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On the discrete logarithm problem for
plane curves

par Claus DIEM

Résumé. Dans cet article, on étudie le problème du logarithme
discret dans le groupe de classes de degré 0 des courbes données
par des modèles plans sur des corps finis. Dénotons le cardinal du
corps de base d’une telle courbe par q. Il est prouvé que l’expé-
rance du temps de résolution du problème du logarithme discret
pour des courbes non-hyperelliptiques de genre 3 (donnée par des
modèles plans de degré 4) est de Õ(q) avec un algorithme conve-
nable. En outre, pour chaque entier naturel fixé d ≥ 4 on a le
résultat suivant. Considérons le problème du logarithme discret
pour les courbes données par des modèles plans de degré d pour
lesquels il existe une droite qui définit un diviseur sur la courbe
constitué de d points Fq-rationnels distincts. Alors, il y a un algo-
rithme pour lequel l’espérance du temps de résolution du problème
est de Õ(q2− 2

d−2 ). Cela vaut en particulier pour les courbes don-
nées par des modèles plans réflexifs.

Abstract. In this article the discrete logarithm problem in de-
gree 0 class groups of curves over finite fields given by plane mod-
els is studied. It is proven that the discrete logarithm problem
for non-hyperelliptic curves of genus 3 (given by plane models of
degree 4) can be solved in an expected time of Õ(q), where q is
the cardinality of the ground field. Moreover, it is proven that for
every fixed natural number d ≥ 4 the following holds: We consider
the discrete logarithm problem for curves given by plane models
of degree d for which there exists a line which defines a divisor
which splits completely into distinct Fq-rational points. Then this
problem can be solved in an expected time of Õ(q2− 2

d−2 ). This
holds in particular for curves given by reflexive plane models.

1. Introduction

This article is concerned with the complexity of the discrete logarithm
problem in degree 0 class groups of curves over finite fields. (Unless stated
otherwise, a curve is always assumed to be proper, non-singular and ge-
ometrically irreducible.) In various works on the subject, the complexity
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of the computation is expressed in terms of the genus and the cardinal-
ity of the ground field. For example, it is proven in [3] that for any fixed
g ∈ N, g ≥ 2, the discrete logarithm problem in degree 0 class groups of
curves of genus g can be solved in an expected time of

(1.1) Õ(q2− 2
g ) .

Here and in the following, q is the cardinality of the ground field. We note
that as usual, throughout this article the phrase “expected time” refers to
the internal randomizations of an algorithm. Randomizations over input
instances are not considered.

In this article, we study the complexity of the problem from a different
point of view: We assume that the curve is given by a plane model, by
which we mean a possibly singular plane curve which is birational to the
curve in question. We then express the complexity in terms of the degree
of the model and the cardinality of the ground field.

Our first result concerns non-hyperelliptic genus 3 curves. Via the canon-
ical embedding, every such curve can be given as a plane curve of degree
4. By using such a model, we obtain the following result:

Theorem 1. The discrete logarithm problem in the degree 0 class groups
of non-hyperelliptic curves of genus 3 can be solved in an expected time
of Õ(q).

For comparison, the expected running time indicated in (1.1) is Õ(q
4
3 )

in this case.

To state our second result, we need some notation: First, we set P2
Fq

:=
Proj(Fq[X,Y, Z]). Let C be a curve over Fq, Cpm a plane model of C and
π : C −→ Cpm a birational morphism. Let OC(1) := π∗(O(1)), and for a lin-
ear formW ∈ Fq[X,Y, Z]1 = Γ(P2

Fq
,O(1)) letW|C := π∗(W ) ∈ Γ(C,OC(1)).

Let div(W|C) = π∗(div(W )) be the divisor of zeroes of W|C on C. Now let d
be the linear system on C “cut out by lines” (more precisely: obtained by
pull-back of lines), that is,

d := { div(W|C) |W ∈ Fq[X,Y, Z]1 = Γ(P2
Fq
,O(1)) } .

This is a 2-dimensional projective subspace of the complete linear system
defined by OC(1).

We say that an effective divisor splits completely if its support contains
only Fq-rational points.



On the discrete logarithm problem for plane curves 641

The second result is as follows:

Theorem 2. Let d ≥ 4 be fixed. Then the discrete logarithm problem in the
degree 0 class groups of curves given by plane models of degree d such that
the linear system d contains a divisor which splits completely into distinct
points can be solved in an expected time of

Õ(q2− 2
d−2 ) .

We also show the following theorem on curves given by plane models, a
result we consider to be of independent interest.

Theorem 3. Let d ≥ 3 be fixed. We consider curves of genus at least one
given by plane models of degree d, where for d > 4 we restrict ourselves
to reflexive plane models. Then the number of divisors in d which split
completely into distinct points is in 1

d!q
2 +O(q

3
2 ).

Briefly, reflexivity means that the classical duality theory holds. We note
that for characteristic 2, no plane model is reflexive, and if the degree is
larger than the characteristic, every plane model is reflexive. More infor-
mation on the notion of reflexivity can be founded below.

Theorems 2 and 3 give:

Theorem 4. Let d ≥ 4 be fixed. Then the discrete logarithm problem in
the degree 0 class groups of curves given by reflexive plane models of degree
d can be solved in an expected time of

Õ(q2− 2
d−2 ) .

Let us consider curves of a fixed genus g given by plane models of a fixed
degree d such that d contains a divisor which splits completely into distinct
points. Then under the condition that g ≥ d−1, the expected running time
in the second theorem improves upon one of [3], mentioned in (1.1) above.
The algorithms then have storage requirements of Õ(q1− 1

g
+ 1

(d−2)·g ).
The underlying computational model is throughout a randomized ran-

dom access machine with logarithmic cost function. We refer the reader to
[4] for a discussion on random access machines.

Reflexive plane models. We briefly review the notion of reflexivity and
give some characterizations of a plane model being reflexive.

Let k be some field which for the moment we assume to be algebraically
closed. Let X be an irreducible closed subvariety of Pn

k , and let Xns be the
non-singular (=smooth) part of X . Let Pn∗

k be the dual space of Pn
k . The

conormal variety C(X ) ⊆ Pn
k × Pn∗

k of X is the closure of pairs (P,H),
where P is a closed point of Xns and H is a hyperplane of Pn

k which meets
X in P tangentially. The dual variety X ∗ of X is the image of C(X ) in Pn∗

k .
Analogous definitions can be made for subvarieties of Pn∗

k . Now X is called



642 Claus Diem

reflexive if – up to change of factors of Pn
k × Pn∗

k and identification of Pn∗∗
k

with Pn
k – C(X ) = C(X ∗). Reflexive varieties are (trivially) bidual, that is,

X ∗∗ = X . In characteristic 0, every closed subvariety of Pn
k is reflexive, but

this is not anymore the case if the characteristic is positive.
We are interested in the case that n = 2 and X is one-dimensional

and not a line. Let these conditions be satisfied. The canonical projection
C(X ) −→ X is now birational. Let ρ : C(X ) −→ X ∗ be the canonical
map to the dual variety. If X is reflexive, then just as the projection to X ,
the morphism ρ is birational too. Moreover, the following conditions are
equivalent:

(1) X is not reflexive.
(2) ρ is not birational.
(3) ρ∗ : k(X ∗) −→ k(C(X )) is inseparable.
(4) For sufficiently general pairs (P,H), where P is a closed point on
X and H is a hyperplane which meets C in P tangentially, the
intersection number of H and X at P is equal to the degree of
inseparability of ρ∗.

(5) The characteristic of k is 2 or for sufficiently general pairs (P,H),
where P is a closed point on C and H is a hyperplane which meets
X in P tangentially, the intersection number of H and X at P is
> 2.

(6) Let F (X1, X2, X3) be a defining homogeneous polynomial of X , that
is, X = V (F ). Then all polynomials F 2

i Fjj + F 2
j Fii − 2FiFjFij for

i, j = 1, 2, 3 vanish on X . Here for a polynomial f ∈ k[X1, X2, X3]
and i = 1, 2, 3, fi = ∂f

∂Xi
.

