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polynomials with integer coefficients and

span less than 4

par Souad EL OTMANI, Armand MAUL, Georges RHIN
et Jean-Marc SAC-ÉPÉE

Résumé. Dans ce travail, nous proposons une nouvelle méthode
destinée à trouver des polynômes unitaires irréductibles à racines
réelles, à coefficients entiers, et dont le diamètre soit inférieur à 4.
L’idée principale est de ramener la recherche de tels polynômes à la
résolution d’un problème d’optimisation en entiers. Dans ce cadre,
les coefficients des polynômes que nous cherchons sont les incon-
nues entières du problème. Nous donnons des contraintes sur les
coefficients induites par les propriétés que l’on s’attend à trouver
pour de tels polynômes, notamment une répartition particulière
de leurs racines. Ces propriétés s’inspirent de celles des polynômes
déjà connus dans la littérature relative à ce domaine.

Abstract. In this work, we propose a new method to find monic
irreducible polynomials with integer coefficients, only real roots,
and span less than 4. The main idea is to reduce the search of
such polynomials to the solution of Integer Linear Programming
problems. In this frame, the coefficients of the polynomials we
are looking for are the integer unknowns. We give inequality con-
straints specified by the properties that the polynomials should
have, such as the typical distribution of their roots. These prop-
erties can be inferred from those of polynomials already treated
in the literature on this topic.

1. Introduction

In many situations, it is of interest to evaluate the number of real roots
of given polynomials into given intervals. In this paper, we consider one
variable monic polynomials which are irreducible over the integers, have
integer coefficients and for which all roots are real. For such specific poly-
nomials, important results are available:
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• The set of such polynomials with roots in [−2.0, 2.0] is infinite (Kro-
necker [6]).
• For each interval with length less than 4, the set of such polynomials
with roots inside this interval is finite (Schur [9]).
• For each interval with length greater than 4, the set of such poly-
nomials with roots inside this interval is infinite (Robinson [7]).

If the length of the interval is exactly 4, we do not know whether the set
of such polynomials with roots inside this interval is finite or not, except
in particular cases as the one mentioned above (Kronecker [6]). Keeping in
mind that the span of a polynomial with all real roots is merely the dif-
ference between its largest and its smallest roots, several interesting articles
have been devoted to the study of such polynomials with span lower than
4. Significant results by Robinson ([8]) were completed and developed by
Capparelli, Del Fra and Sciò ([1]), who provided a (possibly non exhaustive)
list of such polynomials up to degree 17 (three polynomials at degree 17).
V. Flammang, G. Rhin and Q. Wu ([5]) proved that this list is exhaustive
up to degree 15.

Because of the very wide range of values taken by the coefficients of the
already known polynomials, it would be absolutely impossible to directly
find new valid polynomials by varying the coefficients into large intervals,
as the number of polynomials that we should test would be prohibitive. It
seems therefore appropriate to tackle the problem of finding polynomials
with higher degrees by a completely alternative approach, based on Integer
Linear Programming methods. The basic idea is to look for polynomials
with small spans by looking for polynomials having all their roots inside
intervals with small lengths.

2. Search interval

2.1. Reducing searches to the interval (−2, 2.5). First of all, notice
that if an integer polynomial has only real roots and span less than 4, then
(by an integral translation) one can always obtain this polynomial from an
other polynomial with roots inside the interval (−2, 3). For example, the
polynomial x3−15x2 +72x−109, with roots 3.120614 · · · , 5.347296 · · · and
6.532088 · · · , can be obtained from the polynomial x3−3x+1, whose roots
−1.879385 · · · , 0.347296 · · · and 1.532088 · · · are in the interval (−2, 3), via
a simple translation since x3 − 15x2 + 72x− 109 = (x− 5)3 − 3(x− 5) + 1.

Now, since we are interested in polynomials with span less than 4, the
search interval can be reduced again from (−2, 3) to (−2, 2.5). Indeed, let
us consider a polynomial P with span less than 4, all the roots of which
are in (−2, 3) and with at least one root between 2.5 and 3. If we take the
opposites of all its roots, we translate these values to the interval between
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−2 and 2.5 via an integral translation, then we obtain a polynomial with
the same span as P .

2.2. Splitting of the interval (−2, 2.5) into smaller subintervals.
As we shall see in section 3, our method allows us to search for integer poly-
nomials with all roots contained in a given interval. Of course, it would not
be effective to directly search for polynomials with all roots into the inter-
val (−2, 2.5), because we would mostly obtain polynomials with too large
spans (polynomials are more and more numerous as their spans increase).

Then, an effective idea is to split the interval (−2, 2.5) into several smaller
intervals all included in (−2, 2.5), with spans slightly larger than 4, and
to apply our method to each of them. Indeed, if we look for an integer
polynomial with all roots in an interval with span slightly larger than 4,
say 4 + ε, then the possibly obtained polynomials necessarily have spans
less than 4 + ε (and then maybe less than 4).

