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On a generalization of Craig lattices

par Hao CHEN

Résumé. Dans cet article nous introduisons une généralisation
des réseaux de Craig, qui nous permet de construire dans de nom-
breuses dimensions entre 3332 et 4096 des réseaux euclidiens plus
denses que les réseaux de Mordell-Weil les plus denses connus.
De plus, nous montrons que,sous réserve de l’existence de cer-
tains codes linéaires binaires, nous pouvons encore améliorer ces
constructions dans l’intervalle 128−3272. Nous construisons aussi
quelques réseaux denses dans les dimensions 4098 − 8232. Fina-
lement nous obtenons également de nouveaux réseaux dans des
dimension modérées, comme 68, 84, 85, 86, qui sons plus denses
que les réseaux connus jusqu’à présent.

Abstract. In this paper we introduce generalized Craig lattices,
which allows us to construct lattices in Euclidean spaces of many
dimensions in the range 3332 − 4096 which are denser than the
densest known Mordell-Weil lattices. Moreover we prove that if
there were some nice linear binary codes we could construct lat-
tices even denser in the range 128− 3272. We also construct some
dense lattices of dimensions in the range 4098 − 8232. Finally
we also obtain some new lattices of moderate dimensions such as
68, 84, 85, 86, which are denser than the previously known densest
lattices.

1. Introduction

The problem of finding dense packings of infinite equal non-overlapping
spheres in the Euclidean space Rn is a classical mathematical problem ([19,
16, 6, 29]). Low-dimensional sphere packing problems seem to be under-
stood better than the problems in higher dimensions. The 1, 2, 3, 4, 5, 6, 7, 8-
dimensional root lattices had been proved to be the unique densest lat-
tice sphere packings in these dimensions (see [6]). The Kepler conjecture
about the 3-dimensional sphere packing problem was proved in [18]. Many
known densest sphere packings are lattice packings or packings consisting
of finitely many translates of lattices (see [6, 7, 23]). Constructing lattices
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from error-correcting codes, algebraic number fields and algebraic varieties
have been proposed by many authors and stimulated many further works
([22, 23, 6, 10, 11, 25, 12, 13, 14, 3, 15, 28]). Recently the Leech lattice,
which was found in 1965 in [22], has been proved to be the unique densest
lattice packing of dimension 24 (see [4, 5]). We refer to [6], pages 19–20
for Rogers and Kabatiansky-Levenshtein upper bounds of the densities of
sphere packings; better upper bounds in low-dimensions are proved in the
recent work [4]. From Voronoi’s theory ([26]), there are algorithms to de-
termine the densest lattice sphere packings in each dimension. However the
computational task looks infeasible beyond dimension 9.

We refer to [24] for the known densest sphere packings in low dimensions;
see also [1]. Our knowledge on high-dimensional sphere packings is quite
different. In high dimensions n, in the range 80 ≤ n ≤ 4096, n = 2p − 2
where p is a prime number satisfying p ≡ 5 mod 6, or n = 2t, where
7 ≤ t ≤ 12, the known densest sphere packings are the lattices from alge-
braic curves over function fields. These are the Mordell-Weil lattices which
were discovered by N. Elkies and T. Shioda in 1990’s (see [12, 13, 28],
and [6], preface to the third edition, page xviii ). For example, the dens-
est known 4096-dimensional sphere packing is a Mordell-Weil lattice with
center density 211527. For dimensions in the range 149 ≤ n = p− 1 ≤ 3001
(where p is a prime number, 149 ≤ n ≤ 3001 except p = 509, 513 and 521),
many of the known n = (p − 1)-dimensional densest sphere packings are
Craig’s lattices and their recent refinement (see [10, 11, 15, 6]). In the range
4100 ≤ n ≤ 12754608 or n ≤ 8 · 108, the best known sphere packings are
the lattices given by the Bos-Conway-Sloane construction ([2], [6], page 17,
Table 1.3 and Chapter 8, Section 10).