The equivalence of the first and the third statement (and thus with the
second too) goes back to [19] and is called the Segre-Wallace criterion; for a
modern proof see [11, Theorem 4]. The equivalence of these statements with
the forth one is established in [9] and called the generic order of contact
theorem there. The equivalence with the last two statements can be found
in [8] (see Remark 4.5 and Proposition 4.12 there).

By the fifth (or sixth) statement, if char(k) = 2, then X cannot be re-
flexive. Other examples of non-reflexive varieties in the projective plane are
the so called strange curves, that is, one-dimensional irreducible varieties
whose tangents all pass through a common point. In this case the dual
variety is a line and the bidual is a point.

Moreover, by the forth statement, if char(k) > deg(X ), then X is reflex-
ive.

Let now k be a perfect field and let X be a geometrically irreducible and
geometrically reduced closed subvariety of Pn

k . Then C(Xk), (Xk)∗ and ρ are
invariant under the action of the absolute Galois group of k. The varieties
thus descend to k as subvarieties of the corresponding surrounding spaces,
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and ρ descends too. In case that n = 2 and X is one-dimensional and not
a line, the statements (1), (2), (3) and (6) are then still equivalent. We call
X reflexive if these conditions are satisfied.

Notation and representation. We fix some notation we use through-
out the article, and we discuss the representation of the basic objects for
algorithmic purposes.

As already mentioned, the input curve C/Fq is represented by a plane
model Cpm in P2

Fq
of a fixed degree d ≥ 4. Concretely, we assume that Cpm

(and therefore also C) is given by a homogeneous polynomial F (X,Y, Z) ∈
Fq[X,Y, Z].

So, to the polynomial F (X,Y, Z) we associate Cpm, the variety defined
by F (X,Y, Z), and to Cpm we associate its normalization, which is a (non-
singular) curve C together with a birational morphism π : C −→ Cpm.
We also denote the composition of π with the inclusion Cpm ↪→ P2

Fq
by

π. Moreover, we denote the non-singular part of Cpm by Cns (rather than
by (Cpm)ns), and we identify Cns with its preimage in C. We call the dual
variety of Cpm the dual model and denote it by C∗pm.

To represent divisors on C, we use an ideal theoretic representation, fol-
lowing [10]. Recall that in [10] divisors are represented by ideals of two
orders of the function field of C: a so-called finite and a so-called infinite
order. We call this the joint ideal representation. Alternatively, one can use
the free ideal representation, where the prime divisors are represented by
prime ideals of these orders and the ideals themselves are represented by
formal sums of the prime divisors (in sparse representation).

For q large enough, C has an Fq-valued point. Let P0 be such a point.
An effective divisor D on C is called reduced along P0 if the complete lin-
ear system |D − P0| is empty. One sees easily that for any divisor class c
there exists a unique along P0 reduced effective divisor D with c = [D] +
(deg(c)− deg(D)) · [P0].

For the representation of divisor classes, we fix a point P0 and represent
a divisor class c by the corresponding reduced effective divisor and the
degree. This applies in particular to the input elements.

For more information on these issues, in particular on computational
aspects, we refer to [10], [2, Chapter 2] and [3, Section 2].

The following definitions will be convenient in the analysis of the algo-
rithm:

First, the usual definitions of limit and limes inferior can be immedi-
ately extended from real valued sequences over the natural numbers to real
valued sequences over any countable infinite set X. We make use of these
extensions. Moreover, for a function (i.e., sequence) f : X −→ R>0 we have
the usual sets O(f), Õ(f),Ω(f) and Θ(f) of sequences on X. We do not use
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the usual “Landau notation” like g = O(f) but use the usual set-theoretic
notation g ∈ O(f) instead.

We fix the following definition.

Definition 1. Let X be an infinite countable set and (ax)x∈X ∈ RX,
(bx)x∈X ∈ RX

>0. Then we write

ax & bx

if lim inf
x∈X

ax

bx
≥ 1.

In our applications, the elements of X consist of isomorphism classes
of the following data: a curve C/Fq, a plane model Cpm of the curve, a
birational morphism π : C −→ Cpm and additionally a tuple of points in
C(Fq) or a subset S ⊆ C(Fq) (or both). Isomorphisms are isomorphisms of
curves over Fq respecting the maps to the projective plane and additionally
the points or the subset.

Let such a set X be fixed. For some element x ∈ X let qx be the cardinality
of the ground field. If for some prime power q and some x ∈ X we have
qx = q, we say that x is over Fq.

We will consider such sets X with the property that for every prime
power q there are only finitely many elements over q. Let X be such a set,
and let (ax)x∈X ∈ RX. Then limx∈X ax exists and is equal to a if and only
if there exist functions u, ` from the set of prime powers to the set of real
numbers which converge to a such that `(qx) ≤ ax ≤ u(qx) for all x ∈ X.
In this case, we also say that ax is asymptotically equal to a for q −→∞.

Moreover, following the usual terminology in the analysis of algorithms,
we suppress the set X from the notation.

Overview and historical comments. We give an overview on the proof
of the theorems.

The algorithms follow the index calculus strategy. Briefly, this means:
First a so-called factor base is fixed. This is a finite set of prime divisors
(closed points); in our case this is a subset F of C(Fq). Now in a basic index
calculus, one searches for relations between input elements, factor base
elements and maybe some further elements of Cl0(C). If enough relations
have been obtained, one eliminates the factor base elements and tries to
obtain a non-trivial relation between input elements. From this relation one
then tries to derive the sought-after discrete logarithm.

For curves of a fixed genus ≥ 3, it has already been argued in [17] that by
using a large prime variation, one can obtain a reduction in the expected
running time which is superpolynomial in the input length. A further re-
duction can be obtained by using a double large prime variation; this has
been studied in [6], [13] and [3].



On the discrete logarithm problem for plane curves 645

In a double large prime variation, one fixes a set L of so called large
primes; in our case this is C(Fq) − F . Then one searches for relations in-
volving up to two large primes. Such relations are stored in a graph on the
set of vertices L ∪̇ {∗}. Here a relation involving one large prime P is stored
as a labeled edge between ∗ and P , and a relation involving two distinct
large primes P and Q is stored as a labeled edge between P and Q. Later,
this graph is then used to generate relations between input elements and
factor base elements.

The result in [3] given at the beginning of this article is proven with the
construction of a tree of large prime relations (an idea which goes back
to [6]). Moreover, in order to control the depth of the tree, similarly to the
algorithm in [13], the tree is constructed in stages.

The algorithms of this work also use a tree of large prime relations, which
is again constructed in stages. The essential difference to the algorithm in
[3] is that we construct the tree and also the factor base in a different way:
We generate relations by intersecting the plane model with lines. LetD∞ :=
div(Z|C). The crucial (but trivial) observation is that if D =

∑
P∈C nPP is

a divisor in the linear system d, then D is linearly equivalent to D∞, and
we have a relation
(1.2)

∑
P∈C

nP [P ] = [D∞] .

In [1] we gave an algorithm in which a graph of large prime relations is
generated by intersecting the curve with lines running trough two points of
the factor base. On a heuristic basis, we already argued that for any fixed
d ≥ 4, one can with this algorithm solve the discrete logarithm problem
in degree 0 class groups of curves given by plane models of degree d in an
expected time of

Õ(q2− 2
d−2 ) .

Further evidence, including experimental data, that the result is valid for
non-hyperelliptic curves of genus 3 (given by plane curves of degree 4) is
given in [5]. However, even in this restricted case, no proof has been given
until now.

In order to obtain the two theorems mentioned above, we modify the
algorithm in [1] in some ways. As already mentioned, we employ a stage-
wise construction of a tree of large prime relations. In contrast, in [1] we
first constructed a “full” graph of large prime relations. Moreover, during
the construction of the tree, we also repeatedly enlarge the factor base (and
shrink the set of large primes). The enlargements are done at the beginning
of each stage in a randomized manner; we perform these enlargements to
generate new randomness for each stage of the construction of the tree.
To our knowledge, such enlargements of the factor base have not been
suggested before.
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The rest of this work is organized as follows: In the next section, we
establish asymptotic results on the number of divisors in d which split
completely into distinct points. In particular, we prove Theorem 3. In the
third section, we give the algorithm for Theorems 1, 2 and 4. In the first
subsection of this section, we demonstrate that by our previous work [3],
we only have to give a suitable algorithm for the construction of a tree of
large prime relations. In the second subsection, we give such an algorithm.
The final subsection of this section contains the analysis of this algorithm,
based on combinatorial and probabilistic techniques.