Let us also remark that, even by using intervals with span close to 4, we
will have to verify the spans of the polynomials we obtain. For example,
the polynomial p = x18 − 6x17 − x16 + 65x15 − 63x14 − 292x13 + 406x12 +
709x11 − 1137x10 − 1021x9 + 1698x8 + 902x7 − 1379x6 − 483x5 + 563x4 +
143x3− 90x2− 17x+ 1 was found by our algorithm: it is not valid because
its span is 4.0000610483949. Furthermore, we will have to verify that the
polynomials we find are irreducible.

3. Formulation as an optimization problem

3.1. Presentation of the optimization problem formulation. In this
section, we describe how to find a one-variable monic polynomial with in-
teger coefficients, only real roots, and with all roots between two fixed real
numbers. Of course, our purpose is to apply this method to fixed subinter-
vals of (−2, 2.5).

Recall that a hyperbolic polynomial is a one-variable polynomial all roots
of which are real. Suppose that we want to find a monic hyperbolic poly-
nomial of degree d, with integer coefficients and for which every root lies
between two fixed real values a and b.

Set p(x) = xd +
d−1∑
i=0

aix
i, where the coefficients a0, a1, . . ., ad−1 are

integers. Suppose this polynomial has its roots α1, . . . , αd between a and b.
Then, for each (β1, . . . , βd−1) which separates the roots of the polynomial,
one necessarily has either p(a) > 0, p(β1) < 0, p(β2) > 0, . . ., p(βd−1) <
0, p(b) > 0, if p is an even-degree polynomial, or one has p(a) < 0, p(β1) >
0, p(β2) < 0, . . . , p(βd−1) < 0, p(b) > 0 otherwise.
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Then, for a given (β1, . . . , βd−1), consider the following linear program-
ming problem where all the unknowns (i.e. the ai’s) are restricted to integer
values:

(3.1)

Minimize
d−1∑
i=0

ai,

subject to



(−1)dp(a) > 0,
(−1)dp(β1) < 0,
...
p(βd−1) < 0,
p(b) > 0,
(a0, · · · , ad−1) ∈ Zd.

In the calculations, the values a, b (the end-points of each subinterval of
(−2, 2.5)) and the βi’s (which we will fix in a specific way via samples from
a suitable random distribution) are known, while the ai’s are the unknowns
of the problem.

Notice that the linear expression we wish to minimize is not very impor-
tant, since above all we want to find integers a0, . . . , ad−1 which satisfy the
inequality constraints.

Now, the existence (on each subinterval) of valid polynomials satisfying
our system depends on the values of the βi’s. It is therefore extremely
important to use “well-placed”βi’s if we want to have a chance to find new
polynomials.

3.2. Distribution of the βi’s. A natural idea to select the βi’s is to have
a close look at the distribution of roots arising from polynomials already
known to satisfy all requirements.

The following figures (see Capparelli, Del Fra and Sciò [1]) show the roots
distribution of some polynomials (of degree 10). The integers under each
graph indicate the coefficients of the polynomials.
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Through these examples, we notice that there is manifestly a specific

distribution of roots, which we wish to exploit to guess how the polynomials
of higher degrees behave. As we can see, roots are very close together when
they are in the neighbourhood of the end-points of the intervals while they
are more and more spread as they lie near the center of the intervals.

This pattern can in fact be verified in every available polynomial. So, let
us now come back to our work at degree 16 and higher. Real values arising
from a beta distribution with appropriate parameters typically spread out
in this way. Then, we computed the set of roots of each already known
polynomial, and for each set of roots, we estimated the parameters of the
corresponding beta distribution. A beta distribution is characterized by two
shape parameters, but in our particular case, the arrangement of roots led
us to suppose that the two parameters are equal.

We used the method of moments to estimate this parameter for each
known polynomial at degrees 16 and 17, and we noticed that in every case,
the value of this estimated parameter is close to 0.48.

Then, the idea of our method is as follows: for each subinterval,
we generate numerous samples (distributed like roots of the known poly-
nomials) stemming from a beta distribution with equal parameters close
to 0.48, and we choose as βi’s the middles of these values. Then, for each
such (β1, . . . , βn), we solve a system similar to system (1). The resolution
can fail if no (a0, . . . , an) suits. Otherwise, either the resolution can supply
some (a0, . . . , an) which corresponds to a not irreducible polynomial, or a
satisfying (a0, . . . , an) can be found.

For the reader’s convenience, we outline some Integer Linear Program-
ming theory in the following section.

4. A brief outline of Linear Integer Programming

A Linear Integer Programming model seeks to optimize a linear objective
function, subject to some equalities and inequalities. More precisely, such
a problem writes :

max
x

(ormin
x

) f(x) subject to C(x),
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where f : Rn −→ R is a linear function, and C(x) is a conjunction of
linear equality and inequality constraints. Moreover, the unknowns xi are
required to have integer values.

For a pure Integer Linear Problem (as system (1)), an efficient approach
is to use the branch-and-bound algorithm together with Gomory’s mixed
integer cuts.

