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Journal de Théorie des Nombres
de Bordeaux 24 (2012), 425-445

Norm-Euclidean Galois fields and the
Generalized Riemann Hypothesis

par Kevin J. MCGOWN

Résumé. En supposant que l’hypothèse de Riemann généralisée
(HRG) soit vérifiée, nous montrons que les corps de nombres galoi-
siens de degré 3 qui sont euclidiens pour la norme sont précisément
ceux dont le discriminant est l’un des entiers suivants :

∆ = 72, 92, 132, 192, 312, 372, 432, 612, 672, 1032, 1092, 1272, 1572 .

Une grande partie de la preuve consiste à établir le résultat plus
général suivant : soit K un corps de nombres galoisien de degré
premier impair ` et de conducteur f . Supposons que HRG soit
vérifiée pour ζK(s). Si

38(`− 1)2(log f)6 log log f < f ,

alors K n’est pas euclidien pour la norme.

Abstract. Assuming the Generalized Riemann Hypothesis
(GRH), we show that the norm-Euclidean Galois cubic fields are
exactly those with discriminant

∆ = 72, 92, 132, 192, 312, 372, 432, 612, 672, 1032, 1092, 1272, 1572 .

A large part of the proof is in establishing the following more
general result: Let K be a Galois number field of odd prime degree
` and conductor f . Assume the GRH for ζK(s). If

38(`− 1)2(log f)6 log log f < f ,

then K is not norm-Euclidean.

1. Introduction
Let K be a number field with ring of integers OK , and denote by

N = NK/Q the absolute norm map. For brevity, we will sometimes use
the term field to mean a number field. We call a number field K norm-
Euclidean if for every α, β ∈ OK , β 6= 0, there exists γ ∈ OK such that
|N(α − γβ)| < |N(β)|. In the quadratic setting, it is known that there

Manuscrit reçu le 14 février 2011.
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are only finitely many norm-Euclidean fields and they have been identi-
fied; namely, a number field of the form K = Q(

√
d) with d squarefree is

norm-Euclidean if and only if
d = −1,−2,−3,−7,−11, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73 .
The main goal of this paper is to prove the following:

Theorem 1.1. Assuming the GRH, the norm-Euclidean Galois cubic fields
are exactly those with discriminant

∆ = 72, 92, 132, 192, 312, 372, 432, 612, 672, 1032, 1092, 1272, 1572 .

For most of this paper, the reader may take the Generalized Riemann
Hypothesis (GRH) to mean that for every Dirichlet L-function L(s, χ), all
the zeros of L(s, χ) in the critical strip 0 < <(s) < 1 are on the critical line
<(s) = 1/2.1 The only exceptions will be when we explicitly state which
function is being referred to — i.e., “the GRH for L(s, χ)” or “the GRH for
ζK(s)”.

Previously, Heilbronn (see [5]) showed that there are finitely many norm-
Euclidean Galois cubic fields, but produced no upper bound on the discrim-
inant. Godwin and Smith (see [4]) showed that the Galois cubic fields with
|∆| < 108 are exactly those listed in Theorem 1.1 and were the first to
give this list. Lemmermeyer subsequently extended this result to show that
Godwin and Smith’s list includes all fields with |∆| < 2.5 · 1011 (see [9]).
Although it is the natural question, no one seems to have conjectured that
this is the complete list; however, in light of Theorem 1.1, this now seems
like a very reasonable conjecture!

In a recent paper (see [10]) the author proved the following unconditional
result:

Theorem 1.2. The fields listed in Theorem 1.1 are norm-Euclidean, and
any remaining norm-Euclidean Galois cubic field must have discriminant
∆ = f2 with f ≡ 1 (mod 3) where f is a prime in the interval (1010, 1070).

A large part of the proof of Theorems 1.1 and 1.2 is in giving an upper
bound on the discriminant for the class of fields in question. Our technique
works not only in the case of Galois cubic fields, but for Galois fields of odd
prime degree.

Theorem 1.3. Let ` be an odd prime. There exists a computable constant
C` such that if K is a Galois number field of odd prime degree `, conduc-
tor f , and discriminant ∆, which is norm-Euclidean, then f < C` and
0 < ∆ < C`−1

` .

1Actually, for Theorem 1.1, it suffices to assume the Riemann Hypothesis (RH) and the GRH
for Dirichlet L-functions associated to cubic characters.
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` C`
3 1070

5 1078

7 1082

11 1088

13 1089

17 1092

19 1094

23 1096

` C`
29 1098

31 1099

37 10101

41 10102

43 10102

47 10103

53 10104

59 10105

` C`
61 10106

67 10107

71 10107

73 10108

79 10108

83 10109

89 10109

97 10110

Table 1.1. Values of C` for primes ` < 100

` C`
3 1011

5 1012

7 1013

11 1013

13 1014

17 1014

19 1014

23 1014

` C`
29 1015

31 1015

37 1015

41 1015

43 1015

47 1015

53 1015

59 1015

` C`
61 1015

67 1015

71 1016

73 1016

79 1016

83 1016

89 1016

97 1016

Table 1.2. Values of C` for primes ` < 100, assuming the GRH

In [10], the author proved Theorem 1.3 and gave the constants in Ta-
ble 1.1. In this paper, we show that under the GRH these constants can be
improved to those given in Table 1.2. In fact, we prove the following result
which, after some easy computation, completely justifies Table 1.2.
Theorem 1.4. Let K be a Galois number field of odd prime degree ` and
conductor f . Assume the GRH for ζK(s), the Dedekind zeta function of K.2
If

38(`− 1)2(log f)6 log log f < f ,

then K is not norm-Euclidean.

