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Multidimensional Gauss reduction theory for
conjugacy classes of SL(n,Z)

par Oleg KARPENKOV

Résumé. Dans cet article, nous décrivons l’ensemble des classes
de conjugaison dans le groupe SL(n,Z). Nous étendons la théorie
de réduction de Gauss géométrique qui résout le problème pour
SL(2,Z) au cas multidimensionnel, où les matrices de Hessen-
berg ς-réduites jouent le rôle de matrices réduites. Ensuite, nous
trouvons des invariants complets des classes de conjugaison dans
GL(n,Z) en termes fractions continues multidimensionnelles de
Klein-Voronoi.

Abstract. In this paper we describe the set of conjugacy classes
in the group SL(n,Z). We expand geometric Gauss Reduction
Theory that solves the problem for SL(2,Z) to the multidimen-
sional case, where ς-reduced Hessenberg matrices play the role
of reduced matrices. Further we find complete invariants of con-
jugacy classes in GL(n,Z) in terms of multidimensional Klein-
Voronoi continued fractions.

1. Introduction
Two matrices A and B in SL(n,Z) are integer conjugate if there exists a

matrix C in GL(n,Z) such that

B = CAC−1.

In this paper we study the following problem.
Problem. Describe the set of integer conjugacy classes in SL(n,Z).

One of the most common strategies to solve this kind of problem is to
find complete invariants to distinguish the classes, and further if possible
to give a normal form for each conjugacy class. For instance, in the similar
problem for SL(n, F ), for an algebraically closed field F , one has the Jordan
normal forms classifying conjugacy classes.

A complete description of the set of integer conjugacy classes in SL(2,Z)
is given by Gauss Reduction Theory [8, 12]. It turns out that it is natural to
consider several normal forms for an integer conjugacy class instead of one.
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For the case of SL(n,Z) so far only an algorithm deciding if two matrices
are conjugate was known [1, 5].

The classical approach to the above problem is algebraic. It is based on
splitting GL(n,Q) conjugacy classes into GL(n,Z) conjugacy classes, then
the problem is reduced to certain problems related to orders of algebraic
fields. In this paper we introduce an alternative geometric approach based
on generalization of Gauss Reduction Theory.
Description of the paper. The current paper presents the following main
two results. We work only with matrices whose characteristic polynomials
are irreducible over Q. This is the first and simplest open case to study.
I.We consider Hessenberg matrices as a multidimensional analogue of the

reduced matrices in Gauss Reduction Theory. In Section 2 we show that
each integer conjugacy class of irreducible matrices in SL(n,Z) contains
a finite number of Hessenberg matrices with minimal complexity. (Theo-
rem 2.1).
II. In Section 3 we introduce complete geometric invariants of Dirich-

let groups: periodic multidimensional continued fractions in the sense of
Klein-Voronoi (Theorem 3.1). Further we deduce the complete invariants
of integer conjugacy classes of matrices in GL(n,Z): the classes are repre-
sented by periodic shifts of the above-mentioned periodic continued frac-
tions (Theorem 3.2).

2. Hessenberg matrices and conjugacy classes
In this section we study the question of reduction to so-called ς-reduced

matrices, and we investigate families of perfect Hessenberg matrices in gen-
eral.

2.1. Notions and definition. First, we introduce matrices that gener-
alize the reduced matrices in Gauss Reduction Theory for SL(2,Z). We
confine our study to those matrices in SL(n,Z) whose characteristic poly-
nomial is irreducible over Q.

A matrix A of the form

a1,1 a1,2 · · · a1,n−2 a1,n−1 a1,n
a2,1 a2,2 · · · a2,n−2 a2,n−1 a2,n
0 a3,2 · · · a3,n−2 a3,n−1 a3,n
...

... . . . ...
...