In this paper we propose a generalization of Craig’s lattices, which is a
far-reaching extension of the Craig lattices described in [10, 11, 6], section 6,
Chapter 8. These lattices are polynomial lattices and can be constructed for
all dimensions. This generalization of Craig’s lattices leads to many lattice
sphere packings of moderate dimensions which are denser than the random
lattices from Minkowski-Hlawka theorem (see section 3). Our construction
establishes a close relation between nice lattices and linear error-correcting
codes. If there were some "good enough" linear binary codes (see [17]),
then our construction would lead to new lattices denser than the known
densest Mordell-Weil lattices in many dimensions in the range 128− 3272.
In the range 3332 − 4096, it is easy to prove that some wanted codes in
the above description exist. Thus we present some lattices which are denser
than the Mordell-Weil lattices. New lattices denser than Shimada lattices of
dimensions 84, 85 and 86 ([24, 27]) are constructed in section 3. New denser
lattices of many high dimensions in the range 4098−8323 which are denser
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than the known densest lattices from Bos-Conway-Sloane construction are
also presented in section 5.

Definition 1.1. For a packing of infinite equal non-overlapping spheres in
Rn with centers x1,x2, ...,xm, ...., the packing radius is

ρ = 1
2 mini 6=j{||xi − xj ||} .

The density is ∆ = limt→0
Vol{x∈Rn:||x||<t,∃xi,||x−xi||<ρ}

Vol{x∈Rn:||x||<t} , and the center
density is δ = ∆

Vn
, where Vn is the volume of the ball of radius 1 in Rn.

Let b1, ...,bm be m linearly independent vectors in the n-dimensional
Euclidean space Rn. The discrete point set

L = {x1b1 + · · ·+ xnbm : x1, ..., xm ∈ Z}
is an m-dimensional lattice in Rn, of determinant det(L) = det(〈bi,bj〉).
The volume of the lattice is Vol(L) = (det(L))

1
2 . The minimum norm of the

lattice is µ(L) = min{〈x,x〉 : x ∈ L}. Spheres with centers at these lattice
vectors in L make a lattice sphere packing with packing radius ρ = 1

2
√
µ(L)

and center density δ(L) = ρn

Vol(L) . The lattice L∗ = {y ∈ Rm : 〈y,x〉 ∈ Z} is
the dual lattice of L. A lattice is integral if the inner products between lattice
vectors are integers. All lattices constructed in this paper are integral.

Let r be a prime power and Fr be the finite field with r elements. A linear
(non-linear) error-correcting code C ⊂ Fn

r is a k-dimensional subspace (or
a subset of M vectors). For a codeword x ∈ C, wt(x) is the number of
nonzero coordinates of x. The minimum Hamming weight (or distance)
of a code C is d(C) = minx 6=y∈C{wt(x− y)}. A linear (resp. non-linear)
code of length n, distance d and dimension k (resp. with M codewords)
is denoted as an [n, k, d] (or an (n,M, d))-code . Given a binary [n, k, d]-
code C ⊂ Fn

2 construction A ([6, 23]) leads to the lattice L(C) in Rn

defined as the set of all integral vectors x = (x1, ..., xn) ∈ Zn satisfying
xi ≡ ci mod 2, i = 1, ..., n, for some codeword c = (c1, ..., cn) ∈ C. It is
easy to check that ρ = 1

2 min{
√
d, 2} and Vol(L(C)) = 2n−k. This gives a

lattice sphere packing with center density δ = min{
√
d,2}n

22n−k . Construction A
leads to some of the densest known lattice packings in low dimensions (see
[6]). For a non-linear binary (n,M, d)-code, the same construction gives
a non-lattice packing with center density M ·min{

√
d,2}n

22n . For example, the
non-linear (10, 40, 4)-code gives us a non-lattice packing of dimension 10
with center density δ = 5

128 = 0.03906, which is the densest known 10-
dimensional sphere packing ([6]).

2. A generalization of the Craig lattices

Let ζ be a primitive p-th root of unity, where p is an odd prime. The
ring of integers in Q[ζ] is Z[ζ] ([10, 11]). The (p − 1)-dimensional Craig
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lattice A(i)
p−1 introduced in [10] is the ideal in the ring Z[ζ] (a free Z module)

generated by (1−ζ)i, where i is a positive integer. A cyclotomic construction
of the Leech lattice was given by Craig in [11]. In [15] a refinement of
Craig lattices was proposed by adding some fractional numbers. The center
densities of the refined Craig lattices are at least three times that of the
original Craig lattices. These provided some new records; see [15].