2. Preliminaries
As is customary, we write ζ(s) to denote the Riemann zeta function,

L(s, χ) to denote the Dirichlet L-function associated to a Dirichlet char-
acter χ, and ζK(s) to denote the Dedekind zeta function associated to a
number field K. The following is well-known and is an easy consequence of
Theorem 8.6 of [12].

2Note that, in this context, the GRH (as defined above) implies the GRH for ζK(s); this
follows from Lemma 2.1.
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Lemma 2.1. Let K be a Galois number field of odd prime degree ` and
conductor f , and let χ be a primitive Dirichlet character modulo f of order
`. Then

ζK(s) = ζ(s)
`−1∏
k=1

L(s, χk) .

We now quote three results from [10] which will be crucial for our argu-
ments.

Theorem 2.1. Let K be a Galois number field of odd prime degree `,
conductor f , and discriminant ∆. If K is norm-Euclidean, then f is a
prime with f ≡ 1 (mod `) and ∆ = f `−1, except when K is the cubic field
with f = 9 and ∆ = 81.

Theorem 2.2. Let K be a Galois number field of odd prime degree ` and
conductor f with (f, `) = 1, and let χ be a primitive Dirichlet character
modulo f of order `. Denote by q1 < q2 the two smallest rational primes
that are inert in K. Suppose that there exists r ∈ Z+ with

(r, q1q2) = 1, χ(r) = χ(q2)−1,

such that any of the following conditions hold:
(1) rq2k 6≡ f (mod q2

1), k = 1, . . . , q1 − 1,
(q1 − 1)(q2r − 1) ≤ f

(2) q1 6= 2, 3, 3q1q2r log q1 < f
(3) q1 6= 2, 3, 7, 2.1 q1q2r log q1 < f
(4) q1 = 2, q2 6= 3, 3q2r < f
(5) q1 = 3, q2 6= 5, 5q2r < f

Then K is not norm-Euclidean.

Proposition 2.1. Let K be a Galois number field of odd prime degree `
and conductor f . Denote by q1 < q2 the two smallest rational primes that
are inert in K. Suppose either of the following conditions hold:

(1) q1 = 2, q2 = 3,
72(`− 1)f1/2 log 4f + 35 ≤ f

(2) q1 = 3, q2 = 5,
507(`− 1)f1/2 log 9f + 448 ≤ f

Then K is not norm-Euclidean.

3. GRH bounds for non-residues
In [2], Bach proves an explicit version of a theorem due to Ankeny

(see [1]) regarding the least element outside of a given non-trivial sub-
group of (Z/mZ)?. The main idea behind Bach’s proof appears in [11], but
to obtain explicit results there are many details to work out; Bach uses a
slightly different kernel and introduces a parameter in order to achieve good
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numerical results. Using the tables in [2], we obtain the following special
case which is useful to us in the present context.

Theorem 3.1 (Bach, 1990). Assume the GRH. Let χ be a non-principal 3
Dirichlet character modulo m ≥ 108, and denote by q1 the smallest prime
such that χ(q1) 6= 1. Then

q1 < (1.17 logm− 6.36)2 .

We will follow Bach’s approach to give bounds on the quantities q2 and
r appearing in Theorem 2.2. Although the following results undoubtably
hold in more generality, we will not hesitate to specialize to our situation
when it affords us certain technical conveniences.

Theorem 3.2. Let χ be a non-principal Dirichlet character modulom ≥109

with χ(−1) = 1. Assume the RH and the GRH for L(s, χ). Denote by
q1 < q2 the two smallest primes such that χ(q1), χ(q2) 6= 1. Then

q2 < 2.5(logm)2 .

Theorem 3.3. Let ` and f be odd primes with f ≥ 108 and f ≡ 1 (mod `).
Let K be the Galois number field of degree ` and conductor f , and let χ be
a primitive Dirichlet character modulo f of order `. Assume the GRH for
ζK(s). If q1, q2 are rational primes and ω 6= 1 is an `-th root of unity, then
there exists r ∈ Z+ such that (r, q1q2) = 1, χ(r) = ω, and

r < 2.5(`− 1)2(log f)2 .

The remainder of §3 is devoted to proving Theorems 3.2 and 3.3. Al-
though this constitutes the bulk of the paper and is where the analytic
techniques come into play, the casual reader who is willing to accept these
two results may skip the rest of this section and proceed to §4.

In §3.1 we give some explicit formulas relating sums over prime powers to
sums over zeros of L-functions, and in §3.2 we give some GRH estimates for
the sums over zeros. Then in §3.3 and §3.4 we prove Theorems 3.2 and 3.3,
respectively.

3.1. An explicit formula.

Lemma 3.1. Let χ be a Dirichlet character modulo m. (Here we allow the
possibility that χ is the principal character or even that m = 1.) For x > 1
and a ∈ (0, 1), we have

− 1
2πi

∫ 2+i∞

2−i∞

xs

(s+ a)2
L′(s, χ)
L(s, χ) ds =

∑
n<x

χ(n)Λ(n)(n/x)a log(x/n) .