...
0 0 · · · an−1,n−2 an−1,n−1 an−1,n
0 0 · · · 0 an,n−1 an,n


is called an (upper) Hessenberg matrix. The n × (n−1)-matrix obtained
from A by deleting the last column is called the Hessenberg type of A and
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denoted by Ared. The integer

ς(A) :=
n−1∏
j=1
|aj+1,j |n−j

is called the Hessenberg complexity of A. It equals to the volume of the
parallelepiped spanned by e1 = (1, 0, . . . , 0)t, A(e1), A2(e1), . . . , An−1(e1).

Definition. A Hessenberg matrix A ∈ SL(n,Z) is said to be perfect if for
any pair of integers (i, j) satisfying 1 ≤ i < j+1 ≤ n the inequalities 0 ≤
ai,j < aj+1,j hold. Denote the set of all n×n perfect Hessenberg matrices by
ph(n,Z). Denote all matrices in ph(n,Z) integer conjugate to A by ph(A).

Definition. We say that a perfect Hessenberg matrix A is ς-reduced if its
Hessenberg complexity is minimal in ph(A). Denote the set of all n×n ς-
reduced perfect Hessenberg matrices by rph(n,Z). Denote all matrices in
rph(n,Z) integer conjugate to A by rph(A).

In Theorem 2.1 below we show that the number of ς-reduced matrices is
finite and nonzero in any integer conjugacy class.

2.2. Perfect Hessenberg matrices conjugate to a given one. In the
following an integer vector is primitive if its coordinates are relatively prime.

Proposition 2.1. Assume that A ∈ SL(n,Z) has a characteristic polyno-
mial irreducible over Q. Then for any integer primitive vector v there exists
a unique matrix C ∈ GL(n,Z) such that

— C(e1) = v;
— CAC−1 ∈ ph(n,Z).

Proof suggested by the referee. Existence. Consider the spaces

Vi =
〈
v,A(v), A2(v), . . . , Ai−1(v)

〉
for i = 1, . . . , n.

Since the characteristic polynomial of A is irreducible, dimVi = i and
the spaces Vi form a complete flag in Rn. Since A1(v), . . . , An−1(v) ∈ Zn,
rk(Vi ∩ Zn) = i for i = 1, . . . , n.

Let us inductively construct an integer basis {ẽi} of Rn such that:
— for i = 1, . . . , n, the vectors ẽ1, . . . , ẽi form a basis of the sublattice

Vi ∩ Zn;
— CAC−1 ∈ ph(n,Z), where C is the transition matrix to the basis

(ẽ1, . . . , ẽn).
Base of induction. The vector ẽ1 := v generates V1 ∩ Zn.
Induction step. Consider two lattices: L = Lk+1 = Vk+1 ∩ Zn and the
sublattice L′ := 〈ẽ1, . . . , ẽk, A(ẽk)〉Z. Since Lk := 〈ẽ1, . . . , ẽk〉Z is a pure
sublattice of L and L′ has finite index in L, the quotient L/L′ is cyclic of
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some finite order, say, a. Hence there are unique b1, . . . , bk ∈ {0, . . . , a− 1}
such that

(2.1) 1
a

(
A(ẽk)−

k∑
i=1

biẽi
)

=: ẽk+1 ∈ L.

Then L = 〈ẽ1, . . . , ẽk+1〉Z. This concludes the induction step.
Denote by C the transition matrix to the basis {ẽi}. Then we have

C(e1) = v and CAC−1 ∈ ph(n,Z).
Uniqueness. Let C1 and C2 satisfy the conditions of the theorem. Suppose
that C1 and C2 are the transition matrices to the bases {ẽi} and {êi}
respectively. Then

ẽ1 = C1(e1) = v = C2(e1) = ê1.

For i > 1 the equality ẽi = êi follows from the uniqueness of the choice
of the coefficients in Equation (2.1). Hence bases {ẽi} and {êi} coincide.
Therefore, C1 = C2. �

2.3. Existence and finiteness of ς-reduced Hessenberg matrices.

Theorem 2.1. For any matrix A ∈ SL(n,Z) whose characteristic polyno-
mial is irreducible over Q the set rph(A) is nonempty and finite.

For the proof of this theorem we use the following general proposition.

Proposition 2.2. Any Hessenberg matrix A with ς(A) > 0 is uniquely
defined by its Hessenberg type Ared and the characteristic polynomial.