Another kind of Craig lattices was given in [6], Section 6 of Chapter 8,
namely lattices A(m)

n of dimension n in the ring Z[x]/(xn+1− 1), the ideals
generated by (x − 1)m in the ring Z[x]/(xn+1 − 1). The volume of A(m)

n

is (n + 1)m−
1
2 . When n + 1 = p is an odd prime and m < p

2 , they have
minimum norm µ(A(m)

n ) ≥ 2m; see Theorem 7, page 223 of [6]. These are
the original lattices introduced by Craig in [10].

Our generalization of the Craig lattices are the Z-sub-modules of the
Z-modules R = Z 〈1, x, ..., xn〉 spanned by 1, x, x2, ..., xn.

Given positive integers n,m, ` such that m < n
2 and ` ≥ n+ 1, consider

the sub-module A(m,`)
n = Z(x − 1)n + Z(x − 1)n−1 + · · · + Z(x − 1)m +

`Z(x − 1)m−1 + `Z(x − 1)m−2 + · · · + `Z(x − 1) in Z 〈1, x, ..., xn〉. Any
element v in A(m,`)

n can be written as v01 + v1x + · · · + vnx
n. The set of

all coordinates (v0, v1, ..., vn) of these vectors v in A(m,`)
n is a sub-lattice of

Zn+1. Equivalently we take the basis {1, x, ..., xn} as an orthogonal basis for
the Z-module R and the Z sub-module described above is our generalized
Craig lattice. For any polynomial f(x) = a0 + a1x + · · · + anx

n ∈ R with
integral coefficients satisfying f(1) = 0, f(x) is a linear combination of
(x−1), ..., (x−1)n with integral coefficients. If ` has no prime factor smaller
than m, a polynomial f(x) = anx

n+ · · ·+a1x+a0 with integral coefficients
is in the lattice A(m,`)

n if and only if f(1) = 0 and f (i)(1) ≡ 0 mod ` for
i = 1, ...,m− 1.

Theorem 2.1. (1) When n+ 1 is a prime or m = 1, A(m,n+1)
n is just

the original Craig lattice;
(2) Given positive integers n,m, ` satisfying m < n

2 and ` ≥ n + 1,
A(m,`)
n is a lattice of rank n and volume `m−1(n+ 1)

1
2 . When ` is a

prime number, its minimum norm satisfies µ(A(m,`)
n ) ≥ 2m.

Proof. 1) When m = 1, A(1,`)
n has an integral base {(x − 1), (x − 1)x, ...,

(x− 1)xn−1}. Thus A(1,`)
n = A(1)

n .
We now prove that the lattice A(m,`)

n is a cyclic lattice when ` = n + 1
is a prime number. It is clear that (x− 1)jx = (x− 1)j+1 + (x− 1)j lies in
A(m,`)
n for m ≤ j ≤ n−1 and that so is `(x−1)rjx = `(x−1)j+1 +`(x−1)j

for any j satisfying 1 ≤ j ≤ m− 1. We only need to check that the element
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(x− 1)nx− (xn+1− 1), which is a shift of (x− 1)n, also lies in A(m,`)
n . Since

(x− 1)nx− (xn+1 − 1) = (x− 1)n+1 − xn+1 + 1 + (x− 1)n, the coefficients
of (x − 1)j , where 1 ≤ j ≤ n − 1, are divisible by n + 1 when n + 1 is a
prime number. Thus (x − 1)nx − (xn+1 − 1) is also in A(m,`)

n when n + 1
is a prime. Then the lattice A(m,n+1)

n contains the Craig lattice A(m)
n as a

sub-lattice, and has the same index in A(1)
n . This proves (1).

2) It is obvious that A(m,`)
n is a sub-lattice of the n-dimensional Craig

lattice A(1)
n = {(v0, v1, ..., vn) ∈ Zn+1 : v0 +v1 + · · ·+vn = 0}. On the other

hand A(m,`)
n has index `−1 in A(1)

n . Thus it has dimension n and volume
`m−1 Vol(A(1)

n ) = `m−1(n + 1)
1
2 . The proof of the second assertion is the

same as the proof of Theorem 7 in the page 223 of [6]. If µ(A(m,`)
n ) < 2m,

there is an element f(x) = Σi∈Sx
i − Σj∈Tx

j ∈ A(m,`)
n , where S and T

are two subsets in {0, 1, ..., n} satisfying h = |S| = |T | < m. Here S =
{s1, ..., sh} and T = {t1, ..., th} may contain repeated elements. Then from
the condition f(x) ∈ A(m,`)

