < x2 < x3 < x4, 0 = y1 = y2 < y3 < y4,

(4.13) 0 = x1 < x2 < x3 < x4, 0 = y2 < y1 < y3 < y4.

Case 1: (4.12) holds.
Let (a, b, c, r, s;x1, y1, x2, y2, x3, y3, x4, y4) be a set of solutions satisfying

(4.12) with gcd(ra, sb) = 1. Let Z = max(x4, y4). Let R = rax1 .
We can apply Lemma 4.1 to obtain

ax3−x2 ≤ Z, s ≤ Z + 1.

From this we have rax3 ≤ rax2Z ≤ (c + s)Z ≤ (2s + R)Z. Considering
the solution (x3, y3), we find sby3 ≤ rax3 + c ≤ (2s + R)Z + R + s, by3 ≤
(2 + (R/s))Z + 1 + R/s ≤ (8/3)Z + 5/3 if R/s ≤ 2/3. Considering (1.2)
with (i, j) = (1, 2), we find R ≤ 2, so that R/s > 2/3 implies (R, s) = (2, 1)
or (1, 1).
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So assume (R, s) 6= (2, 1) or (1, 1), so that R/s ≤ 2/3. Then, by the
results in the preceding paragraph, we have

(4.14) a ≤ Z, b ≤ (8/3)Z + 5/3, r ≤ R ≤ 2, s ≤ Z + 1, c ≤ Z + 3.

By (4.12) min(x4, y4) > 0, and, since c ≤ R + s, (u4, v4) 6= (0, 0), where
ui and vi are the values of u and v in (1.1) when (x, y) = (xi, yi). We can
apply Lemma 4.3 with (x, y) = (x4, y4) to see that (4.3) or (4.4) holds with
J = max(a, b) and d = min(rax4 , sby4). Note that 1+c/d ≤ max(2, c). Now,
using (4.14) in (4.3) and (4.4), we obtain Z < 7.4× 1014, and using (4.14)
again we obtain (4.1) and (4.2), completing the proof of Theorem 1.2 for
Case 1 when (R, s) 6= (2, 1) or (1, 1).

Now assume (R, s) = (2, 1), so that we have c = 1 or 3. If c = 1, then,
considering the solution (x2, y2), we have x2 = x1, a contradiction. So c = 3,
ax2−x1 = 2, x3 > 1, and y3 > 0. Take 3 ≤ i ≤ 4. We have ui 6= vi since
c ≤ R + s. (ui, vi) = (1, 0) implies byi ≡ 3 mod 8, while (ui, vi) = (0, 1)
implies byi ≡ 5 mod 8, so yi is odd and we must have (u3, v3) = (u4, v4).
(u3, v3) = (u4, v4) = (1, 0) contradicts Lemma 2 of [13] since y4 > 1. So
(u3, v3) = (u4, v4) = (0, 1), in which case, using Theorem 3 of [12] and
recalling y3 and y4 are both odd, we must have (b, y3, y4) = (5, 1, 3) so

(a, b, c, r, s;x1, y1, x2, y2, . . . , x4, y4) = (2, 5, 3, 2, 1; 0, 0, 1, 0, 2, 1, 6, 3)

or

(a, b, c, r, s;x1, y1, x2, y2, . . . , x4, y4) = (2, 5, 3, 1, 1; 1, 0, 2, 0, 3, 1, 7, 3).

Both these cases certainly satisfy (4.1) and (4.2).
Now assume (R, s) = (1, 1), so that r = R = 1. We have c = 2, ax2 = 3,

x3 > 1, and y3 > 0. Take 3 ≤ i ≤ 4. We have ui 6= vi. If (ui, vi) = (0, 1) and
2 | yi, then, considering the coefficients of the real term and the imaginary
term of (1 +

√
−2)xi modulo 9, we find that we must have 3 | xi, and, using

Lemma 1 of [12], we find that the only possibility is xi = 3, giving b = 5
and yi = 2, in which case, by Theorem 7 of [14], the only further solution is
(x, y) = (1, 1), which contradicts (4.12). So (ui, vi) = (0, 1) implies yi odd.
But then, considering the solutions (x3, y3) and (x4, y4) modulo 8, we find
that we must have (u3, v3) = (u4, v4) = (1, 0) or (u3, v3) = (u4, v4) = (0, 1).
If (u3, v3) = (u4, v4) = (1, 0) we have a contradiction to Lemma 2 of [13].
If (u3, v3) = (u4, v4) = (0, 1), then, since y3 and y4 are both odd, we can
apply Theorem 3 of [12] to obtain a contradiction. So Theorem 1.2 holds
for Case 1.