Proof. Suppose that for a matrix A = (ai,j) we know its characteristic
polynomial

xn + cn−1x
n−1 + · · ·+ c1x+ c0.

and its Hessenberg type Ared. From Ared we know all columns of A except
for the last one. Direct calculations show that for any k the coefficient ck
is a polynomial in the variables ai,j not depending on a1,n, . . . , ak,n. The
unique monomial in ck containing ak+1,n is

( n−1∏
j=k+1

aj+1,j
)
ak+1,n.

Since ς(A) 6= 0, the product in brackets is nonzero. Hence ak+1,n is a
function of ck and ai,j where 1 ≤ i ≤ n and 1 ≤ j < n, and the last
column is uniquely defined. �
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Example. Hessenberg complexity together with the characteristic polyno-
mial is not sufficient to distinguish all the integer conjugacy classes. The
two matrices  0 1 3

1 0 0
0 3 8

 and

 0 2 5
1 1 2
0 3 7


are not integer conjugate. However their Hessenberg complexity equals 3,
and they have the same characteristic polynomial.

Proof of Theorem 2.1. By Proposition 2.1 we have ph(A) 6= ∅. Since
ς(ph(A)) ⊂ Z+, there exists Ã ∈ ph(A) with minimal complexity ς, so
Ã ∈ rph(A).

It follows that rph(A) 6= ∅. All integer conjugate matrices have the
same characteristic polynomial. Hence by Proposition 2.2 there exists at
most one matrix A ∈ rph(A) of any given Hessenberg type. By definition
all matrices of rph(A) have the same Hessenberg complexity (say, c). The
number of Hessenberg types whose Hessenberg complexity equals c is finite.
Therefore, rph(A) is finite. �

2.4. Families of Hessenberg matrices with given Hessenberg type.
Consider an arbitrary Hessenberg type Ω = Ared with integer coefficients
(ai,j). Denote by H(Ω) the set of all Hessenberg matrices in SL(n,Z) of
Hessenberg type Ω.

Denote byMk(Ω) the matrix obtained from the zero matrix by replacing
the last column by vk := (ak,1, . . . , ak,k+1, 0, . . . , 0)t. Consider the simplex
σ(Ω) = conv(O, v1, . . . , vn−1).

Definition. The integer volume of a simplex σ with integer vertices is the
index of the sublattice generated by its edges in the lattice 〈σ〉∩Zn, denote
it by iv(σ).

Proposition 2.3.
i). The set H(Ω) is not empty if and only if iv(σ(Ω)) = 1.
ii). If A0 ∈ H(Ω), then H(Ω) = A0 +

〈
M1(Ω), . . . ,Mn−1(Ω)

〉
Z.

The proof of Theorem 2.3 is based on Lemma 2.1.

Definition. Consider a k-dimensional subspace π satisfying rk π ∩ Zd = k
and an integer vector v /∈ π. The integer distance from v to π is the index
of the sublattice 〈v, π〉Z in the lattice 〈v, π〉R∩Zn. We denote it by id(v, π).

Lemma 2.1. Consider a Hessenberg matrix A of type Ω, let its last column
be an integer vector v. Then A ∈ SL(n,Z) if and only if the following
conditions hold:

iv(σ(Ω)) = 1 and id(v, 〈σ(Ω)〉) = 1.
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Proof. If A ∈ SL(n,Z), then A preserves all integer volumes and integer
distances. Let Sn−1

e := conv(O, e1, . . . , en−1). Since iv(Sn−1
e ) = 1, we have

iv(σ(Ω)) = iv(A(Sn−1
e )) = 1.

In addition we have A(en) = v. Hence
id(v, 〈σ(Ω)〉) = id(en, 〈e1, . . . , en−1〉) = 1.