2. Estimates on completely split divisors

The purpose of this subsection is to give asymptotic estimates on the
number of completely split divisors in d which split completely into distinct
points. We establish two results. The first one is an asymptotic lower bound
under the condition that there exists at least one such divisor (Proposition
3). The second result is Theorem 3.

We consider curves C/Fq represented by plane models of degree a fixed
degree d. For the moment, we do not make any assumption on the plane
models.

All asymptotic statements in this section are on isomorphism classes of
tuples consisting of a curve C/Fq, a plane model Cpm of C of degree d a
birational morphism C −→ Cpm and sometimes additionally a k-rational
point on the curve.

Asymptotic lower bounds.

Proposition 2. For P ∈ C(Fq) such that there exists a divisor in d con-
taining P which splits completely into distinct points, the number of divisors
in d which split completely into distinct points and contain P is & 1

(d−1)! ·q.

Proof. Let P be such a point. Let c : C −→ P1
Fq

be defined by the central
projection with center P . (c is unique up to an automorphism of P1

Fq
.) Then

c is a covering of degree ≤ d− 1. (The degree is d− 1 if and only if P does
not lie over a singular point of Cpm.) Note that by adding π−1(π(P )), we
get a bijection between the pull-backs of the Fq-rational points of P1

Fq
to C

and the divisors of d containing P .
We denote points on curves and the corresponding places of function

fields in the same way, and we now consider the extension of function fields
Fq(C)|Fq(P1) corresponding to c. Now c(P ) is unramified and completely
split in Fq(C). The fact that it is unramified implies that the extension is
separable; let M be a Galois closure.

Recall that a place of degree 1 of Fq(P1) splits completely in Fq(C) if and
only if it splits completely in M .
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This implies that c(P ) splits completely inM , and this implies that Fq is
the exact constant field of M . Now with the effective Chebotaryov density
theorem from [12], we conclude that the number of places of Fq(P1) of
degree 1 which split completely in M (or in Fq(C)) is in 1

deg(c)!q +O(q
1
2 ).

This gives the proposition. 2

Proposition 3. Suppose that there exists at least one divisor in d which
splits completely into distinct points. Then there are & 1

d·(d−2)!·(d−1)! · q
2

such divisors.

Proof. Let P ∈ C(Fq) be a point which is contained in a divisor which
splits completely into distinct points. By the previous proposition, we have
& 1

(d−1)! ·q divisors which split completely into distinct points and contain P .
Altogether, these divisors contain & d−1

(d−1)! · q
2 = 1

(d−2)! · q
2 points of C(Fq).

Now for each point in such a divisor, we apply the previous proposition
again. We obtain in this way & 1

(d−2)!·(d−1)! · q
2 distinct tuples (Q,D) ∈

C(Fq) × d, where D splits completely into distinct points and contains Q.
This gives & 1

d·(d−2)!·(d−1)! · q
2 divisors in d which split completely into

distinct points. 2

Proof of Theorem 3. For d = 3, Theorem 3 is immediate. Indeed, in
this case, every line through two distinct points of Cns(Fq) gives rise to a
completely split divisor. (We included this case only for completeness.)

Let us now assume that d ≥ 4. We first explain the general strategy for
the proof.

For each point P ∈ Cns(Fq) we wish to estimate the number of divisors
in d which split completely into distinct points and contain P . For this, we
proceed similarly to the proof of Proposition 2.

We consider a covering c : C −→ P1
Fq

defined by the central projection
with center P . This is a covering of degree d− 1, and by adding P , we get
a bijection between the pull-backs of the Fq-rational points of P1

Fq
to C and

the divisors of d containing P . We are therefore interested in the number
of Fq-rational points Q of P1

Fq
which are unramified under the covering c

such that c−1(Q) splits into distinct Fq-rational points of C where none of
these points is equal to P .

As above, we consider the extension of function fields Fq(C)|Fq(P1) cor-
responding to c. A first necessary condition in order that there is any Fq-
rational point Q of P1

Fq
such that c−1(Q) splits completely into distinct

distinct Fq-rational points is that the extension of function fields is sepa-
rable. This condition is satisfied if and only if there are only finitely many
closed points of P1

Fq
which are ramified with respect to c.
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Let us now assume that the extension is indeed separable. Let M be a
Galois closure of the extension. Recall again that a place of Fq(P1) splits
completely in Fq(C) if and only if it splits completely in M .

As already mentioned above, a second necessary condition in order that
there is any place of degree 1 of Fq(P1) which splits completely inM is that
Fq is the exact constant field of M . On the other hand, if this condition
is satisfied, by the effective Chebotaryov density theorem from [12], the
number of such places is in 1

(d−1)! · q +O(q
1
2 ).

The condition that Fq is the exact constant field of M is satisfied if and
only if [M : Fq(P1)] = [FqM : Fq(P1)], and this is in particular satisfied if
[FqM : Fq(P1)] = (d− 1)!, that is, Gal(FqM |Fq(P1)) ≈ Sd−1.

Now the argument is different according to whether d = 4 or d > 4 and
the plane model is assumed to be reflexive.

d = 4. This case was already considered in [5]. Note first that as the degree
of a covering c as above is prime and the genus of C is ≥ 1 by assumption,
the extension of function fields is indeed separable (see [7, Proposition 2.5]).

The essential observation is now: If cFq
: CFq

−→ P1
Fq

does not have
a non-trivial automorphism, then the corresponding extension of function
fields Fq(C)|Fq(P1) is not Galois, and therefore Gal(FqM |Fq(P1)) ≈ S3.

We therefore obtain:

Proposition 4. For P ∈ C(Fq) such that the corresponding covering
CFq
−→ P1

Fq
over Fq does not have a non-trivial automorphism, the number

of divisors in d which split completely into distinct points is in
1
6 · q +O(q

1
2 ) .

As we assumed that genus of C be ≥ 1, the number of automorphisms
of degree 3 of C is in O(1). So the number of points of C(Fq) for which the
assumption does not hold is in O(1). The proposition then easily implies
Theorem 3 under the assumption that d = 4.

Cpm reflexive. We use the following general result:

Proposition 5. Let L|K be a finite separable extension of fields of degree
n such that L|K does not contain an intermediate field distinct from K
and L and there is a non-archimedean place Q of K with discrete valuation
which splits in L in the form 2P1 +P2 +P3 + · · ·+Pn−1 for distinct places
Pi of L.1 Then the Galois group of a Galois closure of L|K is isomorphic
to Sn.

1The additive notation is of course unusual in this general setting. We use it here for
consistency.
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Proof. LetM be a Galois closure of the extension. Then Gal(M |K) acts on
the set of embeddings of L intoM ; we consider Gal(M |K) as a permutation
group on this set. This operation is of course transitive. Moreover, the
condition that L|K does not contain a proper subfield is equivalent to the
permutation group being primitive.

Let R be a place of M lying over P , GR|P the decomposition group and
ZR the decomposition field. Let L be generated over K be the root of an
irreducible polynomial f(X) ∈ K[X]. It follows from [14, Satz 8.2] and [14,
Satz 9.8] that f(X) splits over ZR as

f(X) = f1(X)(X − α2) · · · (X − αn−1) ,
where f1(X) is irreducible and quadratic and the αi ∈ K are pairwise
distinct. The group GR|P is therefore cyclic of order 2, and it fixes the αi

and permutes the two roots of f1(X) in M .
Now the non-trivial automorphism in GR|P acts as a transposition. We

therefore have a transitive primitive permutation group with a transpo-
sition. With [20, Theorem 13.3] we conclude that the group is the full
symmetric group. 2

From this general proposition the following result follows immediately:

Proposition 6. Let k be an algebraically closed field, and let L|k(x) be a
finite extension of degree n ≥ 3. Suppose that there are only finitely many
places of k(x) over k which are ramified in L and that every such place
splits in L as 2P1 + P2 + P3 + · · · + Pn−1 for distinct places Pi. Then the
extension L|k(x) is separable and its monodromy group is isomorphic to
Sn.