Case 2: (4.13) holds.
Without loss of generality we can take a > b. Let Z = max(x4, y4). We

can apply Lemma 4.1 to obtain

(4.15) b < a ≤ Z, max(r, s) ≤ Z + 1.
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We have min(x4, y4) > 0, and, since c ≤ r + sby1 , we have (u4, v4) 6=
(0, 0). Let D = max(rax4 , sby4) and d = min(rax4 , sby4). Now we can apply
Lemma 4.3 with (x, y) = (x4, y4) to see that we must have either

(4.16) Z <
log(1 + c/d) + log(c)

log(2)
+ 1.6901816335 · 1010 log(max(r, s, 2)) log(a) log(1.5eZ),

or

(4.17) Z <
log(1 + c/d) + log(c)

log(2) +22.997
(

log
(

Z

log(2)

)
+ 2.405

)2
log(a).

We first show that log(1 + c/d) is small. By Lemma 4.2,

d > b2(c− 2)/2 ≥ 2c− 4.

So

(4.18) 1 + c

d
< 1.75

since d ≥ 8. Now applying (4.15) and (4.18) to (4.16) and (4.17), and letting
K = 1.6901816335 · 1010, we get either

(4.19) Z < 0.9 + log(c)
log(2) +K log(Z + 1) log(Z) log(1.5eZ),

or

(4.20) Z < 0.9 + log(c)
log(2) + 22.997

(
log

(
Z

log(2)

)
+ 2.405

)2
log(Z).

(4.20) implies (4.19), so from here on we consider only (4.19).
Suppose c ≤ (Z + 1)1011 . Then (4.19) gives Z < 7.9 × 1014, so that

applying (4.15), we get (4.1) and (4.2), completing the proof of Theorem
1.2 when c ≤ (Z + 1)1011 . So from here on we can assume that, by (4.15),

(4.21) c > (Z + 1)1011 ≥ (max(r, s))1011
.

We can apply Lemma 4.1 to obtain

(4.22) x2a ≤ Z.

Now c ≤ rax2 + s so that, taking t = 1011

1011−1 , we have, from (4.21), noting
that (4.21) also implies c > 1011s,

c < ttatx2

which gives

(4.23) log(c)
log(2) <

t log(t) + tx2 log(a)
log(2) .
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We certainly have

(4.24) t log(t)
log(2) < 0.1

and we also have

(4.25) tx2 log(a)
log(2) <

x2a

1.89 ≤
Z

1.89
where the first inequality follows from taking a > 2 and the second inequal-
ity follows from (4.22). Now we have, using (4.19), (4.24), and (4.25),

Z < 0.9 + 0.1 + Z

1.89 +K log(Z + 1) log(Z) log(1.5eZ)

from which we get

(4.26) 0.47Z < 1 +K log(Z + 1) log(Z) log(1.5eZ),

from which we obtain a bound on Z, which, with (4.15), gives (4.1).
So it remains to prove (4.2) for Case 2 when c > (Z + 1)1011 . To do

this, we must significantly improve the value 0.47 in (4.26), so we must
significantly improve the value 1.89 in (4.25). One way to do this is to take
a large: in fact, it suffices to take a > 50 to get the necessary improvements,
and we obtain (4.2), completing the proof of Theorem 1.2 for a > 50. To
handle a ≤ 50, we will need two more lemmas:

Lemma 4.5. Let a > 1 and b > 1 be relatively prime integers. For 1 ≤
i ≤ m, let pi be one of the m distinct prime divisors of a. Let pgii ||bni ± 1,
where ni is the least positive integer for which there exists a positive integer
k such that |bni − kpi| = 1, and ± is read as the sign that maximizes gi.

Write
σ =

∑
i

gi log(pi)/ log(a).

Then, if
ax | by ± 1,

where the ± sign is independent of the above, we must have

ax | aσy.

Proof. Let a =
∏
i p
αi
i . If ax|by ± 1, then for each i, pxαii |by ± 1, so that

pxαi−gii |y (in the case xαi < gi, pxαi−gii is a fraction that evenly divides y).
Thus, y is divisible by ∏

i

pxαi−gii = ax−σ.