Conversely, it is easy to see that the two conditions stated here imply that
the A-image of Zn is a sublattice of index 1 in Zn, i.e., A ∈ SL(n,Z). �

Proof of Theorem 2.3. (i). Suppose that iv(σ(Ω)) = 1. Then choose v at
unit integer distance to the plane spanned by σ(Ω). Then by Lemma 2.1
H(Ω) 6= ∅. Conversely if H(Ω)∩ SL(n,Z) 6= ∅, then by Lemma 2.1 we have
iv(σ(Ω)) = 1.

Statement (ii) is straightforward, since the determinant of the matrix
is additive with respect to the operation of addition of vectors in the last
column. �

Example. The Hessenberg matrices of type
(

0 1
1 0
0 2

)
form the family

(
0 1 1
1 0 0
0 2 1

)
+
〈(

0 0 0
0 0 1
0 0 0

)
,

(
0 0 1
0 0 0
0 0 2

)〉
Z

.

3. Complete geometric invariants of conjugacy classes
In this section we introduce a complete geometric invariant of integer

conjugacy classes proposed by F. Klein in [9] and further extended by
G. Voronoi [13]. For additional information see [2, 3, 4].

3.1. Continued fractions in the sense of Klein-Voronoi.

3.1.1. General definitions. Assume that A∈GL(n,R) has n distinct
eigenvalues. Suppose that the real eigenvalues of A are r1, . . . , rk and the
complex conjugate eigenvalues are c1, c1, . . . , cl, cl, where k+2l = n. Denote
by LR(A) the space spanned by real eigenvectors.

Definition. Put
TA = {B ∈ GL(n,R) | AB = BA, spec(B) ⊂ S1, B|LR(A) = id|LR(A)},

where spec(B) is the spectrum of B, S1 is the complex unit circle. Actually
TA is an abelian group with matrix multiplication as the group operation.
For v ∈ Rn we denote its orbit {B(v) | B ∈ TA} by TA(v).

It is clear that the orbit TA(v) is homeomorphic to a torus of dimension
not greater than l. In case v does not lie in any invariant plane of A, we
have dimTA(v) = l.
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Example. If A is totally real then we have TA(v) = {v}. If A has only
one pair of complex eigenvalues then a general orbit TA(v) is an ellipse
around the (n−2)-dimensional invariant subspace corresponding to the real
eigenvalues.

Let gi be a real eigenvector with eigenvalue ri for i = 1, . . . , k; let gk+2j−1
and gk+2j be vectors of the real and the imaginary parts of some complex
eigenvector with eigenvalue cj for j = 1, . . . , l. Let

π = 〈g1, . . . , gk, gk+1, gk+3, . . . , gk+2l−1〉R,
and let π+ be the cone of π whose points have nonnegative last l coordinates
in the basis (g1, . . . , gk, gk+1, gk+3, . . . , gk+2l−1). Note that for any v the
orbit TA(v) intersects the cone π+ in a unique point.

Consider the arrangement of all k real invariant hyperplanes of A, which
are of the form 〈g1, . . . , gi−1, gi+1, . . . , gn〉 R. By C1(A), . . . , C2k(A) we de-
note the connected components of their complement in Rn.

Definition. The set
Si(A) :=

⋃
p∈∂
(

conv
(
{q∈π+|TA(q)∩Ci(A)∩Zn 6=∅, q 6=0}

))TA(p)

is called the sail of a cone Ci. The Klein-Voronoi continued fraction of A
as the union of all sails:

kvcf(A) =
⋃2k

i=1
Si(A).

For an arbitrary m-dimensional plane π̃ ⊂ π, the set⋃
p∈Si(A)∩π̃

TA(p)

is called an m-dimensional orbit-face if the set Si(A) ∩ π̃ is homeomorphic
to the m-dimensional ball. Integer points of the sail are said to be vertices
of this sail.

3.1.2. Algebraic continued fractions. Consider A ∈ GL(n,Z) whose
characteristic polynomial is irreducible over Q. Suppose that it has k real
roots r1, . . . , rk and 2l complex roots c1, c1, . . . , cl, cl, where k + 2l = n.

Definition. The group of all elements of GL(n,Z) commuting with A is
called the Dirichlet group of A and is denoted by Ξ(A).