Proof. Under the given conditions the extension is obviously separable.
Moreover, it cannot contain an intermediate field different from L and k(x).
For, let N be an intermediate field distinct from k(x). As every finite ex-
tension of k(x) is ramified, there exists a place Q of the function field k(x)
which is ramified in N . Let us fix such a place, let R be a ramified place
of N |k(x) over Q, and let r be the ramification degree. Furthermore, let
a := [L : N ]. Then the conorm of Q in L has the form rD+ D̃ for effective
divisors D, D̃ of the function field L with deg(D) = a (and r ≥ 2). By our
assumption it follows that a = 1 (and r = 2).

Now the statement follows with the previous proposition. 2

We now make use of the classical theory of plane curves (geometrically
irreducible and geometrically reduced 1-dimensional varieties in the projec-
tive plane in our terminology), including duality theory. A good reference
for this classical theory in characteristic 0 is [18], the key statements we
need for reflexive curves in positive characteristic can be found in [8].
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For a closed point P of CFq
, the multiplicity of the divisor π−1(π(P )) at

P is called the order of P (with respect to fixed plane model Cpm and the
map π).

Now for each closed point P of CFq
(including points lying over singular

points of (Cpm)Fq
) there is exactly one line L in P2

Fq
such that the multiplicity

of the divisor π−1(L) at P is larger than the order of P . Following [18,
IV, 5.3], we call this line the tangent at P . In [18] the tangent at P is
characterized as the tangent to the local branch of (Cpm)Fq

corresponding
to P . There is the following alternative proof of existence and uniqueness of
the tangent without power series which is important for our applications:
We consider a covering c : CFq

−→ P1
Fq

defined by central projection with
center π(P ). There exists exactly one closed point Q of P1

Fq
whose pull-back

to CFq
contains P . Now exactly for this point Q, the multiplicity of P in

the divisor π−1(π(P )) + c−1(Q) ∈ d is larger than the order of P . The line
which defines this divisor is the tangent at P .

If L is the tangent at P , the multiplicity of π−1(L) at P is called the
class of P ; cf. [18]. If π(P ) is non-singular, P is called a flex point if and
only if the class of P is greater than 2.

Let τ : C −→ C∗pm be the canonical map from C to the dual model
associated to Cpm and π. This means that for every closed point P of CFq

,
τ(P ) is the point corresponding to the tangent at P .

A tangent is called ordinary if it is the tangent of exactly one closed
point of CFq

and the intersection multiplicity at this point is 2 (that is, the
class of the point is 2).

Lemma 7. Let P be a closed point of (Cns)Fq
. Then the tangent at P is

ordinary if and only if the point τ(P ) is a non-singular point of the dual
model (C∗pm)Fq

.

Proof. It is obvious that more than one point of CFq
lies over τ(P ) if and

only if the tangent at P is also the tangent of another point of CFq
.

We claim that P is a flex point of (Cpm)Fq
if and only if the order of P

with respect to (C∗pm)Fq
and τ is greater than 1.

Let s be the class of P . As P is non-singular, there exist homogeneous
coordinates such that with respect to this coordinate system P is given by
[0 : 0 : 1] and a reduced parametrization

[t : bst
s + bs+1t

s+1 + bs+2t
s+2 + · · · : 1] ,

where bs 6= 0. Now the image of this Fq((t))-valued point in the dual curve
is given by the vector product of the parametrization and its derivative;
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this is

[bsst
s−1 + · · · : −1 : bs(1− s)ts + · · · ] .

(The corresponding result in characteristic 0 is a classical result from du-
ality theory of curves. By [8, Remark 2.6] the result also holds in positive
characteristic.)

As the map τ : Cpm −→ C∗pm is birational, it induces an isomorphism of
function fields, so we again have a reduced parametrization.

Let p be the characteristic of the ground field. Then the order of P with
respect to C∗pm and τ is s − 1 except if p|s in which case the order is ≥ s.
As p > 2, we conclude: P is a flex point if and only if its order with respect
to C∗pm and τ is > 1. 2

Lemma 8. The number of non-ordinary tangents of CFq
is in O(1).

Proof. The number of closed points of CFq
which lie over a singular point of

(Cpm)Fq
is < (d−1)(d−2)

2 . So the number of tangents running through these
points is also bounded by this number.

By the previous lemma, we now have to bound the number of points lying
over singular points of the dual model. It is a classical result that the degree
of the dual model C∗pm is bounded by d · (d − 1). (Briefly, the argument is
as follows: The degree of C∗pm is given by the number of intersection points
of (C∗pm)Fq

with a line in the dual plane which does not run through the
singularities of (C∗pm)Fq

. Such a line corresponds to a point P ∈ P2(Fq), and
the intersection points of the line with (C∗pm)Fq

correspond to the tangents
of CFq

passing through P (which are all ordinary). The corresponding points
on (Cpm)Fq

are contained in the intersection of (Cpm)Fq
with the polar curve

for (Cpm)Fq
and P , which has degree d − 1. The result now follows with

Bezout’s theorem.)
This implies that the arithmetic genus of C∗pm is bounded by 1

2 · (d− 3) ·
(d− 2)2 · (d− 1), and in particular the number of closed points of CFq

lying
over singular points of (C∗pm)Fq

is bounded by this number. 2

The previous lemma implies immediately:

Lemma 9. The number of closed points P of CFq
such that some non-

ordinary tangent passes through P is in O(1). (We consider all tangents of
all closed points of CFq

which pass through P , not only the unique tangent
at P .)
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Proposition 10. For P ∈ Cns(Fq) such that only ordinary tangents pass
through P , the number of divisors of d which contain P and split completely
into distinct points is in

1
(d− 1)! · q +O(q

1
2 ) .

Proof. We consider a covering cFq
: CFq

−→ P1
Fq

defined by P . By as-
sumption, for every closed point Q of P1

Fq
, the divisor c−1(Q) + P ∈ d

either splits into distinct points or is of the form 2P1 + P2 + · · · + Pd−1
for distinct points Pi. Moreover, the second case only happens for finitely
many points (see proof of Lemma 8). Therefore, there are only finitely
many ramified closed points of P1

Fq
, and for every such point Q, we have

c−1(Q) = 2P̃1 + P̃2 + · · ·+ P̃d−2 for distinct points P̃i. By Proposition 6 and
the general remarks at the beginning of the proof, the result follows. 2

This proposition and Lemma 9 easily imply the statement in Theorem 3
under the assumption the plane model is reflexive.

3. The algorithm

3.1. General considerations. As indicated above, in the algorithm we
construct a tree of large prime relations. Let us formally define what we
mean by such a tree.

Let C be a curve over a finite field Fq. Let F be a set of prime divisors
of C, and let L be another set of prime divisors of C which is disjoint from
F . We call F the factor base and L the set of large primes. Furthermore,
let some elements c1, . . . , cu ∈ Cl0(C) be given.

Now a tree of large prime relations for the given data is an undirected
labeled rooted tree whose vertices are contained in L ∪̇ {∗} with root ∗,
where the edges are labeled as follows:

Each label is a tuple ((rF )F∈F , (sj)j=1,...,r), where either each entry is
an integer or each entry is a residue class modulo the group order which
defines in the following way a relation:

• If the edge connects ∗ and a prime divisor P , the equality∑
F∈F rF [F ] + [P ] =

∑
j sjcj holds.

• If the edge connects two distinct prime divisors P and Q, the equal-
ity

∑
F∈F rFF + [P ] + [Q] =

∑
j sjcj holds.

