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Periodic Jacobi-Perron expansions
associated with a unit

par Brigitte ADAM et Georges RHIN

Résumé. Nous démontrons que, pour toute unité ε dans un corps
de nombres réel K de degré n+ 1, il existe seulement un nombre
fini de n-uples dans Kn qui ont un développement purement
périodique par l’algorithme de Jacobi-Perron. Ce résultat géné-
ralise le cas des fractions continues pour n = 1. Pour n = 2 nous
donnons un algorithme qui permet de calculer explicitement tous
ces couples.

Abstract. We prove that, for any unit ε in a real number fieldK
of degree n+ 1, there exits only a finite number of n-tuples in Kn

which have a purely periodic expansion by the Jacobi-Perron algo-
rithm. This generalizes the case of continued fractions for n = 1.
For n = 2 we give an explicit algorithm to compute all these pairs.

1. Introduction

One of the generalizations of the continued fraction algorithm to higher
dimensions is the Jacobi-Perron Algorithm (JPA). Its main interest lies in
the great simplicity of its definition. When it is used for rational numbers,
it gives a very simple algorithm to get the gcd of n integers. It also quickly
gives an integer matrix with determinant ±1 whose first column is given.
It gives rational simultaneous approximations to a set (α1, . . . , αn) of real
numbers Q linearly independent with 1. These approximations are only
best approximations when n = 2 and (1, α1, α2) is a basis of a real cubic
field with complex conjugates and when the JPA expansion is ultimately
periodic. The authors [2] gave an algorithm, using only integers, to compute
the AJP expansion when the numbers αi are algebraic numbers. The quality
of the approximations have been studied in general by J. Lagarias [10]. For
more efficients algorithms see H. Cohen [7].

It is well-known that the continued fraction expansion of a real quadratic
number α is always ultimately periodic. Moreover α has a purely periodic
expansion if and only if α > 1 and its conjugate α satisfies −1 < α < 0 (we
say that α is reduced). If l denotes the period length and

(
pi
qi

)
(i ≥ 0) the
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sequence of convergents of α then we have :

(1.1)
(
pl pl−1
ql ql−1

)(
α
1

)
= ε

(
α
1

)
where ε = qlα+ ql−1 is a unit of Q(α).

This property is also valid for purely periodic JPA expansions. It is called
the Hasse-Bernstein theorem [3].

Moreover, in the quadratic case, we have the following property (P) : if
ε > 1 is a unit of a real quadratic field K, then there exists only a finite
number of reduced elements in K whose continued fraction expansion is
associated with ε by (1.1).

A natural question of O. Perron [13] was : let (αi)1≤i≤n be n elements
of a real number field K of degree (n + 1) such that 1, α1, α2, . . . , αn be
Q-linearly independent. Under which algebraic conditions these numbers
have a periodic JPA expansion? Now, this question is not solved, even for
degree 3.

Several authors have presented a few classes of periodic JPA expansions.
C. Levesque and G. Rhin [11] introduced a pair (α1, α2) of cubic num-
bers depending on a parameter. Their JPA expansion is purely periodic
with period length tending to infinity with the parameter. The first author
[1] proved that this JPA expansion and the Voronoï expansion are closely
connected and that the unit obtained is fundamental in the number field
generated by α2. Leon Bernstein [4] studied the JPA expansion of the pair
( 3
√
m,

3√
m2) for some integers m with 1 < m < 1000. In [5] he presented

the JPA expansion of the same type when m = D3 + 6D with D = 2K and
K ≥ 2. The period length is equal to 8 and gives the square of the fun-
damental unit of the field Q( 3

√
m). In 1984, E. Dubois and R. Paysant-Le

Roux [8] proved that, in all real number fields of degree (n+ 1), there exist
n numbers whose JPA expansion is periodic.

In this paper we use another point of view. Given a unit in a real number
field of degree (n + 1), can we compute all n-tuples which have a purely
periodic JPA expansion associated with this unit? We prove the following
result : Let K be a real number field of degree (n + 1) and ε a unit of K,
there exists only a finite number of elements in Kn whose JPA expansion is
purely periodic and associated with ε. We give a bound depending on the
trace of the unit ε and a method to get all these expansions. So, we obtain
the generalization of the property (P) to any real number field.

Moreover in the case of real cubic fields (n = 2) we give an explicit
algorithm to find all the periodic expansions related to a fixed unit.