The group Ξ(A) takes kvcf(A) to itself and permutes the sails. By the
Dirichlet unit theorem, Ξ(A) ' Zk+l−1 ⊕ G, where G is a finite abelian
group. From the definition it follows that kvcf(A)/Ξ(A) is homeomorphic
to one or several copies of the (n−1)-dimensional torus.

A fundamental domain of kvcf(A) is a collection of its orbit-faces, one
from each equivalence class of kvcf(A)/Ξ(A).
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3.2. Geometric complete invariants of Dirichlet groups.
Theorem 3.1. Assume that A,B ∈ GL(n,Z) have characteristic poly-
nomials which are irreducible over Q. Then Ξ(A) = Ξ(B) if and only if
kvcf(A) = kvcf(B).

Remark. If the characteristic polynomial of a matrix is irreducible over Q,
then all its eigenvalues are distinct, so all matrices of Theorem 3.1 possess
a Klein-Voronoi continued fraction.

Proof. If Ξ(A) = Ξ(B), then A and B commute. Hence they have the same
eigenvectors (since they do not have multiple eigenvalues). Therefore, by
definition kvcf(A) = kvcf(B).

Conversely, assume that kvcf(A) = kvcf(B). We assume that A has
real eigenvectors g1, . . . , gk (corresponding to eigenvalues ri), and also some
complex conjugate eigenvectors gk+2j−1±

√
−1gk+2j (corresponding to con-

jugate complex eigenvalues cj , cj), for j = 1, . . . , l. We denote coordinates
with respect to the basis {gi} by x1, . . . , xk, y1, z1, . . . yl, zl and define the
function ΦA by

ΦA(x1, . . . , zl) =
∏k

i=1
xi
∏l

j=1
(y2
j + z2

j )

Similarly define ΦB for B. Note that A preserves the form ΦA up to a
multiplicative scalar: a simple calculation shows that for any v ∈ Rn it
holds ΦA(A(v)) = det(A)ΦA(v). The same is true for B and ΦB.

Denote by Dρ(0) the ball of radius ρ centered at the origin. The set
kvcf(A) = kvcf(B) asymptotically coincides with the set ΦA = 0 (and
ΦB = 0 respectively) at infinity, i.e., a for any ε there existsN > 0 such that
for any point p ∈ kvcf(A)\Dρ(0) there exist a point q ∈ {ΦA = 0}\Dρ(0)
satisfying |p − q| < ε and vice versa. Therefore, {ΦA = 0} = {ΦB =
0}, and hence the matrices A and B have the same invariant subspaces.
In particular, their one-dimensional real eigenspaces corresponding to real
eigenvectors and two-dimensional eigenspaces (we denote them by π1, . . . ,
πl) defined by pairs of complex conjugate roots coincide. Hence in order to
prove that A and B commute it is enough to prove that they commute for
the vectors of the invariant planes π1, . . ., πl.

Let us show that A and B restricted to πi (i = 1, . . . , l) commute. Con-
sider v ∈ kvcf(A), it is clear from Definition 3.1.1 that
TA(v) = kvcf(A)∩

(
v+〈π1, . . . , πl〉

)
=kvcf(B)∩

(
v+〈π1, . . . , πl〉

)
= TB(v).

Consider an arbitrary C ∈ TA. Since all eigenvalues of C have unit modulus
and C is diagonalizable in the eigenbasis of A, C preserves ΦA up to a scalar
det(C) = ±1. Therefore, |ΦA| is constant on TA(v). By the same reason |ΦB|
is constant on TA(v) = TB(v). Therefore, by linearity, ΦA = c ·ΦB for some
constant c 6= 0. Hence, A preserves ΦB up to a multiplicative scalar.
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Consider now the plane πj for some 1 ≤ j ≤ l and take coordinates
(yj , zj). It is clear that if a linear operator preserves ΦB(v) up to a multi-
plicative scalar then its restriction to the plane πj preserves the level sets
of the form

y2
j + z2

j .