The branch-and-bound algorithm enumerates all candidate solutions,
and rules out large quantities of unfit candidates by using upper and lower
estimated bounds of the objective value. Gomory’s method consists of ig-
noring that the xi’s are supposed to be integer values, and first solving
an associated linear programming problem. If the solution found is not an
integer, one introduces an additional constraint (the so-called Gomory’s
constraint) corresponding to the condition for integrability. This condition
excludes numerous non integer solutions but preserves integral ones. Then,
a usual simplex method is used to solve this new problem. If the solution
found is still not an integer, then we add another new constraint and solve
again. The process is repeated until obtaining an integer solution.

5. Implementation and results

5.1. Implementation. Since it is sufficient to search for polynomials with
span less than 4 and with all roots into the interval [−2.0, 2.5] to handle all
the possible cases (see section 2), we partitioned this interval into 40 slices
(of length 4.0125): [−2.0, 2.0125], [−1.9875, 2.025], . . ., [−1.5125, 2.5]. This
choice of the number of slices was simply based on the number of available
systems: 5 dual-core quad-processor systems.

The interest in using these small subintervals is to avoid the numerous
polynomials with spans higher than 4.0125.

To handle the 40 subintervals at the same time, we have developed a
C++ program based on the MPI library ([10]), which we run on parallel
computers available for this type of calculations. The program implements
the algorithm explained in subsection 3.2. On each subinterval of [−2.0, 2.5],
each loop has three steps:

(1) Drawing a sample for the βi’s,
(2) Solving the linear programming problem,
(3) Testing the obtained polynomial (span and irreducibility).

The process is iterated by requiring each time a new sample for the βi’s
until a stop condition occurs. Of course, step 1 and step 3 are much faster
than step 2.

The calculations of the roots of the polynomials (for the testing) are made
via GSL library ([4]), while the tests of irreducibility are made via the GP-
PARI numbers theory library ([2]). Solving Linear Integer Programming
systems on each subintervals is processed thanks to the GLPK library ([3]).



Finding polynomials with integer coefficients and span less than 4 77

All the calculations are made through a single C++ program who calls the
aforesaid libraries to achieve the various required tasks at each step of the
process.

Notice that we do not need a great accuracy for the localization of
the βi’s: if some (β1, · · · , βn) separates the roots of a polynomial, another
(β′1, · · · , β′n) close to the first one also separates the roots of this polynomial.

We decided to stop the calculations when the same polynomials are re-
peatedly found, and when new polynomials (valid or not) do not appear
anymore.

We let the program run for a day for degree 16, and we doubled the
duration at each increase of degree. In fact, we noticed that it was possible
to stop the program much earlier, because the resulting polynomials (valid
or not) appeared quickly, before being repeated again and again.

For reducible polynomials found at degrees 17, 18, 19 and 20, we also ver-
ified their factors because some of them could have been a valid polynomial
for lower degrees.

5.2. Results. Since the lists available in the article by Capparelli, Del Fra
and Sciò ([1]) are not proved to be exhaustive at degrees 16 and 17, we first
tried to search for new polynomials at these degrees. In fact, although no
proof for this is available, we are convinced that they are indeed complete, as
our calculations at degrees 16 and 17 allowed us to find all the polynomials
given in [1], and no new ones. For the interval [−2.0, 2.0125], we have forced
the polynomials to have a root between 2.0 and 2.0125 to automatically
eliminate polynomials of cosine type, which have all roots between −2.0
and 2.0.

Of course, the subsequent step was to search for new polynomials, still
unknown. We thus tested the efficiency of our algorithm at degree 18. The
following three new polynomials, given below with their spans, were found
by using our algorithm:

• x18 − 2x17 − 16x16 + 31x15 + 107x14 − 198x13 − 388x12 + 672x11 +
827x10−1302x9−1048x8+1436x7+758x6−844x5−280x4+225x3+
40x2 − 19x− 1 of span 3.9760414
• x18 − 8x17 + 12x16 + 58x15 − 174x14 − 116x13 + 770x12 − 108x11 −

1702x10 + 734x9 + 2095x8 − 1065x7 − 1440x6 + 637x5 + 496x4 −
138x3 − 56x2 + 8x+ 1 of span 3.9955284
• x18−6x17−x16+66x15−68x14−293x13+444x12+678x11−1242x10−

891x9+1816x8+695x7−1396x6−333x5+500x4+89x3−56x2−5x+1
of span 3.9968482

6. conclusion

In spite of similar calculations made at degrees 19 and 20, new irreducible
polynomials did not appear at these degrees, but polynomials available in
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Capparelli, Del Fra and Sciò ([1]) and our three polynomials above ap-
peared again as factors of numerous not irreducible polynomials supplied
by our program at these degrees. In the even higher degrees, problems of
convergence appear with GLPK. Perhaps, it will be necessary to test al-
ternative optimization libraries to solve our Integer Linear Programming
systems.
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