3The principal character modulo m is the Dirichlet character χ : Z→ C induced by the trivial
character on (Z/mZ)?.
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Proof. This is Lemma 4.2 of [2]. We provide only a brief sketch here. We
plug the Dirichlet series

L′(s, χ)
L(s, χ) = −

∞∑
n=1

χ(n)Λ(n)n−s

into the left-hand side above and interchange the order of summation and
integration. Next, we use the fact that for y > 0 one has

1
2πi

∫ 2+i∞

2−i∞

ys

(s+ a)2 ds =
{
y−a log y if y > 1
0 otherwise

,

and the result follows. �

Lemma 3.2. Let χ be a non-principal primitive Dirichlet character mod-
ulo m with χ(−1) = 1. For x > 1 and a ∈ (0, 1) we have∑
n<x

χ(n)Λ(n)(n/x)a log(x/n) = −
∑

ρ of Lχ

xρ

(ρ+ a)2 −
∞∑
n=1

x−2n

(a− 2n)2 −
1
a2

− log x
xa

(
L′χ
Lχ

)
(−a)− 1

xa

(
L′χ
Lχ

)′
(−a) .

Proof. Formally, this follows immediately by evaluating the integral in
Lemma 3.1 by residues. For more details, see Lemma 4.4 of [2]. �

Lemma 3.3. For x > 1 and a ∈ (0, 1) we have∑
n<x

Λ(n)(n/x)a log(x/n) = x

(a+ 1)2 −
∑
ρ of ζ

xρ

(ρ+ a)2 −
∞∑
n=1

x−2n

(a− 2n)2

− log x
xa

(
ζ ′

ζ

)
(−a)− 1

xa

(
ζ ′

ζ

)′
(−a) .

Proof. The proof is similar to the proof of the previous result. �

For our bounds on q2 and r, we will need to exclude certain primes from
consideration; this will require the following estimate:
Lemma 3.4. Let u ∈ Z+. Then∑

n<x
(n,u)>1

Λ(n)(n/x)a log(x/n) ≤ ω(u)(log x)2 ,

where ω(u) denotes the number of distinct prime factors of u.
Proof. If u = 1, the result is trivial. Suppose u = pa1

1 . . . patt . Then

∑
n<x

(n,u)>1

Λ(n) =
t∑

k=1

blogpk xc∑
a=1

log pk ≤
t∑

k=1
log x = t log x .
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The result easily follows. �

3.2. Sums over zeros. In order to prove our results, we will need to
bound the sums over zeros appearing in Lemmas 3.2 and 3.3. Eventually
we will take character combinations of the formulas appearing in these
lemmas as well, and so it will be useful to bound the corresponding sum
over all the zeros of the Dedekind zeta function of a number field K.

Let K be a number field of discriminant ∆ with r1 real embeddings and
2r2 complex embeddings. We define

ψK(s) := r1 + r2
2 ψ

(
s

2

)
+ r2

2 ψ

(
s+ 1

2

)
− 1

2 [K : Q] log π , ψ(s) := Γ′(s)
Γ(s) ,

where Γ(s) is the usual gamma function. In particular,

ψQ(s) = 1
2

(
ψ

(
s

2

)
− log π

)
.

In order to expedite the proofs of this section, we quote some formulae, all
of which can be derived from (5.9) of [7]. For all s ∈ C, we have:

ζ ′K(s)
ζK(s) = BK +

∑
ρ of ζK

( 1
s− ρ

+ 1
ρ

)
− 1

2 log |∆| − 1
s
− 1
s− 1 − ψK(s)

(3.1)

ζ ′(s)
ζ(s) = B +

∑
ρ of ζ

( 1
s− ρ

+ 1
ρ

)
− 1
s
− 1
s− 1 − ψQ(s)(3.2)

If χ is a non-principal primitive Dirichlet character modulo f , with
χ(−1) = 1, then for all s ∈ C we have:

L′(s, χ)
L(s, χ) = Bχ +

∑
ρ of Lχ

( 1
s− ρ

+ 1
ρ

)
− 1

2 log f − ψQ(s)(3.3)

Each sum above is over the non-trivial zeros ρ of the corresponding func-
tions, and is absolutely and uniformly convergent on compact subsets of C.
Henceforth we adopt the notation that ρ will always denote a non-trivial
zero with 0 < <(ρ) < 1.

Each of (3.1), (3.2), (3.3) involves a constant B which can be difficult
to estimate. Fortunately, in all three cases this constant can be eliminated
from the equation as follows. Provided the sum is taken in symmetric order4,
one has

(3.4) B +
∑
ρ of ζ

1
ρ

= 0 ,

4Taking the sum in symmetric order means:
∑
ρ

= lim
T→∞

∑
ρ=σ+it
|t|<T
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and similarly for BK and Bχ. See [3] for a simple argument which gives
this result for the constant B. The corresponding result for BK follows by
a similar argument and was first exploited by Stark to give lower bounds
for discriminants (see [16, 17]).

The analogous result for Bχ is not obvious; in fact, it wasn’t known
until the introduction of the Weil formulas (see [18, 19]). Plugging s = 1
into (3.3) and comparing against (2.3.1) of [6] gives a proof of this result.
See [14, 15, 13] for results regarding the use of explicit formulae to obtain
discriminant bounds.

We begin with a lemma which goes back to Landau (see [8]).