We only consider trees where the relations are given modulo the group
order, and we store the labels in sparse representation. Furthermore, as
already mentioned, we represent divisors and divisor classes as described in
[3, Section 2].
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If T is such a tree, we denote its set of vertices by V (T ). Now, by following
the arguments in [3, Section 3], one can obtain:

Proposition 11. Let g and c ∈ N with g, c ≥ 2 be fixed. Then there is an
algorithm such that the following holds:

Under the input of
• a curve C of genus g, given by a plane model of bounded degree,
• the group order of Cl0(C),
• two elements a, b ∈ Cl0(C) with b ∈ 〈a〉,
• elements c1, . . . , cu ∈ Cl(C) whose degrees are bounded, where u is
polynomially bounded in log(q),
• a factor base F ⊆ C(Fq) of size Õ(q1− 1

c ),
• a tree of large prime relations T for factor base F , set of large
primes C(Fq)−F and classes c1, . . . , cu

– of a depth which is polynomially bounded in log(q)
– with #(F ∪ V (T )) ≥ q1− 1

g
+ 1

cg

– such that the number of non-trivial residue classes involved in
each label is polynomially bounded in log(q),

the algorithm computes the discrete logarithm of b with respect to a in an
expected time of

Õ(q2− 2
c ) .

The algorithm thereby has storage requirements of Õ(#(F ∪V (T )) · log(q)).

Our application. In order to obtain Theorems 1 and 2 (and therefore
also Theorem 4), we are going to apply this proposition with c = d − 2.
Here as throughout this article, d is the degree of the plane model under
consideration. In our application, d is fixed, but the genus, g, is not. As for
fixed degree there are only finitely many possibilities for the genus, there
still exists an algorithm with the specified properties.

On the proof of the proposition. In [3] the statement in the proposition is
proven for c = g, but the general case is no more difficult than the statement
in [3]. We briefly recall the algorithm and its analysis, for details we refer
to [3, Section 3]. For simplicity, we focus on the case the group order N is
prime and generated by a.

Let P0 ∈ C(Fq) be the point which is used to represent divisor classes,
that is, a divisor class c on C is represented by the unique along P0 reduced
divisor and the degree of c.

We repeatedly select uniformly randomly chosen elements α, β ∈ Z/NZ
and compute the unique along P0 reduced divisor D with

[D]− deg(D) · [P0] = αa+ βb
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in free representation. If D splits over the factor base and the vertices of the
tree, we use the tree to obtain a “full relation”, that is, a relation between
factor base elements, c1, . . . , cu and a, b. We stop this procedure if we have
obtained #F+u+1 full relations. After that we try to compute the discrete
logarithm via linear algebra. If this fails, we repeat the whole procedure.

Using an algorithm from sparse linear algebra, the linear algebra compu-
tation can be performed in an expected time of Õ(q2− 2

c ). We have to show
that the relation generation can also be performed in an expected time of
Õ(q2− 2

c ).
There exists a constant C > 0 such that the number of elements of

Cl0(C) which are represented by an along P0 reduced divisor which splits
completely into factor base elements and vertices of the tree is at least

1
g! · q

(1− 1
g

+ 1
cg

)·g − C · qg−1 .

For q large enough, this is ≥ 1
2g! · q

(1− 1
g

+ 1
cg

)·g = 1
2g! · q

g−1+ 1
c . Now for q large

enough the probability that a uniformly randomly chosen group element is
represented by a divisor which splits over the factor base and the vertices
of the tree is at least

1
4g! · q

(g−1+ 1
c
)−g = 1

4g! · q
−(1− 1

c
) .

The expected number of tries until we have one relation is therefore
at most 4g! ·q1− 1

c . Consequently, the expected number of tries until we have
#F + u+ 1 relations is in O(q2− 2

c ), and the expected time is in Õ(q2− 2
c ).

In the general case, we first construct a “potential generating system”
c′1, . . . , c

′
u′ . (In [3], c1, . . . , cu is already such a system, and we have u = u′

and cj = c′j for all j.) Then we try to generate relations between the
factor base, a, b, c1, . . . , cu and c1, . . . , c

′
u′ as follows: We choose s1, . . . , su′

uniformly randomly in Z/NZ, we compute the unique along P0 reduced
divisor D with

[D]− deg(D) · [P0] =
∑

j

s′jc
′
j + αa+ βb

in free representation. Again, ifD splits over the factor base and the vertices
of the tree, we use the tree to obtain a “full relation”, which is now a relation
between the factor base elements, the classes c1, . . . , cu, c1, . . . , c

′
u′ and a, b.

As above, if we have enough relations, we try to solve for the discrete
logarithm. Moreover, we stop and restart the whole algorithm if a predefined
time bound has been reached. 2
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3.2. Construction of the tree of large prime relations. The discrete
logarithm problem in elliptic curves can be solved in a time of Õ(q

1
2 ).

Moreover, by Theorem 3, for d = 4 and q large enough the linear system
d as defined above contains a divisor which splits completely into distinct
points. We thus consider curves of genus ≥ 2 represented by plane models of
a fixed degree d ≥ 4 such that the linear system d contains a divisor which
splits completely into distinct points. As already mentioned, we want to
apply Proposition 11 with c = d− 2 in order to prove Theorems 1 and 2.

The L-polynomial of a curve as specified, and therefore also the group
order, can be computed in polynomial time via Pila’s extension of Schoof’s
algorithm ([15], [16]).

Our goal is now to give an algorithm with the following properties:

1. Under an input as specified, the algorithm outputs a factor base and a
tree of large prime relations satisfying the assumptions of Proposition
11 with c = d− 2, u = 1 and c1 = [D∞], D∞ = div(ZC).

2. The expected running time of the algorithm is in Õ(q2− 2
d−2 ).

We now outline such an algorithm and begin with the analysis of the
algorithm. The analysis is completed in the next subsection. This analysis
then also completes the proof of Theorems 1 and 2.

Let us first discuss some basic computations.

Lemma 12. One can compute a uniformly randomly distributed point in
C(Fq) in an expected time which is polynomially bounded in log(q).

This is Proposition 3.8 in [3].

Lemma 13. Given a linear form W ∈ Fq[X,Y, Z]1, one can compute the
divisor div(W|C) ∈ d in free representation in an expected time which is
polynomially bounded in log(q).

Sketch of a proof. We choose some linear form U such that the intersection
between the two lines defined by W and U does not lie on Cpm. Then we
have div(W|C) = (W|C

U|C
)+, the positive part of the principal divisor (W|C

U|C
).

With these considerations, the computation can be performed with stan-
dard algorithms on ideal arithmetic. 2

Remark 14. In fact, we only need an algorithm to determine if a line runs
through Cns, defines a completely split divisor, and in this case to compute
such a divisor. This task can easily be achieved by inserting the equation
for the line into the curve equation, factoring the resulting polynomial and
finally by checking for each root if all partial derivatives vanish.
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Construction of the tree. For the construction of the tree, we use a
“stage-wise procedure” which is based on successive enlargements of the
factor base. As in the previous subsection, we denote the tree by T and its
set of vertices by V (T ). The factor base is always denoted by F .

The following algorithm has the desired expected running time. How-
ever, it is conceivable that this algorithm violates the desired storage re-
quirements of Õ(q1− 1

g
+ 1

(d−2)g ) for g ≥ d − 1. At the end of this section we
point out modifications leading to an algorithm which also has the desired
storage requirements.

Let a curve C/Fq, represented by a plane model Cpm of degree d, be given.
A first step is the computation of the genus g. This can be achieved in

polynomial time with the algorithms in [10] (see also [3]). We then construct
the factor base and the tree with the following stages:

Stage 0. We determine a subset F0 of Cns(Fq) of size dlog(q) ·q1− 1
d−2 e such

that through each point of F0 there passes at least one line which splits
completely into distinct points of C(Fq). For this, we repeatedly choose lines
uniformly at random and compute the corresponding divisor. Note that the
probability that a line gives rise to a divisor which splits completely into
distinct points is in Ω(1) by Proposition 3, thus the expected running time
is in Õ(q1− 1

d−2 ).

Stage 1. We choose a subset F1 of Cns(Fq) − F0 of size
d(5 · (d − 1)!2)

1
d−2 · q1− 1

d−2 e uniformly randomly from the set of all such
subsets; the constant (5 · (d− 1)!2)

1
d−2 will be justified in retrospect in the

analysis of the algorithm. By Lemma 12 this task can also be achieved in
an expected time of Õ(q1− 1

d−2 ).
We iterate over all lines passing through two distinct points of F1. For

each such line, we compute the corresponding divisor D on C in free repre-
sentation.