There are two types of matrices which do this:

λ

(
cosα sinα
− sinα cosα

)
and λ

(
− cosα sinα
sinα cosα

)
,

where α, λ ∈ R are arbitrary. The matrices of the second family have two
real eigenvalues in πj , which by the above is not the case for B. Therefore,
both A and B are from the first family. All matrices of the first family
commute. Hence A commutes with B in the planes πj for 1 ≤ j ≤ l.

Therefore A and B are simultaneously diagonalizable in a certain complex
basis, and in consequence they commute. Since A and B are irreducible and
commute, Ξ(A) = Ξ(B). �

3.3. Geometric invariants of conjugacy classes. On the one hand,
from Theorem 3.1 it follows that kvcf(A) uniquely identifies Ξ(A). On
the other hand, the matrix A acts on kvcf(A); we denote this transfor-
mation by PA. It is clear that distinct matrices of Ξ(A) define nonequiva-
lent shifts. So the matrix A ∈ GL(n,Z) is uniquely identified with a pair
(kvcf(A), PA). The group GL(n,Z) naturally acts on pairs (kvcf(A), PA)
by left multiplication on the first factor and by conjugation on the second
factor. Using these notions, Theorem 3.1 takes the following form.

Theorem 3.2. (On complete geometric invariants.) Two matrices
A1, A2 ∈ GL(n,Z) whose characteristic polynomial are irreducible over the
field Q, are integer conjugate if and only if the pairs (kvcf(A1), PA1) and
(kvcf(A2), PA2) are in the same GL(n,Z)-orbit. �

Remark. An important consequence of this theorem is that all geomet-
ric GL(n,Z)-invariants of kvcf(A) — like integer distances and integer
volumes of certain integer point configurations of kvcf(A) — are invari-
ants of the conjugacy class of A. Fundamental domains of Klein contin-
ued fractions and their invariants in a totally-real three dimensional case
(n = k = 3, l = 0) were studied e.g. in [10, 11, 6]. Currently not much is
known about the construction of Klein-Voronoi continued fractions in the
non-totally-real case.

3.4. Particular example. Let us study a linear operator A defined by
the Hessenberg matrix  0 0 1

1 0 1
0 1 3

 .
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π+

a) b) c)

Figure 3.1. For the matrix A studied in Subsection 3.4
we show its cone π+ in (a), the set kvcf(A)∩π+ in (b), and
a sail of kvcf(A) in (c).

It has one real and two complex conjugate eigenvalues. Therefore, the cor-
responding cone π+ is a two-dimensional half-plane. In Figure 3.1a the
halfplane π+ is colored in light gray and the invariant plane corresponding
to the pair of complex eigenvectors is in dark gray. The vector shown in
Figure 3.1a with endpoint at the origin is an eigenvector of A.

In Figure 3.1b we show the cone π+. The invariant plane separates π+
onto two parts. The dots on π+ correspond to points v whose orbits contain
integer points (i.e. TA(v)∩Z3 6= ∅). We take the boundaries of convex hulls
in each of the two parts. Actually, the boundary of first convex hull is taken
to the boundary of the second by −id.

Finally, in Figure 3.1c we show one of two sails. Three orbit-vertices
shown in the figure correspond to the vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1):
the large dark points (0, 1, 0) and (0, 0, 1) are visible on the corresponding
orbit-vertices.

The group Ξ(A) is homeomorphic to Z⊕Z/2Z with generators A and−id.
Since A(1, 0, 0) = (0, 1, 0), a fundamental domain of kvcf(A) contains one
orbit-vertex and one vertex edge. For instance, we choose the orbit-vertex
TA(1, 0, 0) and the orbit-edge corresponding to the ”tube” connecting orbit-
vectors TA(1, 0, 0) and TA(0, 1, 0).
Future work. In the forthcoming paper [7] we focus on the ς-reducibility
properties in the set of Hessenberg matrices of SL(3,Z). We apply the
techniques of Klein-Voronoi continued fractions to the first interesting open
case here: the case of matrices having one real and two complex conjugate
eigenvalues. We show that in this case Hessenberg matrices almost always
distinguish corresponding conjugacy classes.
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