Lemma 3.5. Let χ be a primitive Dirichlet character modulo f with
χ(−1) = 1. Then for σ ∈ R, we have∑

ρ of Lχ

( 1
σ − ρ

+ 1
σ − ρ

)
= log f + 2<L

′(σ, χ)
L(σ, χ) + 2ψQ(σ) .

Proof. We substitute s = σ into (3.3) and add the result to it’s conjugate.
The result now follows upon invoking the fact that

<

Bχ +
∑

ρ of Lχ

1
ρ

 = 0 .

�

Lemma 3.6. Let χ be a non-principal primitive Dirichlet character mod-
ulo f with χ(−1) = 1. Assume the RH and the GRH for L(s, χ). For
a ∈ (0, 1) we have∑

ρ of ζ, Lχ

1
|ρ+ a|2

≤ 1
2a+ 1

(
log f + 2

( 1
a+ 1 + 1

a

)
+ 4ψQ(a+ 1)

)
.

Proof. We consider the following two formulae:∑
ρ of ζ

( 1
σ − ρ

+ 1
σ − ρ

)
= 2ζ

′(σ)
ζ(σ) + 2

( 1
σ

+ 1
σ − 1

)
+ 2ψQ(σ)

∑
ρ of Lχ

( 1
σ − ρ

+ 1
σ − ρ

)
= log f + 2<L

′(σ, χ)
L(σ, χ) + 2ψQ(σ)

The second formula above is Lemma 3.5 and the first can be proved in
exactly the same manner. Setting σ = a+1 and supposing that <(ρ) = 1/2,
we find:

(3.5) 1
|ρ+ a|2

= 1
2a+ 1

( 1
σ − ρ

+ 1
σ − ρ

)



Norm-Euclidean Galois fields and the GRH 433

To complete the proof, we combine everything above and note that
ζ ′(σ)
ζ(σ) + <L

′(σ, χ)
L(σ, χ) < 0 ,

by considering the Dirichlet series for (ζ ′/ζ + L′χ/Lχ)(s). �

We give a special case of the previous lemma:
Lemma 3.7. Let χ be a non-principal primitive Dirichlet character mod-
ulo f with χ(−1) = 1. Assume the RH and the GRH for L(s, χ). We have∑

ρ of ζ, Lχ

1∣∣∣ρ+ 1
2

∣∣∣2 ≤
1
2 log f + 0.437 .

Proof. Use the fact
(3.6) ψQ(3/2) ≈ −1.1153
and apply the previous lemma with a = 1/2. �

Having completed the desired estimates over the zeros of ζ(s) and L(s, χ),
we turn turn to ζK(s).
Lemma 3.8. Let K be a number field with discriminant ∆. Then we have∑
ρ of ζK

( 1
σ − ρ

+ 1
σ − ρ

)
= log |∆|+ 2

( 1
σ

+ 1
σ − 1

)
+ 2ψK(σ) + 2ζ

′
K(σ)
ζK(σ) .

Proof. This is exactly analogous to Lemma 3.5. �

Lemma 3.9. Let K be a number field with discriminant ∆. Suppose the
GRH holds for ζK(s). For a ∈ (0, 1) we have∑

ρ of ζK

1
|ρ+ a|2

<
1

2a+ 1

[
log |∆|+ 2

( 1
a+ 1 + 1

a

)
+ 2ψK(a+ 1)

]
.

Proof. Let σ = a + 1. Apply Lemma 3.8, use (3.5), and observe that
ζ ′K(σ)/ζK(σ) < 0. �

We give a special case of the previous lemma:
Lemma 3.10. Let K be a totally real number field with discriminant ∆.
Suppose the GRH holds for ζK(s). We have∑

ρ of ζK

1∣∣∣ρ+ 1
2

∣∣∣2 <
1
2

(
log |∆|+ 16

3 + 2ψQ(3/2) [K : Q]
)
.

Proof. Since r1 = [K : Q], r2 = 0, we have ψK(s) = [K : Q]ψQ(s) . The
result now follows from the previous lemma upon setting a = 1/2. �

Now we specialize even further to our situation:
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Lemma 3.11. Let K be a totally real number field of degree ` and discrim-
inant ∆ = f `−1. Suppose the GRH holds for ζK(s). We have∑

ρ of ζK

1∣∣∣ρ+ 1
2

∣∣∣2 <
1
2 [(`− 1) log f − 2.23 `+ 5.34] .

Proof. We apply the previous lemma, using the approximation given
in (3.6). �

3.3. An upper estimate on q2. We establish a series of results, building
up to the proof of Theorem 3.2.

Lemma 3.12. Let χ be a non-principal Dirichlet character modulo m with
χ(−1) = 1. For a ∈ (0, 1) and x > 0 we have

x

(a+ 1)2 + 1
a2 =

∑
ρ of ζ

xρ

(ρ+ a)2 −
∑

ρ of Lχ

xρ

(ρ+ a)2

+
∑
n<x

χ(n)6=1

(1− χ(n))Λ(n)(n/x)a log(x/n)

+ log x
xa

[(
ζ ′

ζ

)
(−a)−

(
L′χ
Lχ

)
(−a)

]

+ 1
xa

[(
ζ ′

ζ

)′
(−a)−

(
L′χ
Lχ

)′
(−a)

]
.