Now for every such divisor D, we check if it splits in the form
(3.1) D = P1 + · · ·+ Pd−1 +Q

with Pi ∈ F0 ∪F1 and Q ∈ Cns(Fq)− (F0 ∪F1). If this is the case, we store
the divisor.

After the consideration of all lines we choose for each point Q as in (3.1)
one divisor as above. If then we have ≥ dq1− 1

d−2 e distinct points Q (and
corresponding divisors), we set the factor base as F := F0∪F1, and for each
such divisor, we insert an edge from ∗ to Q with the data for the relation

[P1] + · · ·+ [Pd−1] + [Q] = [D∞]
into the tree.
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If we do not have enough points, we choose another subset F1 and repeat.

Stages ≥ 2. At the beginning of Stage s ≥ 2, we have a factor base
F ⊆ Cns(Fq) and a tree T . We now choose a set G ⊆ Cns(Fq)− (F ∪ (V (T )))
of size d(5 · (d − 1)!2)

1
d−2 · q1− 1

d−2 e uniformly randomly from the set of all
such subsets. We then consider all lines through two distinct points of G.
For each such line, we check if it defines a divisor D of the form
(3.2) D = P1 + · · ·+ Pd−2 + P +Q

with Pi ∈ G for i = 1, . . . , d − 2, P ∈ F ∪ V (T ) and
Q ∈ C(Fq)− (F ∪ G ∪ V (T )).

After the consideration of all lines we choose for each point Q as in (3.2)
one divisor as above. If then we have ≥ d2s · q1− 1

d−2 e distinct points Q (and
corresponding divisors), we update F as F ∪ G, and for each such divisor,
we insert an edge from P to Q with a label for the relation

[P1] + · · ·+ [Pd−2] + [P ] + [Q] = [D∞]
into the tree.

Otherwise, we restart the computation of Stage s with another set G.

The end. We stop the computation after sfinal := dlog2(q) ·
( 1

d−2 −
1
g + 1

(d−2)g )e stages. Note that then the tree has ≥ q
1− 1

g
+ 1

(d−2)g

leaves.

What one has to prove. Clearly, the number of stages is in O(log(q))
(and thus so is the depth of the tree), and the size of the factor base is
in O(q1− 1

d−2 ). Moreover, by the lemmata above, the computation of each
stage can be performed in an expected time of Õ(q2− 2

d−2 ).
Let us call an abstract state a tuple consisting of a curve C/Fq, a plane

model Cpm of C of degree d, a birational morphism π : C −→ Cpm, a factor
base F ⊆ Cpm(Fq) and a tree of large prime relations T with relations as
described in the algorithm above.

Now, for any s with 1 ≤ s ≤ sfinal and any abstract state S of any com-
putation at the beginning of Stage s, let pS,s be the conditional probability
that the computation of Stage s is successful after one repetition. Note that
if the computation is not successful after one repetition then the abstract
state at the beginning of the next repetition is again S. Thus the expected
number of repetitions of Stage s under the condition that Stage s is entered
with state S is 1

pS,s
.

So, all we have to prove to obtain Theorems 1 and 2 is:

Proposition 15. There exists a constant κ > 0 such that for q large
enough, for all s with 1 ≤ s ≤ sfinal and all abstract states S of the compu-
tation at the beginning of Stage s, pS,s ≥ κ.
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The goal of the next subsection is to prove this proposition. The proof is
based on the results of the previous section and on combinatorial and prob-
abilistic arguments. The main result of the next section is Proposition 18; a
proof of Proposition 15 then follows by suitable applications of Proposition
18. This final argument is at the end of the next subsection.

It follows a more formal description of the algorithm for the construction
of the factor base and the tree of large prime relations.

Algorithm. Construction of the factor base and the tree of large prime relations
Input: A curve C/Fq, represented by a plane model Cpm of the fixed degree d.
Output: A factor base and a tree of large prime relations satisfying the require-
ments of Proposition 11 for c = d− 2.

Compute the genus g of the curve.
Construct a set F ⊆ C(Fq) and a labeled rooted tree T with vertex set con-
tained in C(Fq) ∪̇ {∗} as follows:
Let T consist only of the root ∗.
Determine a subset F0 of Cns(Fq) of size dlog(q) · q1− 1

d−2 e as follows:
Repeat

Choose a linear form W ∈ Fq[X,Y, Z]1 uniformly at random and compute
the divisor D := div(W|C).
If D splits completely into distinct points of Cns(Fq), insert one of these
points in Cns(Fq) into F0.

Until F0 has size dlog(q) · q1− 1
d−2 e.

Repeat
Choose F1 ⊆ Cns(Fq) of size d(5·(d−1)!2)

1
d−2 ·q1− 1

d−2 e uniformly randomly
from the set of all such subsets.
Construct a list L of divisors in free representation as follows:
Iterate over all lines passing through two distinct points of F1.
Whenever such a line defines a divisor of the form

P1 + · · ·+ Pd−1 +Q

with Pi ∈ F0 ∪ F1 and Q ∈ Cns(Fq) − (F0 ∪ F1), store the divisor in L.
Sort L for the points Q ∈ Cns(Fq) − (F0 ∪ F1) occurring in the divisors,
for each such point choose one divisor and delete the others.

Until L contains ≥ q1− 1
d−2 divisors.

Let F ←− F0 ∪ F1.
For each divisor in L, insert an edge from ∗ to Q into T , labeled with the data
for the corresponding relation.
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For s = 2, . . . , dlog2(q) · ( 1
d−2 −

1
g + 1

(d−2)g )e do
Repeat

Choose G ⊆ Cns(Fq) − V (T ) of size d(5 · (d − 1)!2)
1

d−2 · q1− 1
d−2 e

uniformly randomly from the set of all such subsets.
Construct a list L of divisors in free representation as follows:
Iterate over all lines passing through two distinct points of G.
Whenever such a line defines a divisor of the form

P1 + · · ·+ Pd−2 + P +Q

with Pi ∈ G, P ∈ F ∪V (T ) and Q ∈ Cns(Fq)− (F ∪G∪V (T )), store
the divisor in L.
Sort L for the points Q ∈ Cns(Fq)− (F ∪G) occurring in the divisors,
for each such point choose one divisor and delete the others.

Until L contains ≥ 2s · q1− 1
d−2 divisors.

Let F ←− F ∪ G.
For each divisor in L, insert an edge from P to Q into T , labeled with the
data for the corresponding relation.

Output F , T

On the storage requirements. We wish to have an algorithm with stor-
age requirements of Õ(max(q1− 1

d−2 , q
1− 1

g
+ 1

(d−2)g )) (which is Õ(q1− 1
g

+ 1
(d−2)g )

for g ≥ d − 3). It is however conceivable that the size of the lists in the
algorithm above does not satisfy the desired bound. The bound can be
guaranteed with the following minor modification of each stage of the al-
gorithm:

One maintains a sorted list L already during the construction (via a
balanced binary search tree), where the sorting is for the points Q in the
divisors, where Q is as in the algorithm. One always inserts at most one
relation for each point of C(Fq) − (F0 ∪ F1) (for Stage 1) respectively
C(Fq) − (F ∪ V (T )) (for Stage s > 1) into the list. Moreover, one stops
the construction if #F + #V (T ) + #L ≥ q1− 1

g
+ 1

(d−2)·g . One then inserts all
the new points into the tree and stops the whole computation.

Otherwise the algorithm is not changed.

3.3. Analysis of the construction of the tree. We now analyze the
construction of the tree. Let for this d ≥ 4 still be fixed.
Proposition 16. We consider a set of isomorphism classes of tuples con-
sisting of: a curve C/Fq, a plane model Cpm of degree d of C, a birational
morphism π : C −→ Cpm and a subset S ⊆ Cns(Fq) with #S ∈ o(q) such
that for every point P ∈ S there exists a divisor in d which splits completely
into distinct points and contains P .
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Then there are & 1
2(d−1)! · q points Q ∈ Cns(Fq)−S such that there is are

at least 1
2(d−1)! ·#S divisors in d which split completely into distinct points

of Cns(Fq) and contain Q and exactly one point from S.