In Section 2, we give the definition of the Jacobi-Perron algorithm and
the Hasse-Bernstein theorem. Our theorem is proved in Section 3. Section
4 is devoted to the case of real cubic fields and the explicit algorithm is
given in Section 5. In Section 6 we present some numerical results which
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show that, surprisingly, there is a lot of such expansions. For instance, in
the real cubic field with discriminant 621, we give a unit with trace equal
to 435 which gives 2758 pairs (α1, α2) which have a purely periodic AJP
expansion associated with this unit. We also give some improvements of
Bernstein’s results.

2. Preliminaries : JPA and Hasse-Bernstein theorem.

Definition 2.1. Let α = (α1, α2, . . . , αn) be a vector in Rn (n ≥ 1).The
Jacobi-Perron Algorithm (JPA) expansion [13] of α is given by the
two sequences :

- (a(ν))ν≥0 in Zn where a(ν) = (a(ν)
1 , a

(ν)
2 , . . . , a

(ν)
n ) ;

- (α(ν))ν≥0 in Rn where α(ν) = (α(ν)
1 , α

(ν)
2 , . . . , α

(ν)
n )

defined by :

(2.1)



α(0) = α ;

for ν ≥ 0 a
(ν)
i = [α(ν)

i ] for 1 ≤ i ≤ n ;

if α(ν)
1 6= a

(ν)
1 α

(ν+1)
n = 1

α
(ν)
1 −a

(ν)
1

;

α
(ν+1)
i = α

(ν)
i+1−a

(ν)
i+1

α
(ν)
1 −a

(ν)
1

for 1 ≤ i < n.

where [x] is the integer part of x. We define a(ν)
0 = 1 and α(ν)

0 = 1 for all ν.

Remark. In this case, the integers a(ν)
i , ν ≥ 0, 0 ≤ i ≤ n, satisfy the

following Perron Conditions

(2.2) (a(ν)
n , a

(ν+1)
n−1 , . . . , a

(ν+i)
n−i ) ≥ (a(ν)

i , a
(ν+1)
i−1 , . . . , a

(ν+i−1)
1 , a

(ν+i)
0 )

in lexicographical order.

Definition 2.2. We define the sequence A(ν) = (A(ν)
0 , A

(ν)
1 , A

(ν)
2 , . . . , A

(ν)
n )

of vectors in Zn by :

(2.3)


for 0 ≤ i ≤ n and 0 ≤ j ≤ n, A

(j)
i =

{
1 if i = j

0 else
for ν ≥ 0 and 0 ≤ i ≤ n,

A
(ν+n+1)
i = A

(ν)
i + a

(ν)
1 A

(ν+1)
i + . . .+ a

(ν)
n A

(ν+n)
i .

So, we have the following formulas :

(1) αi =
∑n

j=0 A
(ν+j)
i α

(ν)
j∑n

j=0 A
(ν+)
0 α

(ν)
j

for all ν ≥ 0 and 1 ≤ i ≤ n.
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(2) by writing

(2.4) Aν =



a
(ν)
n 1 0 . . . 0

a
(ν)
n−1 0 . . . . . . ...
...

... . . . . . . 0
a

(ν)
1 0 . . . 0 1
1 0 . . . . . . 0



we have A0A1 . . .Aν−1 =


A

(ν+n)
n . . . . . . A

(ν)
n

... . . . . . .
...

... . . . . . .
...

A
(ν+n)
0 . . . . . . A

(ν)
0

 .
We set A(l) = A0A1 . . .Al−1.

Definition 2.3. The JPA expansion is periodic if there exist two integers
k ≥ 0 and l > 0 such that a(k+ν)

i = a
(k+ν+l)
i for all ν ≥ 0 and 0 < i ≤ n. l

is called the period length.
If k and l are the smallest integers which verify this equality then k is the

preperiod length and l is the primitive period length. If k = 0 the expansion
is purely periodic .

Remark. If the JPA expansion of α = (α1, α2, . . . , αn) is purely periodic
with period length l, then

ε = A
(l)
0 + α1A

(l+1)
0 + . . .+ αnA

(l+n)
0 =

l−r∏
ν=0

α(ν)
n .

is a unit of K = Q[α1, . . . , αn]. This is the Hasse-Bernstein theorem [3] : in
this case we have

(2.5) A(l)


αn
...
α1
1

 = ε


αn
...
α1
1


We say that this JPA expansion is associated with the unit ε.