Proof. Subtract Lemma 3.2 from Lemma 3.3. �

Lemma 3.13. Let χ be a non-principal primitive Dirichlet character mod-
ulo f with χ(−1) = 1. For a ∈ (0, 1) we have∣∣∣∣∣
(
ζ ′

ζ

)
(−a)−

(
L′χ
Lχ

)
(−a)

∣∣∣∣∣
≤ (a+ 2)

∑
ρ of ζ, Lχ

1
|(ρ+ a)(2− ρ)| + 2

∣∣∣∣ζ ′(2)
ζ(2)

∣∣∣∣+ 1
a

+ 1
a+ 1 + 3

2 .

Proof. We begin with the following formulas which hold for all s ∈ C,
provided the sums are taken in symmetric order:(

ζ ′

ζ

)
(s) =

∑
ρ of ζ

1
s− ρ

− 1
s
− 1
s− 1 − ψQ(s)(3.7)

(
L′χ
Lχ

)
(s) =

∑
ρ of Lχ

1
s− ρ

− 1
2 log f − ψQ(s)(3.8)
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Formulas (3.7) and (3.8) are obtained from (3.2) and (3.3) respectively by
applying the facts

∑
ρ of ζ ρ

−1+B = 0 and
∑
ρ of Lχ ρ−1+Bχ = 0. Plugging

s = 2 into (3.7) and subtracting it from itself, and similarly for (3.8), yields:(
ζ ′

ζ

)
(s) =

(
ζ ′

ζ

)
(2) +

∑
ρ

( 1
s− ρ

− 1
2− ρ

)

+ 3
2 −

1
s
− 1
s− 1 + ψQ(2)− ψQ(s)(

L′χ
Lχ

)
(s) =

(
L′χ
Lχ

)
(2) +

∑
ρ

( 1
s− ρ

− 1
2− ρ

)
+ ψQ(2)− ψQ(s)

Using the above, together with the fact
1

−a− ρ
− 1

2− ρ = − a+ 2
(ρ+ a)(2− ρ) ,

we can write(
ζ ′

ζ

)
(−a)−

(
L′χ
Lχ

)
(−a)

= (a+ 2)

 ∑
ρ of Lχ

1
(ρ+ a)(2− ρ) −

∑
ρ of ζ

1
(ρ+ a)(2− ρ)


+
(
ζ ′

ζ

)
(2)−

(
L′χ
Lχ

)
(2) + 3

2 + 1
a

+ 1
a+ 1 .

The result follows upon taking absolute values and using the fact that∣∣∣∣∣
(
L′χ
Lχ

)
(2)
∣∣∣∣∣ ≤

∣∣∣∣(ζ ′ζ
)

(2)
∣∣∣∣ .

�

Lemma 3.14. Suppose a ∈ (0, 1) and <(ρ) = 1/2. Then
1

|(ρ+ a)(2− ρ)| ≤
1

|ρ+ a|2
.

Proof. Use |2− ρ| ≥ |ρ+ a|. �

Lemma 3.15. Let χ be a non-principal primitive Dirichlet character mod-
ulo f with χ(−1) = 1. For a ∈ (0, 1) we have∣∣∣∣∣

(
ζ ′

ζ

)′
(−a)−

(
L′χ
Lχ

)′
(−a)

∣∣∣∣∣ < ∑
ρ of ζ, Lχ

1
|ρ+ a|2

+ 1
a2 + 1

(a+ 1)2 .
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Proof. We start by differentiating (3.7) and (3.8); this gives(
ζ ′

ζ

)′
(s) = −

∑
ρ of ζ

1
(s− ρ)2 + 1

s2 + 1
(s− 1)2 − ψ

′
Q(s)(3.9)

(
L′χ
Lχ

)′
(s) = −

∑
ρ of Lχ

1
(s− ρ)2 − ψ

′
Q(s) ,(3.10)

which allows us to write(
ζ ′

ζ

)′
(−a)−

(
L′χ
Lχ

)′
(−a)

=
∑

ρ of Lχ

1
(ρ+ a)2 −

∑
ρ of ζ

1
(ρ+ a)2 + 1

a2 + 1
(a+ 1)2 .

The result follows. �

Proposition 3.1. Let χ be a non-principal primitive Dirichlet character
modulo f with χ(−1) = 1. Assume the RH and the GRH for L(s, χ). We
define ∑

ρ

:=
∑

ρ of ζ, Lχ

1∣∣∣ρ+ 1
2

∣∣∣2 .
For x > 0 we have

x

9/4 + 4 ≤
√
x
∑
ρ

+ 2
∑
n<x

χ(n) 6=1

Λ(n)(n/x)1/2 log(x/n)

+ log x√
x

(
5
2
∑
ρ

+ 2
∣∣∣∣ζ ′(2)
ζ(2)

∣∣∣∣+ 25
6

)
+ 1√

x

(∑
ρ

+ 40
9

)
.

Proof. Set a = 1/2. Combine Lemmas 3.12, 3.13, 3.14, and 3.15. �

Proof of Theorem 3.2. The result for a general character follows from the
corresponding result for primitive characters and hence we may assume χ
is a primitive character modulo f .

Define x := 2.5(log f)2. Since f ≥ 109, we have x > 1073. By way of
contradiction, suppose that χ(n) = 1 for all n < x with (n, q1) = 1. Under
this assumption, we apply Lemma 3.4 with u = q1, which gives∑

n < x
χ(n) 6= 1

Λ(n)(n/x)1/2 log(x/n) ≤ (log x)2 .