�
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Lemma 4.6. If a > 2 and (a, b) 6= (3, 2), then, in the notation of Lemma
4.5,

σ <
a log b
2 log a.

If (a, b) = (3, 2), then σ = 1.

Proof. We assume a > 2 and (a, b) 6= (3, 2). Then if a is odd,
∏
i p
gi
i ≤

bφ(a)/2 + 1 ≤ b(a−1)/2 + 1 < ba/2, verifying Lemma 4.6 when a is odd. If
a > 4 is even, then

∏
i p
gi
i < bφ(a/2) < ba/2 verifying the lemma in this

case also. Finally, when a = 4, define g so that 2g||b± 1, where the sign is
chosen to maximize g. Then the lemma holds unless g log(2)

log(4) ≥
4 log(b)
2 log(4) , that

is, unless 2g ≥ b2, which is impossible.
Finally, if (a, b) = (3, 2), σ = 1 by the definition of σ in Lemma 4.5. �

Returning to the proof of Theorem 1.2, it remains to handle Case 2 when
c > (Z + 1)1011 and a ≤ 50. By (4.19), (4.23), and (4.24), we have

(4.27) Z < 1 + tx2 log(a)
log(2) +K log(Z + 1) log(Z) log(1.5eZ).

By Lemma 4.5 and Lemma 4.6 we have ax2 ≤ aσZ where σ < a/2. Consid-
ering the second term on the right side of (4.27), we have

tx2 log(a)/ log(2) ≤ (t/ log(2))(log(Z) + σ log(a))
< 1.443(log(Z) + a log(a)/2).

Substituting this into (4.27), and recalling a ≤ 50, we get

(4.28) Z < 143 + 1.443 log(Z) +K log(Z) log(Z + 1) log(1.5eZ).

From (4.28) we obtain a bound on Z which, combined with (4.15), gives
(4.2). This completes the proof of Theorem 1.2. �

Comment on Lemmas 4.5 and 4.6: Lemmas 3 and 4 of [14] can be replaced
by Lemmas 4.5 and 4.6 respectively, giving a shorter, simpler presentation
in which Lemma 5 of [14] would be replaced by the following:

Lemma 4.7. Let a > 2, b > 1, and c > 0 be integers with gcd(a, b) = 1. If
(−1)uax + (−1)vby = c has two solutions (x1, y1, u1, v1) and (x2, y2, u2, v2),
with x2 ≥ x1 ≥ 1, y2 ≥ y1 ≥ 1, and u1, u2, v1, v2 ∈ {0, 1}, and if further
ax1 > c/2, then

x1 < σ + k,

where σ is defined as in Lemma 4.5, and k = 8.1+log log(a)
log(a) when a < 5346

and k = 1.19408 otherwise.
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The proof of Lemma 4.7 is essentially identical to that of Lemma 5 of
[14]: we can use a result of Mignotte [8] as in Proposition 4.4 of Bennett [1],
noting that we do not need to consider the cases (a, b) = (3, 2) and (a, b) =
(5, 2), since these cases are handled by the elementary methods of [11] along
with the Theorem 4 of [12]. Note that in the proof of Lemma 4.7 we will use
the bound in Lemma 4.6 rather than the bound in Lemma 4 of [14]: also
note that we will obtain y2 log(b)

log(c) > 10.519 rather than y2 log(b)
log(c) > 34 as in

[14]. Lemmas 3, 4, and 5 of [14] are used to prove Theorem 3 of [14]; if we use
instead Lemmas 4.5, 4.6, and 4.7 of the present paper, both the formulation
and the proof of Theorem 3 of [14] remain completely unchanged.

5. The Case N ≤ 3 with gcd(ra, sb) = 1
The question remains: what can be said of cases for which N ≤ 3?
It follows directly from Theorem 2 of [15] that cases of exactly two solu-

tions to (1.1) with gcd(ra, sb) = 1 are commonplace and easy to construct,
even if we restrict consideration to basic forms only (here we are allowing
N = 2 in the definition of “set of solutions”, and noting that we can easily
adjust the two solutions to get min(x1, x2) = min(y1, y2) = 0).