Definition 2.4. We say that a matrix A is a JPA matrix of length l > 0
if there is a finite sequence of integers (a(ν)

i ), 0 ≤ ν ≤ l − 1, 0 < i ≤ n
such that A = A0A1 . . .Al−1 where the matrices Ai are defined by (2.4)
and the integers a(ν)

i satisfy the Perron conditions. We say that each Ai is
an elementary JPA matrix.
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Definition 2.5. We say that a matrix A is a JPA period matrix if A
is a JPA matrix of length l > 0 and if the infinite sequence of integers
(a(ν)
i ), 0 ≤ ν ≤ l− 1, 0 < i ≤ n defined by a(kl+ν)

i = a
(ν)
i , for 0 ≤ ν ≤ l− 1,

0 < i ≤ n and k ≥ 1 satisfies the Perron conditions.

3. The main theorem.

Theorem 3.1. Let K be a real number field of degree (n+ 1) and ε > 1 a
unit of K. There exists only a finite number of elements in Kn whose JPA
expansion is purely periodic and associated with ε.

Proof. Let ZK be the ring of algebraic integers of K, (1, ω1, . . . , ωn) an
integral basis of ZK and A the matrix of the multiplication by ε defined by

(3.1) A


ωn
...
ω1
1

 = ε


ωn
...
ω1
1


We search a vector α = (α1, α2, . . . , αn) in Kn such that the JPA expansion
of α is purely periodic and associated with ε, that is to say that we search
the period matrices A such that

(3.2) A


αn
...
α1
1

 = ε


αn
...
α1
1

 .
Remark. The matrices At and At are the matrices of the multiplication
by ε in two different basis of the Q-vector space K.

We suppose now that A is a JPA period matrix of length l satisfying
(3.2).

With the previous notations we have the following lemmas :

Lemma 3.1. For 0 ≤ i ≤ n and 0 ≤ k ≤ n we have

A
(l+k)
i ≤ max(A(l+n)

i , 1).

Proof. If 0 ≤ ν ≤ n then A
(ν)
i =

{
1 if i = ν

0 otherwise
. We have A(ν+n+1)

i =

A
(ν)
i +a(ν)

1 A
(ν+1)
i +. . .+a(ν)

n A
(ν+n)
i , for ν ≥ 0 and 0 ≤ i ≤ n. As a(ν)

n ≥ 1 and
a

(ν)
i ≥ 0 then A(ν+n+1)

i ≥ A(ν+n)
i . These statements prove the lemma. �

Lemma 3.2. For 0 ≤ i ≤ n we have A(l+n)
i ≤ (n+ 1)A(l+n)

n .
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Proof. For 1 ≤ i ≤ n, we have

αi =
∑n
j=0A

(l+j)
i αj∑n

j=0A
(l+j)
0 αj

,

therefore
αn
αi

=
∑n
j=0A

(l+j)
n αj∑n

j=0A
(l+j)
i αj

≥ 1.

Then
∑n
j=0A

(l+j)
i αj ≤

∑n
j=0A

(l+j)
n αj . For all 0 ≤ j ≤ n we have αj ≤ αn

and A
(l+j)
n ≤ A

(l+n)
n , therefore for all 0 ≤ i ≤ n we have A(l+n)

i αn ≤∑n
j=0A

(l+j)
i αj ≤ (n+ 1)A(l+n)

n αn and A(l+n)
i ≤ (n+ 1)A(l+n)

n . �

According to the relations (3.1) and (3.2) we have trace(A) = trace(A).
Since these matrices have positive elements then A(l+n)

n ≤ trace(A). So, if
we denote A = (mij)1≤i,j≤n+1 then mij ≤ (n+1)trace(A). Therefore, there
exists only a finite number of matrices A satisfying (3.2). �

4. Real cubic fields (n=2).

Let K be a real number field of degree 3 and ε > 1 a unit of K. We
search the JPA period matrices A of length l associated with ε. It means
that we search the matrices

A(l) =

A
(l+2)
2 A

(l+1)
2 A

(l)
2

A
(l+2)
1 A

(l+1)
1 A

(l)
1

A
(l+2)
0 A

(l+1)
0 A

(l)
0



= A0A1 . . .Al−1 =

a
(0)
2 1 0
a

(0)
1 0 1
1 0 0

 . . . .
a

(l−1)
2 1 0
a

(l−1)
1 0 1
1 0 0


where the integers a(ν)

i (i ∈ {1, 2}, 0 ≤ ν ≤ l − 1 ) satisfy the following
periodicity conditions (including the Perron conditions (2.2)) : a(ν)

2 ≥ 1,
0 ≤ a(ν)

1 ≤ a(ν)
2 and if a(ν)

2 = a
(ν)
1 then ν < l− 1 and a(ν+1)

1 ≥ 1 or ν = l− 1
and a(0)

1 ≥ 1.
We have the following lemma.