n we have f (i)(1) ≡ 0 mod `, for i = 0, 1, ...,m−1.
Thus Σh

j=1s
i
j ≡ Σh

j=1t
i
j mod `, for all indices i’s i = 0, 1, ...,m − 1. Since `

is a prime number, from the Newton’s identities over the finite field Z/`Z,
the elementary symmetric functions of S and T of degree < m must be the
same. Thus S = T and f(x) = 0 since ` ≥ n+ 1. �

The following result can be compared with the construction of the Craig-
like lattices in [3]. Our lattices are obviously denser, since in their construc-
tion the prime number q is required to be the smallest prime q satisfying
q ≡ 1 mod n. When `(> n) is a prime number, the generalized Craig lat-
tice A(m,`)

n is just the section of the Craig lattice A(m,`)
`−1 by imposing the

condition that the last `− n− 1 coordinates are zero.

Theorem 2.2. For every dimension n and every positive integer m < n
2

the generalized Craig lattice with density ∆n ≥ m
n
2

2m−1+ n
2 ·nm−1(n+1)

1
2
. For

suitable m we have 1
n log2 ∆n ≥ −1

2 log2 log2 n+ o(1).

Proof. By the Bertrand postulate there exists for any positive integer n a
prime number ` between n and 2n . Set m to be the nearest integer to
n

2logen
as in the page 224 of [6]. We consider the generalized Craig lattice

A(m,`)
n . A direct calculation gives us the result. �

Let ` be an odd number. We define a mapping

π : A(m,`)
n /2(A(m,`)

n )→ Zn+1/2(Zn+1)



64 Hao Chen

by π(a0 + a1x + · · · + anx
n) ≡ (a0, ..., an) mod 2. This is an injective Z-

linear map. Since 2f
(i)(1)
i! is divisible by `, f

(i)(1)
i! also is (` is odd). Clearly

the image of π is a linear binary [n+ 1, n, 2]-code.

Theorem 2.3. Suppose the positive integers n,m, ` satisfy m < n
2 ,

` ≥ n + 1 and ` is a odd prime. If there exists a linear binary sub-code
of the [n + 1, n, 2]-code with parameters [n + 1, k,≥ 8m], then there exists
a lattice with center density at least 2k− n

2 ·m
n
2

`m−1(n+1)
1
2
.

Proof. The binary linear [n + 1, k,≥ 8m]-sub-code V is in π(A(m,`)
n ) as a

binary linear [n + 1, n, 2]-code. From the linearity of π, the inverse image
π−1(V ) is a lattice with volume 2n−k Vol(A(m,`)

n ). Let v be a vector in
π−1(V ). If π(v) = 0, v ∈ 2A(m,`)

n , then the Euclidean norm of v is at least
8m. If π(v) 6= 0, then at least 8m coordinates of the vector v are odd
numbers and the norm of v is at least 8m. This completes the proof of the
theorem. �

Theorem 2.4. Suppose the positive integers n,m, ` satisfy m ≤ n+1
2 , ell ≥

n + 1 and ` is a odd prime. If there exists a linear binary [n, k, 8m]-code
then there exists a lattice having center density at least 2k− n

2 ·m
n
2

`m−1(n+1)
1
2
.

Proof. We may apply Theorem 2.3 to the extended code of the [n, k, 8m]-
code by adding a parity check digit. �

In dimension n = 160, since n + 1 = 161 = 23 · 7 is not a prime, there
exists no convenient Craig lattice. However the generalized Craig lattice
A(16,163)

160 has center density δ160 = 880

16315.5 ≈ 2126.4051. Using the trivial
linear binary [160, 1, 160]-code together with Theorem 2.4 we obtain a dense
lattice of the dimension 160 with center density at least 2127.4051. On the
other hand, there is no 160-dimensional Mordell-Weil lattice . The nearest
(by the dimension) known Mordell-Weil lattice (Theorem 1.1 of [28]) having
a smaller dimension (by Theorem 1.1 of [28]) has dimension 140 and center
density 2113.31. There is no child lattice η(E8) of dimension 160 ([6], page
241). A 160-dimensional lattice satisfying the Minkowski-Hlawka bound has
the center density approximately 111.2378. Thus our construction provides
a new dense lattice in this dimension.