Proof. By Proposition 2, for q large enough, the following holds: For P ∈ S
the number of divisors in d which split completely into distinct points of
Cns(Fq) and contain P is & 1

(d−1)! ·#Cns(Fq).
As the divisors in d are defined by lines, for every P ∈ S, the number

of divisors as above which also contain another point from S is < #S ∈
o(q). Thus for P ∈ S, the number of such divisors which do not contain
another point from S is again & 1

(d−1)! · #Cns(Fq). Altogether, we have
& 1

(d−1)! · #Cns(Fq) · #S divisors in d which split completely into distinct
points and contain exactly one point from S.

Every point outside of S is contained in at most #S such divisors. Let
c be the fraction of points of Cns(Fq) which contain ≥ 1

2(d−1)! · #S such
divisors. Then altogether we have < (c·#S+(1−c)· 1

2(d−1)! ·#S)·#Cns(Fq) =
( 1

2(d−1)! + (1− 1
2(d−1)!) · c) ·#S ·#Cns(Fq) such divisors. This implies that

1
(d− 1)! .

1
2(d− 1)! + (1− 1

2(d− 1)!) · c ,

which implies

c &
1

2(d−1)!

1− 1
2(d−1)!

= 1
2(d− 1)!− 1 >

1
2(d− 1)! ·

2

Proposition 17. Let c > 0 be fixed. We consider a set of isomorphism
classes of tuples consisting of

• a curve C/Fq, a plane model Cpm of degree d of C and a birational
morphism π : C −→ Cpm,
• a subset S ⊆ Cns(Fq) with q

1
d−2 ∈ O(#S) and #S ∈ o(q) such

that for every point P ∈ S there exists a divisor in d which splits
completely into distinct points and contains P ,
• Q ∈ Cns(Fq)− S such that there are at least 1

2(d−1)! ·#S divisors in
d which split completely into distinct points of Cns(Fq) and contain
exactly one point from S and Q.

For such a tuple, we set u := dc · q1− 1
d−2 e.

Then the following holds: For a random subset2 U of Cns(Fq)− S which
is uniformly randomly distributed among all subsets of cardinality u, the
probability that there is a divisor in d which

2By a random subset of a set A we mean a random variable with values in the power set of A.
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- splits completely into distinct points of Cns(Fq),
- contains Q, exactly one point of S and otherwise only points of U

is

&
cd−2

2(d− 1)! ·
#S
q
·

(We do not impose a condition on Q not being in U .)

For later use, we will prove a more accurate result with an error term
(see Equation (3.6)).

Proof. For some divisor D ∈ d which splits completely into distinct points
of Cns(Fq) and contains Q and exactly one point from S let pD be the
probability that all points of D distinct from Q as well as the point in S
lie in U .

Similarly, let for two distinct divisors D1, D2 ∈ d, each splitting com-
pletely into distinct points of Cns(Fq) and containing Q and exactly one
point from S pD1,D2 be the probability that all points of D1 and D2 dis-
tinct from Q as well as the points in S lie in U .

Let p be the probability we wish to estimate in the proposition. We have

p ≥
∑
D

pD −
1
2
∑

D1,D2

pD1,D2 ,

where the sums range over all divisors specified above. Now

pD =
(#Cns(Fq)−#S−(d−2)

u−(d−2)
)

(#Cns(Fq)−#S
u

)
= (u− d+ 3) · (u− d+ 4) · · ·u

(#Cns(Fq)−#S − d+ 3) · · · (#Cns(Fq)−#S) ,

pD1,D2 =
(#Cns(Fq)−#S−(2d−4)

u−(2d−4)
)

(#Cns(Fq)−#S
u

)
= (u− 2d+ 5) · (u− 2d+ 6) · · ·u

(#Cns(Fq)−#S − 2d+ 5) · · · (#Cns(Fq)−#S) .

We have

(3.3) pD ∈
[( u− d+ 3

#Cns(Fq)−#S
)d−2

,
( u

#Cns(Fq)−#S − d+ 3
)d−2]

and

(3.4) pD1,D2 ∈
[( u− 2d+ 5

#Cns(Fq)−#S
)2d−4

,
( u

#Cns(Fq)−#S − 2d+ 5
)2d−4]

.
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Let N be the number of divisors in d which split completely into distinct
points of Cns(Fq) and contain Q and exactly one point from S. Note that

(3.5) N ∈
[ 1
2(d− 1)! ·#S,#S

]
by assumption.3

For the probability p we obtain:

p ≥ N ·
( u− d+ 3
#Cns(Fq)−#S

)d−2 − 1
2 ·N

2 ·
( u

#Cns(Fq)−#S − 2d+ 5
)2d−4

∈ N ·
( u

#Cns(Fq)−#S
)d−2 ·

(
1 +O

(1
u

))
+O

(
N2 ·

( u

#Cns(Fq)−#S
)2d−4)

Now

N ·
( u

#Cns(Fq)−#S
)d−2 ∈ Θ

(
#S · q−1),

( u

#Cns(Fq)−#S
)d−2 · 1

u
∈ Θ

(
#S · q−2+ 1

d−2
)
,

N2 ·
( u

#Cns(Fq)−#S
)2d−4 ∈ Θ

(
#S2 · q−2) .

We have #S · q−2+ 1
d−2 ∈ O(#S2 · q−2) as q

1
d−2 ∈ O(#S) by assumption.

So there exists some constant C > 0 (depending only on c) such that

(3.6) p ≥ N ·
( u

#Cns(Fq)−#S
)d−2 − C ·

(
N ·

( u

#Cns(Fq)−#S
)d−2)2

.

In particular

p &
cd−2

2(d− 1)! ·
#S
q
·

2

Proposition 18. Let c > 0 be fixed. We consider a set of isomorphism
classes of tuples consisting of: a curve C/Fq, a plane model Cpm of degree
d of C, a birational morphism π : C −→ Cpm and a subset S ⊆ Cns(Fq)

3We would like to alert the reader here to the meaning of the three previous statements and
the following statements: The statements in (3.3) and (3.4) say that the numbers pD and pD1,D2
lie in certain intervals. Likewise, (3.5) says that N lies in an interval. But (3.5) also has this
meaning: The function N on the set of isomorphism classes considered in the proposition lies in
a set of functions on the set of isomorphism classes. In the statements below, until the end of the
proof, we always make assertions on functions on the set of isomorphism classes. Additionally,
one can also consider isomorphism classes of tuples consisting of data as in the proposition and
a divisor D as above or isomorphism classes of tuples consisting of data as in the proposition and
a pair of divisors (D1, D2) as above. Then (3.3) and (3.4) can also be interpreted as assertions on
functions. (The indices D and D1, D2 in pD and pD1,D2 now denote part of an argument of the
functions.) Such a point of view on pD and pD1,D2 is of importance in the proof of Proposition 18
below.
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such that q1− 1
d−2 ∈ o(#S) and #S ∈ o(q). Given such a tuple, we set

u := dc · q1− 1
d−2 e.

Then the following holds: For a random subset U of Cns(Fq) − S which
is uniformly randomly distributed among all subsets of cardinality u, the
probability that there are at least cd−2

5(d−1)!2 ·#S points Q ∈ Cns(Fq)− (S ∪U)
such that there exists a divisor in d which

- splits completely into distinct points of Cns(Fq),
- contains Q, exactly one point of S and otherwise only points of U ,

is asymptotically equal to 1 for q −→∞.

Proof. Let Q be the set of points Q ∈ Cns(Fq)− S such that there exist at
least 1

2(d−1)! · #S divisors in d which split completely into distinct points
of Cns(Fq), contain Q and exactly one point from #S. By Proposition 16,
#Q & 1

2(d−1)!q. We only consider points from Q.
For such a point Q let AQ be the event that there exists at least one

divisor which split completely into distinct points of Cns(Fq), contains Q,
exactly one point from #S and otherwise points from U . (We do not impose
a condition on Q not being in U .)