Lemma 4.1. Let A be a JPA matrix with A = A0A1 . . .Am−1 where m ≥ 1
, then we have

1) A(m+2)
0 ≥ 1 and the sequences A(ν+2)

j (0 ≤ ν ≤ m) are non decreas-
ing for j = 0 and j = 2.

2) For 0 ≤ j, ν ≤ 2, A(m+ν)
j ≤ A(m+2)

2 ;
3) trace(A)

3 ≤ A(m+2)
2 ≤ trace(A).
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Proof. The results of the lemma are clearly true for m = 1 i.e. in the case
where A is equal to A0.

1) We have A(3)
0 = 1, A(4)

0 = a
(1)
2 ≥ 1, A(5)

0 = a
(2)
2 a

(1)
2 +a(2)

1 ≥ a(2)
2 a

(1)
2 ≥

a
(1)
2 . So, by Definition 2.2 the proof follows by induction for ν ≥ 6.

For the second property use A(2)
2 = 1 and A(ν+3)

2 ≥ A(ν+2)
2 for ν ≥ 0

by Definition 2.2.
2) The result is clearly true for m = 1. We have

A
(2)
2 = 1, A(1)

2 = A
(0)
2 = 0

and
A

(4)
2 −A

(4)
1 = a

(1)
2

(
a

(0)
2 − a

(0)
1

)
+ a

(1)
1 − 1.

So, knowing that the sequence A(ν+3)
2 is non decreasing, as

A
(ν+3)
2 −A(ν+3)

i = a
(ν)
2

(
A

(ν+2)
2 −A(ν+2)

i

)
+ a

(ν)
1

(
A

(ν+1)
2 −A(ν+1)

i

)
+
(
A

(ν)
2 −A

(ν)
i

)
for ν ≥ 2 and 0 ≤ i ≤ 1, we prove the second result by induction.

3) Use the trace formula and the previous result.
�

Proposition 4.1. Let a, b, c be three fixed integers such that a ≥ b ≥ 0 and

a ≥ c ≥ 1. There exist at most 4 JPA matrices A with first column

ab
c

 .
Proof. We will use the following notation

Aν =

a
(ν)
2 1 0
a

(ν)
1 0 1
1 0 0

 = (a(ν)
2 , a

(ν)
1 ).

It is clear that, if A satisfies the periodicity conditions, then for all j (0 ≤
j ≤ l − 2), A−1

j A
−1
j−1 . . .A

−1
0 A is a JPA matrix satisfying the conditions of

lemma 4.1.

• First we search (a(0)
2 , a

(0)
1 ) : since the first column ofA−1

0 A is

 c

a− a(0)
2 c

b− a(0)
1 c

 ,
we have :

- if A−1
0 A = I3 then A = A0 = (a, b) and l = 1.

- else, by lemma 4.1, we have

(4.1)
{
c ≥ a− a(0)

2 c ≥ 0
c ≥ b− a(0)

1 c ≥ 1
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We note a = d2c+ r2, b = d1c+ r1 with 0 ≤ r2 < c and 0 ≤ r1 < c and
study the four different cases :
Case 1 : if r1r2 6= 0. In this case we have A0 = (d2, d1) .
Case 2 : if r1 = 0 and r2 6= 0. In this case there is at most a unique
solution (if d1 6= 0) : A0 = (d2, d1 − 1) .
Case 3 : if r1 6= 0 and r2 = 0. In this case there are at most 2 solutions :
A0 = (d2, d1) and A0 = (d2 − 1, d1) .
Case 4 : if r1 = 0 and r2 = 0. Here c = 1, because c divides the deter-
minant which is equal to 1. There are at most 4 solutions : A0 = (a, b) ,
(a, b− 1) ,(a− 1, b) and (a− 1, b− 1).

We let the reader verify that in all cases there are at most 4 possible JPA
matrices. For example, in the last case if a > b ≥ 1 the 4 solutions are :

A = (a, b)
A = (a, b− 1)(1, 0)
A = (a− 1, b− 1)(1, 1)
A = (a− 1, b− 1)(1, 0)(1, 0).

• Then we iterate this process and it will stop when, for an integer l,
A−1
l−1 . . .A

−1
0 A = I3 and then A0A1 . . .Al−1 is a JPA matrix with length l.