Combining the above with Proposition 3.1 and dividing by
√
x yields

√
x

9/4 + 4√
x
≤
∑
ρ

+2(log x)2
√
x

+ log x
x

[
5
2
∑
ρ

+2
∣∣∣∣ζ ′(2)
ζ(2)

∣∣∣∣+ 25
6

]
+ 1
x

[∑
ρ

+40
9

]
.
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By Lemma 3.7, we have ∑
ρ

≤ 1
2 log f + 0.437 ,

and in particular,
1√
x

∑
ρ

≤ 1
3 .

We see
log x
x

[25
6

]
+ 1
x

[∑
ρ

+40
9

]
≤ 1√

x

( log x√
x
· 25

6 + 1
3 + 1√

x

40
9

)
<

4√
x
,

and therefore
√
x

9/4 ≤
∑
ρ

+2(log x)2
√
x

+ log x
x

[
5
2
∑
ρ

+2
∣∣∣∣ζ ′(2)
ζ(2)

∣∣∣∣
]
.

We have
1√
x

[
5
2
∑
ρ

+2
∣∣∣∣ζ ′(2)
ζ(2)

∣∣∣∣
]
< 0.869

and
log x√
x
≤ 0.214

which leads to
√
x

9/4 ≤
1
2 log f + 0.437 + 2(log x)2

√
x

+ 0.186 .

Now we observe
2(log x)2
√
x

≤ 2.98 .

All together, we have √
x

9/4 ≤
1
2 log f + 3.61

This leads to:
√
x ≤ 9

8(log f) + 8.13

≤ 1.52 log f

Squaring both sides yields

x ≤ 2.32 (log f)2 ,

a contradiction. �
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3.4. An upper estimate on r. We establish a series of results, building
up to the proof of Theorem 3.3.

Lemma 3.16. Let χ be a non-principal Dirichlet character modulo a prime
p of order ` with χ(−1) = 1. Fix any `-th root of unity ω 6= 1. For a ∈ (0, 1)
and x ∈ (1, p) we have

x

(a+ 1)2 + 1
a2 =

∑̀
k=1

ω−k
∑

ρ of Lχk

xρ

(ρ+ a)2

+ `
∑
n<x

χ(n)=ω

Λ(n)(n/x)a log(x/n)

+ log x
xa

[(
ζ ′

ζ

)
(−a) +

`−1∑
k=1

ω−k
(
L′
χk

Lχk

)
(−a)

]

+ 1
xa

(ζ ′
ζ

)′
(−a) +

`−1∑
k=1

ω−k
(
L′
χk

Lχk

)′
(−a)

 .
Proof. First we note that χk for k = 1, . . . , `−1 are all non-principal prim-
itive characters as χ is a character modulo a prime p of order `; moreover,
χ`(n) = 1 for all n < x as x < p. Multiplying the identity

∑̀
k=1

ω−kχk(n) =
{
` χ(n) = ω

0 otherwise

by
g(x, n) := Λ(n)(n/x)a log(x/n)

and summing over all n < x yields

∑
n<x

g(x, n)
∑̀
k=1

ω−kχk(n) = `
∑
n<x

χ(n)=ω

g(x, n) .

Interchanging the order of summation gives

∑̀
k=1

ω−k
∑
n<x

g(x, n)χk(n) = `
∑
n<x

χ(n)=ω

g(x, n) .

Now we apply Lemma 3.2 and Lemma 3.3 and use the facts:

(3.11)
∑̀
k=1

ω−k = 0 ,
`−1∑
k=1

ω−k = −1 .

The result follows. �
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Lemma 3.17. Let χ be a non-principal Dirichlet character modulo a prime
p of order ` with χ(−1) = 1. Fix any `-th root of unity ω 6= 1. For a ∈ (0, 1)
we have∣∣∣∣∣
(
ζ ′

ζ

)
(−a) +

`−1∑
k=1

ω−k
(
L′
χk

Lχk

)
(−a)

∣∣∣∣∣
≤ (a+ 2)

∑
ρ

1
|(ρ+ a)(2− ρ)| + `

∣∣∣∣ζ ′(2)
ζ(2)

∣∣∣∣+ 1
a

+ 1
a+ 1 + 3

2 ,

where the sum is taken over all non-trivial zeros ρ of L(s, χk) for
k = 1, . . . , `.

Proof. Using (3.7), (3.8) and (3.11), we can write:(
ζ ′

ζ

)
(−a) +

`−1∑
k=1

ω−k
(
L′
χk

Lχk

)
(−a)

= −(a+ 2)
∑̀
k=1

ω−k
∑

ρ of Lχk

1
(ρ+ a)(2− ρ)

+
(
ζ ′

ζ

)
(2) +

`−1∑
k=1

(
L′
χk

Lχk

)
(2) + 3

2 + 1
a

+ 1
a+ 1

The result follows in a similar manner as Lemma 3.13. �

Lemma 3.18. Let χ be a non-principal Dirichlet character modulo a prime
p of order ` with χ(−1) = 1. Fix any `-th root of unity ω 6= 1. For a ∈ (0, 1)
we have∣∣∣∣∣∣

(
ζ ′

ζ

)′
(−a) +

`−1∑
k=1

ω−k
(
L′
χk

Lχk

)′
(−a)

∣∣∣∣∣∣ ≤
∑
ρ

1
|ρ+ a|2

+ 1
a2 + 1

(a+ 1)2 ,

where the sum is taken over all non-trivial zeros ρ of L(s, χk) for
k = 1, . . . , `.