3. Some new dense lattices

Theorem 3.1. Let p be a prime number larger than or equal to 1223.
Suppose A(m)

p−1 is the densest Craig lattice of dimension p − 1. Then the
construction of Theorem 2.4 yields a lattice having center density at least
8 δ(A(m)

p−1).
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Proof. It is known that the Craig lattice A(m)
n , where m is nearest integer

to n
2loge(n+1) , is the densest Craig lattice in the dimension n = p − 1, p

a prime. Since n ≥ 1222, we have
8( n

2loge(n+1) +1)
n ≤ 4

7 . Using a suitable
trivial extension of the concatenation of a [[n7 ], 1, [n7 ]]-code over F8 with a
[7, 3, 4]-code we get an [n, 3, 8( n

2loge(n+1) + 1)] code, to which we may apply
Theorem 2.4. �

In [15] the Craig lattices are refined to new lattices with center densities
at most 6δ(A(m)

n ) in the range 1298 ≤ n ≤ 3482. Thus the lattices above are
denser than those in [15]. Some of them are even denser than any previously
known lattice.

The 68-dimensional extremal unimodular lattices (of minimum norm 6)
have center density (3

2)34 ≈ 219.89 ([24]). Applying Theorem 2.4 to the
generalized Craig lattice A(4,71)

68 and binary [68, 8, 32]- code (see [17]) we
get a new lattice with center density at least 220.4757. The volume of this
new lattice is 260 · 713 · 69

1
2 . In [27] a long computation of algebraic ge-

ometry over finite fields was used to construct dense lattices in dimensions
84, 85 and 86 with center densities δShimada84 ≈ 230.795, δShimada85 ≈ 232.5

and δShimada86 ≈ 234.2075. The generalized Craig lattice A(10,89)
86 has center

density 238.3225, the generalized Craig lattice A(10,89)
85 has center density

237.1616 and the generalized Craig lattice A(10,89)
84 has center density 236.006.

Applying Theorem 2.4 to the trivial linear binary [84, 1, 84]-, [85, 1, 84]-
and [86, 1, 86]-codes we obtain new lattices in dimensions 84, 85 and 86
with center densities 237.006, 238.1616 and 239.3225 respectively.

Note that many constructions of dense lattices are valid only in even
dimensions. Our constructions in Theorems 2.2 and 2.4 can be used in all
dimension and the center density of our lattices depends “continuously”
on the dimension. This allows us to obtain high densities in some odd
dimensions.

In Table 3.1 below we list some new denser lattices from Theorem 2.4.

4. Some possible new dense lattices

In this short section we briefly describe some putative lattices which
might exist, depending on the existence of some convenient codes.

Proposition 4.1. Let p ≡ 5 mod 6 be a prime. If there exists a
[2p − 2, 7p−5

6 − dp−11
12 · log2pe,≥ 2(p+1)

3 ]-code, then there exists a lattice of
dimension 2p−2 with center density (equal to ((p+1)/12)p−1

p(p−5)/6 ) larger than that
of any (2p− 2)-dimensional Mordell-Weil lattice.
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Table 3.1

dimension new − log2δ previously − known

68 20.6757 19.89(Gaborit+Harada−Kitazume)

84 37.006 30.795(Shimada)

85 38.1616 32.5(Shimada)

86 39.3225 34.2075(Shimada)

144 105.6736 96(η(Λ24))

149 112.3048 no

151 113.7424 no

152 115.2811 no

153 116.8248 no

154 118.3685 no

155 119.9122 no

157 122.1067 no

158 123.6504 no

160 127.4051 111(Minkowski−Hlawka)

168 135.9011 120(η(Λ24))

246 249.2827 234.33039(Minkowski−Hlawka)

248 227.0997 196.54(Thompson− Smith)

288 318.3031 300(η(Λ24))

360 443 408(η(Λ24))

Proof. Set m = dp+1
12 e. By Bertrand ’s postulate there exists a prime `

between 2p− 1 and 4p− 2. Applying Theorem 2.4 to the generalized Craig
lattice A(m,`)