At each step we have to verify the Perron conditions, particularly at step
(l − 1), that is if a(l−1)

2 = a
(l−1)
1 then a(0)

1 must be positive, then we get a
period matrix. �

5. Algorithm in the case n=2.

Let K be a real number field of degree 3 such that K = Q(α) where α is
a real root of a polynomial Q = X3 − a2X

2 − a1X − a0 ∈ Z[X]. Let ε > 1
in Z[α] be a unit of K (given, for example, by the Voronoï algorithm or by
Pari [12]). Let A be the matrix defined by the relation

A

α2

α
1

 = ε

α2

α
1


1. We compute all vectors (a, b, c) such that trace(A)

3 ≤ a ≤ trace(A),
a ≥ b ≥ 0, a ≥ c ≥ 1 and gcd(a, b, c) = 1.

2. We apply proposition 4.2 to each vector (a, b, c) and obtain all pe-

riod matrices A with first column

ab
c

 .
3. For each matrix A found, we verify that PA(A) = 0 where PA

denotes the characteristic polynomial of A. Indeed, there exists
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(α2, α1) satisfying the system

(5.1) A

α2
α1
1

 = ε

α2
α1
1


if and only if ε is an eigenvalue of A that is to say PA(A) = 0.

4. For each remaining matrix A, we solve the system (5.1) as follows :
we denote A = (aij) and A−1 = (dij) and so the system (5.1) will
be :

(5.2)


(a11 − ε)α2 + a12α1 + a13 = 0
a21α2 + (a22 − ε)α1 + a23 = 0
a31α2 + a32α1 + (a33 − ε) = 0

or

(5.3)
{
α2 = −a32

a31
α1 + ε−a33

a31

(d31
a31

+ ε)α1 = a21
a31
ε+ d21

a31
.

If η = d31
a31

+ ε and PA = X3 − t1X
2 + t2X − 1 is the characteristic

polynomial of A then η−1 = − 1
PA( d31

a31
)

(
ε2 − t1ε+ t2 − d31

a31
ε+ d2

31
a2

31
+ d31

a31
t1
)

since PA(ε) = 0 .
We have then to replace η−1 in (5.3) to get some formulas of the type :

α1 = p+ qε+ rε2

m
; α2 = s+ tε+ uε2

m

where p, q, r, s, t, u,m are integers.
The numerical results point out that these integers have common divi-

sors. In order to use smaller integers, we will use the following lemma which
allows us to eliminate these common factors.

Lemma 5.1. Let A = (aij)1≤i,j≤3 be a matrix with coefficients in any field
and D = (dij) be the comatrix of A. If we denote :

∆ the determinant of A,
PA = X3 − t1X2 + t2X −∆ the characteristic polynomial of A,
d0 = a31d22 − a32d21,

∆1 = d3
31 + t1d

2
31a31 + t2d31a

2
31 + a3

31∆,
∆2 = a21a

2
31∆ + d21(d2

31 + d31t1a31 + t2a
2
31),

d3 = a31d21 − a21d31,

d4 = a31d32 − a32d31,

then we have ∆1 = d3d4 and ∆2 = d3d0.
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Proof. It is easy to verify that we have the following formulas :
t1 = a11 + (a22 + a33);
t2 = ((a22 + a33)a11 + (−a21a12 + (−a31a13 + (a33a22 − a32a23))));

∆1 = (a2
32a31a

2
21 + (−a32a

2
31a22 + a33a32a

2
31)a21 − a32a

3
31a23)a11

+ ((−a32a
2
31a

2
21 + (a3

31a22 − a33a
3
31)a21 + a4

31a23)a12

+ (a3
32a

3
21 + (−2a2

32a31a22 + a33a
2
32a31)a2

21

+ (a32a
2
31a

2
22 − a33a32a

2
31a22 − a2

32a
2
31a23)a21 + a32a

3
31a23a22));

∆2 = (−a33a32a31a
2
21 + (a33a

2
31a22 − a2

33a
2
31)a21 + a33a

3
31a23)a11

+ ((a32a
2
31a

2
21 + (−a3

31a22 + a33a
3
31)a21 − a4

31a23)a13

+ (−a33a
2
32a

3
21 + (a33a32a31a22 + (a2

32a31a23 − a2
33a32a31))a2

21

+ (−a32a
2
31a23a22 + 2a33a32a

2
31a23)a21 − a32a

3
31a

2
23)),

and then to verify that we have ∆1 = d3d4 and ∆2 = d3d0. �

We denote A2 = (bij) , e0 = a31d12−a32d11 and with the previous lemma
we obtain :

α1 = d0 − b11ε+ a31ε
2

d4
; α2 = e0 + b32ε− a32ε

2

d4
.