Proof. Using (3.9), (3.10), and (3.11) we can write(
ζ ′

ζ

)′
(−a) +

`−1∑
k=1

ω−k
(
L′
χk

Lχk

)′
(−a)

= 1
a2 + 1

(a+ 1)2 −
∑̀
k=1

ω−k
∑

ρ of Lχk

1
(ρ+ a)2 .

�
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Proposition 3.2. Let ` and f be odd primes with f ≡ 1 (mod `). Let
K be the Galois number field of degree ` and conductor f , and let χ be a
primitive Dirichlet character modulo f of order `. Fix any `-th root of unity
ω 6= 1. Suppose that the GRH holds for ζK(s). We define∑

ρ

:=
∑
ρ

1∣∣∣ρ+ 1
2

∣∣∣2 ,
where the sum is taken over all non-trivial zeros of ζK(s). For x ∈ (1, f)
we have

x

9/4 + 4 ≤
√
x
∑
ρ

+`
∑
n<x

χ(n)=ω

Λ(n)(n/x)1/2 log(x/n)

+ log x√
x

(
5
2
∑
ρ

+ `

∣∣∣∣ζ ′(2)
ζ(2)

∣∣∣∣+ 25
6

)
+ 1√

x

(∑
ρ

+ 40
9

)
.

Proof. In light of Lemma 2.1,
∑
ρ can also be thought of as the sum over

the non-trivial zeros of L(s, χk) for k = 1, . . . , ` (counting multiplicities).
Observe that since ` is odd, we have χ(−1) = 1. Now set a = 1/2 and
combine Lemmas 3.16, 3.17, 3.14, 3.18. �

Proof of Theorem 3.3. Define x := 2.5(` − 1)2(log f)2. Since f ≥ 108 and
` ≥ 3, we have x > 3393. By way of contradiction, suppose that χ(n) 6= ω
for all n < x with (n, q1q2) = 1. Under this assumption we apply Lemma 3.4
with u = q1q2, which gives∑

n<x
χ(n)=ω

Λ(n)(n/x)1/2 log(x/n) ≤ 2(log x)2 .

Combining the above with Proposition 3.2 and dividing by
√
x yields:

√
x

9/4 + 4√
x
≤
∑
ρ

+2`(log x)2
√
x

+ log x
x

[
5
2
∑
ρ

+`
∣∣∣∣ζ ′(2)
ζ(2)

∣∣∣∣+ 25
6

]
+ 1
x

[∑
ρ

+40
9

]
.

We note that Lemma 3.11 is applicable in our situation; indeed, our as-
sumptions on K imply that it is totally-real and, using the conductor-
discriminant formula, we see that ∆ = f `−1. By Lemma 3.11, we have∑

ρ

≤ 1
2 [(`− 1) log f − 2.23 `+ 5.34] ,

and in particular,
1√
x

∑
ρ

≤ 1
2
√

2.5
.
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We see

log x
x

[25
6

]
+ 1
x

[∑
ρ

+40
9

]
≤ 1√

x

( log x√
x
· 25

6 + 1
2
√

2.5
+ 1√

x

40
9

)
<

4√
x
,

and therefore
√
x

9/4 ≤
∑
ρ

+2`(log x)2
√
x

+ log x
x

[
5
2
∑
ρ

+`
∣∣∣∣ζ ′(2)
ζ(2)

∣∣∣∣
]
.

We have
1√
x

[
5
2
∑
ρ

+`
∣∣∣∣ζ ′(2)
ζ(2)

∣∣∣∣
]
< 0.82

and
log x√
x
≤ 0.14 ,

which leads to
√
x

9/4 ≤
1
2 [(`− 1) log f − 2.23 `+ 5.34] + 2`(log x)2

√
x

+ 0.12 .

Now we observe
2`(log x)2
√
x

≤ 2.27` .

All together, we have
√
x

9/4 ≤
1
2 [(`− 1) log f − 2.23 `+ 5.34] + 2.27`+ 0.12

≤ 1
2(`− 1)(log f) + 1.16`+ 2.79

This leads to:
√
x ≤ 9

8(`− 1)(log f) + 2.61`+ 6.28

≤ 1.51(`− 1) log f

Squaring both sides yields

x ≤ 2.3(`− 1)2(log f)2 ,

a contradiction. �
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4. GRH bounds for norm-Euclidean fields
In this section we prove Theorem 1.4. First we deal separately with the

situation where q1 is small.

Theorem 4.1. Let K be a Galois number field of odd prime degree ` and
conductor f . Assume the GRH for ζK(s). Let q1 denote the smallest rational
prime which is inert in K. If q1 < 100 and

5825(`− 1)2(log f)4 < f ,

then K is not norm-Euclidean.

Proof. Set A = 5825. One checks that our hypothesis implies f ≥ 109. By
Theorem 2.1 we may assume that f is a prime with f ≡ 1 (mod `). We
adopt the notation from the statement of Theorem 2.2. Since q1 < 100, we
have q1 ≤ 97, and by Theorems 3.2 and 3.3, we have

q2 < 2.5(log f)2 ,(4.1)
r < 2.5(`− 1)2(log f)2 ;(4.2)

hence we have
2.1 q1q2r log q1 < (2.1)(97)(2.5)(log f)2(2.5)(`− 1)2(log f)2(log 97)

< A(`− 1)2(log f)4 .