When N = 3, we find many examples. Here we list several types of sets
of solutions, each one of which generates an infinite number of families
giving three solutions to (1.1). We list these sets of solutions in the form
(a, b, c, r, s;x1, y1, x2, y2, x3, y3):

(5.1)

(a, a
kd + (−1)u+v

ad + (−1)u ,
adb+ (−1)u+v+1

h
,
b+ (−1)v

h
,
ad + (−1)u

h
; 0, 1, d, 0, kd, 2)

where a and b = akd+(−1)u+v

ad+(−1)u are integers greater than 1, d and k are positive
integers, h = gcd(ad + (−1)u, b+ (−1)v), and u and v are in the set {0, 1}.
When u = 0, we take k−v odd; when (u, v) = (1, 1), we take ad ≤ 3. When
a = d = 2 and (u, v) = (1, 1), we can take k to be a half integer (k = 3/2
gives the exceptional case (3, 2, 11) in Theorem 7 of [13]). When k = 2 and
u − v is odd, the same choice of (a, b, r, s) as in (5.1) gives the additional
set of solutions
(5.2)

(a, ad + (−1)v, 2ad + (−1)v

h
,
ad + (−1)v2

h
,
ad + (−1)v+1

h
; 0, 0, d, 1, 3d, 3).

Other sets of solutions can be constructed with specified values of a. For
example, when a = 3 we have
(5.3)

(3, 3g + (−1)v

2 ,
3g+1 + (−1)v

22+v−α ,
3(3g−1 + (−1)v)

22+v−α , 21−v+α; 0, 1, 1, 0, 2g, 3)
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where v ∈ {0, 1}, g is a positive integer, α = 0 when 2 | g − v, α = 1 when
g is odd and v = 0, and α = 2 when g is even and v = 1. Note that, when g
is odd and v = 1, (5.3) corresponds to (7) in Theorem 1 of [12] and, more
specifically, the case (a, b, c) = (13, 3, 10) in (1.2) of [1]. Note also that the
cases (g, v) = (1, 0) and (2, 1) correspond to the cases (3, 2, 5) and (3, 2, 13)
in the exceptional cases of Theorem 7 of [13]; again see also (1.2) of [1].

When a = 2, we have

(5.4) (2, 2g + (−1)v, 2g + (−1)v+1, 2, 1; 0, 1, g − 1, 0, g, 1)

and

(5.5) (2, 2g + (−1)v, 2g+1 + (−1)v, 2g, 1; 0, 1, 1, 0, g, 2)

where v ∈ {0, 1} and g is a positive integer. Note that (5.2) with a = d = 2
and v = 0 combines with (5.4) to give the exceptional case (5, 2, 3) in
Theorem 7 of [13] (again see also (1.2) of [1]). Also (5.4) and (5.5) combine
to give the case (3, 2, 7) of Theorem 7 of [13].

Also, it is easy to construct sets of solutions for which x1 = y1 = y2 = 0.
For example, we have, for a even and x > 0,

(5.6) (a, 2ax ± 1, ax ± 1, 2, ax ∓ 1; 0, 0, x, 0, 2x, 1),

or, more generally,

(5.7) (a, b, a
x2 + (−1)t

2m , 21−m,
ax2 + (−1)t+1

2m ; 0, 0, x2, 0, x3, 1),

where b = 2ax3 +(−1)t+w+1ax2 +(−1)w+1

ax2 +(−1)t+1 , and where x2 > 0 and x3 > 0 are

chosen so that ax3 ≡ (−1)w mod ax2 +(−1)t+1

2m , t ∈ {0, 1}, w ∈ {0, 1}, and
m = 1 or 0 according as a is odd or even. Taking the lower sign in (5.6), the
case a = 2 with x = 1 gives the well known case (a, b, c) = (2, 3, 1) (again
see (1.2) of [1] and Theorem 7 of [13]).

Since each of (5.1)–(5.7) generates an infinite number of families for
which N = 3, we have, after Theorem 1.2, a proof of Theorem 1.3.

Comment on anomalous cases (not necessarily with gcd(ra, sb) = 1):
If we exclude from consideration any set of solutions in the same family

as a set of solutions given by either (3.13) or (3.14) or any of (5.1)–(5.7),
then we are aware of only 14 essentially different cases of (a, b, c, r, s) giving
exactly three solutions to (1.1), the largest of which is

(5.8) (56744, 1477, 83810889, 1478, 56743; 0, 1, 1, 0, 3, 4).

Easily derived from (5.8) is (56745, 1477, 41906182, 739, 28373; 0, 1, 1, 0, 3, 4).
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