Then we obtain formulas of the type ;

α1 = P +Qε+Rε2

M
; α2 = S + Tε+ Uε2

M
where P,Q,R, S, T, U,M are integers which are smaller than the previous
integers p, q, r, s, t, u,m.

6. Numerical results

We present here four examples of computations. Some other expansions
may be found on the web site [15]. We take, in a real cubic field of any
signature, a positive unit ε > 1 whose trace and norm are positive. E.
Dubois, A. Farhane and R. Paysant-Le Roux [9] have proved that ε needs
to be a Pisot number.

1. Let K be the real cubic field of discriminant −324 generated by the
positive root α of the polynomial x3− 3 x2− 2 and ε = 5α2 +α+ 3 be the
fundamental unit with trace(ε) = 57.

There are 163 purely periodic expansions related to ε. For each AJP
period matrix which is given by a periodic expansion of primitive length l
there are l− 1 other period matrices deduced from this periodic expansion
by the action of the cyclic permutation of order l. We say that we get a
period class of length l. Here we have one class of length 1, 9 of length 2, 6
of length 4 and 24 of length 5.
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2. Let K be the totally real cubic field of discriminant 621 generated by
the positive root α > 9 of the polynomial x3 − 9 x2 − 9 x − 2 and ε =
4α2 + 4α+ 1 with trace(α) = 435. Then we get 2758 periodic expansions.
The largest period length is 10. For example, if we take

α1
(0) = 232α2 − 2168α− 1308

47
and

α2
(0) = −206α2 + 1938α+ 1129

47 ,

then we have a purely periodic expansion of length 10 :(
1 1 1 1 1 2 2 6 1 1
0 0 0 0 0 0 0 4 0 0

)
and the period matrix is 215 192 182

104 93 28
150 134 127

 .
3. Let K be the real cubic field of discriminant −108 generated by the

positive root α of the polynomial x3 − 3x2 − 3x − 1 and ε = α. There are
3 periodic expansions related to α : one period class of length 2 and one
of length 1. If we take ε = α2 then trace(ε) = 15 and there are 25 periodic
expansions : one class of length 4, 6 classes of length 3 and the three other
expansions are deduced from those related to α by doubling the period.

4. The case of the fields Q( 3
√
m). We have the following lemma :

Lemma 6.1. Let a ≥ 1 and b be two integers such that a ≥ b ≥ 0 and
α > a the largest real root of the polynomial

X3 − aX2 − bX − 1.
Then (α(α− a), α) has a purely periodic JPA expansion with period length
equal to 1.

Let a ≥ 4 be an integer and α the greatest real root of the polynomial
X3 − aX2 + 3X − 1.

Then (aα − α2 − 2, α+α(α−a)+1
a−3 ) has a purely periodic JPA expansion with

period length equal to 3.

Proof. Left to the reader. For the second case, use the fact that the product
of the two elements of the pair is equal to 1. �

Let ω = 3
√
m. For m = 4, the fundamental unit of the ring Z[ω] is equal

to 5 + 3ω + 2ω2. Its minimal polynomial is
X3 − 15X2 + 3X − 1.
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The lemma gives a pair with period length equal to 3. But there are 25
pairs with period lengths 2, 3 or 4.

We remark that, nowadays, it is easier to get a fundamental unit with
Pari. So we may easily treat the case m = 17.

For m = 17 the period length of the JPA expansion of (ω, ω2) is equal
to 61. The fundamental unit is the real root of the polynomial

X3 − 972X2 + 54X − 1.
There are 5637 pairs whose JPA expansion is purely periodic associated
with this unit.

For the case where m = D3 + 6D with D = 2K and K ≥ 2, Bern-
stein obtained by his JPA expansion the square of the fundamental unit of
Q(ω).The fundamental unit, see Bernstein [6] and Stender [14], is the real
root of the polynomial

X3 − (12K4 + 18K2 + 3)X2 + 3X − 1.
Then the lemma gives a pair with period length equal to 3 (instead of 8
in Bernstein’s paper). For K = 2, m = 267, we get 838 pairs with period
length from 2 to 9. For K = 3 we get 6040 pairs.
Remark. It seems that, for a fixed unit ε, the number of purely periodic
expansions related to ε k grows as k tends to infinity.
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