We have

(3.7) E[
∑

Q∈Q
χAQ

] =
∑

Q∈Q
P[AQ] & cd−2

4 · (d− 1)!2 ·#S

by Proposition 17.
Below we show that the standard deviation of

∑
Q∈Q χAQ

is in
o(E[

∑
Q∈Q χAQ

]). Let us for the moment assume that we have already
proven this result, and let us see how the statement in the proposition
then follows. With the Chebyshev inequality and (3.7) we conclude that
with a probability which is asymptotically equal to 1 for q −→∞, we have∑

Q∈Q
χAQ

≥ cd−2

9
2 · (d− 1)!2

·#S ·

Recall that
∑

Q∈Q χAQ
is a lower bound on the number of points Q ∈

Cns(Fq) − S such that there exists a divisor in d which splits completely
into distinct points of Cns(Fq), contains Q, exactly one point from S and
otherwise only points from U . Now, such a point Q might also be contained
in U . As however #U ∈ o(#S) by assumption, we conclude:

With a probability which is asymptotically equal to 1, there exist at
least cd−2

5·(d−1)!2 ·#S points in Q ∈ Cns(Fq)− (S ∪U) such that there exists a
divisor in d which splits completely into distinct points of Cns(Fq), contains
Q, exactly one point from S and otherwise only points from U . This is the
desired result.
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It remains to be shown that the standard deviation of
∑

Q∈Q χAQ
is in

o(E[
∑

Q∈Q χAQ
]).

The variance of E[
∑

Q∈Q χAQ
] is

E
[( ∑

Q∈Q
χAQ

)2]− (E[ ∑
Q∈Q

χAQ

])2
=

∑
Q1,Q2∈Q

(P[AQ1 ∩AQ2 ]− P[AQ1 ] · P[AQ2 ])(3.8)

≤ E
[ ∑

Q∈Q
χAQ

]
+

∑
Q1,Q2∈Q,

Q1 6=Q2

(
P[AQ1 ∩AQ2 ]− P[AQ1 ] · P[AQ2 ]

)
.

We now wish to establish a suitable upper bound on P[AQ1 ∩ AQ2 ] −
P[AQ1 ] · P[AQ2 ] for Q1 6= Q2. We use (3.6) to obtain a lower bound on the
subtrahend. (Note that q

1
d−2 ≤ q1− 1

d−2 ∈ o(#S) by assumption and because
d ≥ 4. Therefore the assumptions of Proposition 17 are satisfied.)

The task is now to establish a suitable upper bound on the minuend.
Let Q1, Q2 ∈ Q with Q1 6= Q2 be fixed. Let for two divisors D1, D2 ∈ d,

each splitting completely into distinct points of Cns(Fq), such that D1 con-
tains Q1 and D2 contains Q2 and both contain a point from S, pD1,D2 be
the probability that the remaining points in both divisors are all contained
in U .

Clearly,
P[AQ1 ∩AQ2 ] ≤

∑
D1,D2

pD1,D2 ,

where the sum ranges over all pairs of divisors just specified.
For an upper bound on pD1,D2 , there are two cases to consider, depending

on whether the two lines meet in Cns(Fq) − S or not. In the first case, D1
and D2 have one point outside of S in common, and we write D1∩D2 * S.
In the second case, they do not have a point outside of S in common, and
we write D2 ∩D2 ⊆ S.

We consider the case that the two lines meet in Cns(Fq)− S first. In this
case, D1 ∪D2 contains 2d− 5 points in Cns(Fq)− (S ∪ {Q1, Q2}). We have

pD1,D2 =
(#Cns(Fq)−#S−(2d−5)

u−(2d−5)
)

(#Cns(Fq)−#S
u

)
= (u− 2d+ 6) · (u− 2d+ 7) · · ·u

(#Cns(Fq)−#S − 2d+ 6) · · · (#Cns(Fq)−#S) ·

Thus

pD1,D2 ≤
( u

#Cns(Fq)−#S − 2d+ 6
)2d−5 ∈ O

(
q
−(2d−5)

d−2
)

= O
(
q−2+ 1

d−2
)

in this case.
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Note that for every divisor D1 ∈ d which contains exactly one point from
S and Q1, there exist at most d − 2 divisors D2 ∈ d with D1 ∩ D2 * S
which contain exactly one point from S and Q2. (D2 is determined by its
intersection with D1.) Thus

(3.9)
∑

D1,D2 with
D1∩D2*S

pD1,D2 ∈ O
(
#S · q−2+ 1

d−2
)
.

We now consider pairs of divisors of the second type. For such divisors
D1, D2, we have

pD1,D2 =
(#Cns(Fq)−#S−(2d−4)

u−(2d−4)
)

(#Cns(Fq)−#S
u

)
= (u− 2d+ 5) · (u− 2d+ 6) · · ·u

(#Cns(Fq)−#S − 2d+ 5) · · · (#Cns(Fq)−#S) ·

Thus

pD1,D2 ≤
( u

#Cns(Fq)−#S − 2d+ 5
)2d−4

∈
( u

#Cns(Fq)−#S
)2d−4 ·

(
1 +O

(1
q

))
.

Let for i = 1, 2 Ni be the number of divisors which split completely into
distinct points of Cns(Fq), contain Qi and exactly one element from S. Then

(3.10)
∑

D1,D2 with
D1∩D2⊆S

pD1,D2 ≤ N1N2
( u

#Cns(Fq)−#S
)2d−4 ·

(
1 + C1 ·

1
q

)

for some constant C1 > 0.
Altogether, we obtain by (3.6), (3.9) and (3.10):

P[AQ1 ∩AQ2 ]− P[AQ1 ] · P[AQ2 ]

≤ C0 ·#S · q−2+ 1
d−2 +N1N2

( u

#Cns(Fq)−#S
)2d−4 ·

(
1 + C1 ·

1
q

)
−
(
N1 ·

( u

#Cns(Fq)−#S
)d−2 − C2 ·

(
N1 ·

( u

#Cns(Fq)−#S
)d−2)2)

·
(
N2 ·

( u

#Cns(Fq)−#S
)d−2 − C2 ·

(
N2 ·

( u

#Cns(Fq)−#S
)d−2)2)

for constants C0, C1, C2 > 0. This is in

O
(
#S · q−2+ 1

d−2 + #S2 · q−3) ⊆ O(#S · q−2+ 1
d−2
)
.
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Because of this and (3.8) the variance of
∑

Q∈Q χAQ
is in

O
(
E
[ ∑

Q∈Q
χAQ

]
+ #S · q

1
d−2
)

⊆ O
(
E
[ ∑

Q∈Q
χAQ

])
+ o

(
#S2) ⊆ o(E[ ∑

Q∈Q
χAQ

]2)
.

Here, the second inclusion follows from (3.7). We obtain that the stan-
dard deviation of

∑
Q∈Q χAQ

is in o(E[
∑

Q∈Q χAQ
]), and this completes the

proof. 2

Proof of Proposition 15. We show now how Proposition 15 can be ob-
tained with Proposition 18.

We set c := (5 · (d− 1)!2)
1

d−2 , and we apply the proposition with subsets
S ⊆ C(Fq) such that #S ≥ log(q) · q1− 1

d−2 and #S ≤ 2 · q1− 1
g

+ 1
(d−2)g . Now

Proposition 15 says that there exists a function f from the set of prime
powers to R>0 which converges to 1 such that the following holds: For all
prime powers q and all isomorphism classes as indicated in Proposition 18
over Fq the probability that there are at least #S points Q ∈ Cns(Fq) −
(S ∪ U) such that there exists a divisor in d which splits completely into
distinct points of Cns(Fq), contains Q, exactly one point of S and otherwise
points of U is ≥ f(q) (cf. subsection “Notation and representation” in the
introduction). Let us fix such a function f .

To analyze Step 1, we set S := F0 and U := F1. Note that the as-
sumptions on the size of S are satisfied because #F0 = dlog(q) · q1− 1

d−2 e.
Note also that the statement in the proposition is on divisors of the form
P1 + · · ·+ Pd−2 + P +Q with Pi ∈ F1, P ∈ F0 and Q ∈ C(Fq)− (F0 ∪F1).
However, the conclusion of course also remains valid if we consider more
divisors. The conclusion is then that the probability that a particular rep-
etition of Step 1 leads to success is ≥ f(q).

For Steps ≥ 2, we set S := F ∪ V (T ) and U := G. It is obvious that
the assumptions are satisfied, and in the algorithm we consider exactly the
same divisors as in the proposition. The conclusion is the same as in Step 1:
The probability that a particular repetition leads to success is ≥ f(q).
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