2p−2 and the code in the statement, we obtain a lattice as required.
�

For example, applying Theorem 2.4 to A(4,131)
128 and a putative binary

linear [128, 59, 32] code, we could get a new lattice of rank 128 with cen-
ter density 298.3831. That of the 128-dimensional Mordell-Weil lattice is
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297.40 (see [6] page xviii). From the table in [17] there exists a binary lin-
ear [128, 43, 32]-code and we may thus construct a 128-dimensional lattice
with center density 282.3831. The upper bound for the minimum distance of
linear binary [128, 59] code is 32, but we do not know whether such a code
exists. Similarly if a code with one of the following parameters [256, 99, 64],
[256, 74, 80], [256, 136, 48] and [256, 56, 96] exists, then a 256-dimensional
lattice with center density larger than the center density 2294.8 of the 256-
dimensional Mordell-Weil lattice (see [6] page xviii) could be constructed
from Theorem 2.4.

5. Denser lattices in dimensions 3332 − 8640

From the Gilbert-Varshamov bound ([30]), if
V (4096, 1023) = Σ1023

i=0
(4096

i

)
< 24097−k ,

there exists a linear binary [4096, k, 1024] code. From the inequality
Σr
i=0
(n
i

)
< 2nH(r/n) < 2H( 1

4 )n ,
where H(x) is the binary entropy function ([30] page 21), we have
V (4096, 1023) < 23324. Thus a binary, linear [4096, 772, 1024]-code exists,
and we can construct a 4096-dimensional lattice with center density at least
211529, hence denser than Mordell-Weil lattices of this dimension.

Lemma 5.1. There exist linear binary codes of length 8n, dimension
[(6log23− 8)n] and minimum distance 2n.

Proof. Set V (n, r) = Σr
i=0
(n
i

)
. From the Gilbert-Varshamov bound ([30]),

if V (n, d− 1) < 2n−k+1, then a linear binary code with parameter [n, k, d]
exists. From Theorem 1.4.5 of [30], page 21, V (8n, 2n− 1) < 28H( 1

4 )n. The
conclusion follows directly. �

Theorem 5.2. Let p ≡ 5 mod 6 be a prime such that 1667 ≤ p ≤ 2039.
Then there exists a lattice of dimension n = 2p−2 with center density higher
than that (equal to ((p+1)/12)p−1

p(p−5)/6 ) of the Mordell-Weil lattice of dimension n
(Theorem 1.1 [28]).

Proof. The center density of the (2p− 2)-dimensional Mordell-Weil lattice
is ((p+1)/12)p−1

p(p−5)/6 . The generalized Craig lattice A([ p−1
16 ],2p+t)

2p−2 , where t is a

positive integer such that 2p+ t is a prime, has center density [ p−1
32 ]p−1

(2p+t)[ p−1
16 ]− 1

2
.

It can be checked that (2p + t) < 21.001p. The conclusion follows from the
existence of a [2p− 2, [0.3776(p− 1)], p−1

2 ]-code proved in Lemma 5.1. �

We also have the following result for the high-dimensional lattices in the
range 4104− 8640.
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Theorem 5.3. For each dimension N = 24n ∈ [4104− 8640], there exists
an N -dimensional lattice which is denser than the N -dimensional child
lattice of the Leech lattice η(Λ24).

Proof. We consider the generalized Craig lattice A([ 3n
4 ],`)

24n , where ` is small-
est prime number bigger than or equal to 24n + 1. From the Gilbert-
Varshamov bound, there exists a linear binary [24n, [4.5312n], 6n]-code.
Then we can construct a lattice with center density 2[4.5312n] · ([ 3n

8 ])12n

`[3n/4]− 1
2
.

The conclusion follows from a direct calculation. �

Some new denser lattices constructed in this section are listed in Table 5.1
below.

Table 5.1

dimension new − log2δ previously − known

3332 8913 8897.0184(MW )

3956 11035 10969.9654(MW )

3992 11159 11099.6432(MW )

4004 11208 11130.5560(MW )

4052 11370 11294.2234(MW )

4076 11455 11375.6625(MW )

4096 11529 11527(MW )

4098 11536 11279(Craig)

4104 11554 11400(η(Λ24))

4124 11618 11537.1837(MW )

8184 26823 26712(η(Λ24))

8190 26915 26154(Craig)

8208 26953 26808(η(Λ24))

16380 61419 59617(Craig)
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