If q1 6= 2, 3, 7, then it follows from Theorem 2.2 that the condition given
in our hypothesis is sufficient. If q1 = 7, then we observe that

3 q1q2r log q1 < (3)(7)(2.5)(log f)2(2.5)(`− 1)2(log f)2(log 7)
< A(`− 1)2(log f)4 .

Now we deal with the special case where q1 = 2, q2 = 3. Our hypothesis
gives

(`− 1) < 1√
A

f1/2

(log f)2 .

In order to use Proposition 2.1, we estimate

72(`− 1)f1/2 log 4f + 35 < 72√
A

log 4f
(log f)2 f + 35

< 0.1f + 35
< f ;

thus the proposition applies. When q1 = 3, q2 = 5, we use a similar estimate
to conclude that

507(`− 1)f1/2 log 9f + 448 < 0.4f + 448 < f ,

and hence Proposition 2.1 applies again.
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The remaining cases fall under conditions (4) and (5) of Theorem 2.2.
We will prove the bound

5 q2r < f ,

which will deal with all remaining cases. From the estimates (4.1) and (4.2)
we have

5 q2r < 32(`− 1)2(log f)4 < A(`− 1)2(log f)4 < f .

This completes the proof. �

Applying the previous theorem with ` = 3 yields:

Corollary 4.1. Let K be a Galois cubic number field with conductor
f ≥ 6 · 109. Assume the GRH for ζK(s). Let q1 denote the smallest rational
prime which is inert in K. If q1 < 100, then K is not norm-Euclidean.

Proof of Theorem 1.4. One checks that our hypothesis implies f ≥ 1010.
By Theorem 2.1 we may assume that f is a prime with f ≡ 1 (mod `). We
adopt the notation from Theorem 2.2. Applying Theorems 3.1, 3.2, and 3.3,
we have:

q1 < (1.17 log f − 6.3)2

q2 ≤ 2.5(log f)2(4.3)
r ≤ 2.5(`− 1)2(log f)2(4.4)

For the moment, we assume q1 6= 2, 3, 7. Combining everything, this gives
2.1 q1q2r log q1 < 26.25(`−1)2(1.17 log f−6.3)2 log(1.17 log f−6.3)(log f)4 .

Hence a sufficient condition is:
(4.5) 26.25(`− 1)2(1.17 log f − 6.3)2 log(1.17 log f − 6.3)(log f)4 ≤ f
Note that the condition given in our hypothesis implies (4.5). To deal with
the remaining cases of q1 = 2, 3, 7, we note that (4.5) implies the condition
given in the statement of Theorem 4.1; hence (4.5) is sufficient in all cases.

�

5. Galois cubic fields
Finally, we give the proof of Theorem 1.1. Let K be a norm-Euclidean

Galois cubic field with conductor f and discriminant ∆ which is not any of
the 13 fields listed in the statement of Theorem 1.1. In light of Theorem 1.2,
we may assume f ≥ 1010. Moreover, Theorem 2.1 allows us to conclude
that ∆ = f2 and that f is a prime with f ≡ 1 (mod 3). Using the slightly
complicated condition (4.5) in the proof of Theorem 1.4 and setting ` = 3
we find that f < 7 · 1010.

It remains to deal with the cases where f lies in (1010, 7 · 1010). Let χ
be a primitive cubic character modulo f , and let q1 denote the smallest
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prime such that χ(q1) 6= 1. By Corollary 4.1, to show that K is not norm-
Euclidean, assuming f ∈ (1010, 7 · 1010), it suffices to show q1 < 100. Using
a computer program (written in C) to carry out the computation, we obtain
the following lemma which completes the proof of Theorem 1.1.

Lemma 5.1. Suppose f is a prime with f ≡ 1 (mod 3). Let χ be a cubic
character modulo f , and denote by q1 the smallest prime with χ(q1) 6= 1. If
f ≤ 7 · 1010, then q1 ≤ 61.

In our implementation we use NTL with GMP for large integer arith-
metic. We use the fact that χ(p) = 1 if and only if p(f−1)/3 ≡ 1 (mod f),
as the latter condition can be checked very quickly using fast modular ex-
ponentiation. The computation was carried out on a MacBook Pro with a
2.26 GHz Intel Core 2 Duo processor and 4 GB of RAM, running Mac OS
10.6. It took approximately 4 hours of CPU time to complete.

As an additional curiosity we have kept a list of record values of q1. That
is, each time we encounter a value of q1 which is strictly greater than all
previous values, we have outputted the values of f and q1. Here are the
results:

Record: f=7, q1=2
Record: f=31, q1=3
Record: f=307, q1=5
Record: f=643, q1=7
Record: f=5113, q1=11
Record: f=21787, q1=13
Record: f=39199, q1=17
Record: f=360007, q1=23
Record: f=4775569, q1=29
Record: f=10318249, q1=37
Record: f=65139031, q1=41
Record: f=387453811, q1=43
Record: f=913900417, q1=47
Record: f=2278522747, q1=53
Record: f=2741702809, q1=59
Record: f=25147657981, q1=61
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