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Two exponential diophantine equations

par DoMINIK J. LEITNER

RESUME. L’équation 3% + 5° — 7¢ = 1, dont les inconnues a, b, ¢
sont des entiers positifs, a été mentionnée par Masser comme un
exemple pour lequel il n’y a pas d’algorithme permettant une réso-
lution complete. Malgré cela, nous trouvons ici toutes les solutions.
L’équation y? = 3242241, dont les inconnues a, b sont des entiers
positifs et y est un entier, a été mentionnée par Corvaja et Zannier
comme un exemple dont on ignore si le nombre de solutions est
fini. Mais nous trouvons également ici toutes les solutions; il n’y
en a en fait que six.

ABSTRACT. The equation 3% + 5° — 7¢ = 1, to be solved in non-
negative rational integers a,b, ¢, has been mentioned by Masser
as an example for which there is still no algorithm to solve com-
pletely. Despite this, we find here all the solutions. The equation
y? = 3% + 2% + 1, to be solved in non-negative rational integers
a,b and a rational integer y, has been mentioned by Corvaja and
Zannier as an example for which the number of solutions is not
yet known even to be finite. But we find here all the solutions too;
there are in fact only six.

1. Introduction

In this note we find all solutions of the equation

(1.1) 3450 -7 =1
in non-negative integers a, b, ¢, and also all solutions of the equation
(1.2) y? =34 +2° + 1.

in integers y and non-negative integers a, b.

The equation (1.1) has been mentioned by Masser [M] (p.203) as an
example for which there is still no algorithm to solve completely. It can
be interpreted as a special case of an S-unit equation, or, in a broader
context, an equation of the type covered by the classical results of Mordell-
Lang type. The structure of the solution set can be determined using the
Subspace Theorem applied to the more general S-unit equation

(1.3) rot+r1+--+x,=0

Manuscrit regu le 13 janvier 2010.
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in non-zero rational integers xg, x1, ..., 2z, with no common factor. When
these integers are composed of primes from a fixed finite set, the conse-
quence is that (1.3) has at most finitely many solutions satisfying

(1.4) > i #0
i€l

for all non-empty subsets I of {1,...,n}. This (1.4) in our case (1.1)
is hardly any restriction, and one finds at once that the solution set of
(1.1) is at most finite. The general theory also provides an explicit esti-
mate for the number of solutions. But the recent Theorem 1 (p.808) of
the paper [ESS] of Evertse, Schlickewei and Schmidt gives only the upper
bound exp(4.187) ~ 1034458380964 " which is little use in actually finding
the solutions. The same can be said even for the very recent improvement
241944 ~ 102683 by Amoroso and Viada [AV]. And it is notorious that in
general there are no effective estimates at all for the sizes of the solutions of
(1.3). Here we will use a relatively simple method of congruences to show
that the only solutions are in fact a=b=c=0anda=b=c=1.

The equation (1.2) has been mentioned by Zannier [Z1] (pp.61,62) and
[Z2] (p.1) and Corvaja and Zannier [CZ2] (p.296), [CZ3] (pp.168,169) (see
also [Z3] (p.434), [CZ1] and [C] (p.130)) in the context of the Lang-Vojta
Conjecture (see for example [HS] (p.486)). Here the term y? prevents the
use of the Subspace Theorem as above. And indeed they remark that it
is not even known whether the solution set is finite or not, unless one
assumes such a conjecture. One can also assume a version for (1.3) which
was formulated in elementary terms by Vojta [V] (p.7). Namely, for every
A > 1 there is a constant C' and a non-zero homogeneous polynomial F',
each depending only on n and A, such that all solutions of (1.3) in coprime
integers satisfy

(1.5) max{|zo|, |z1], ..., ||} < CP*

where P is the product of all the primes dividing the xq, z1, ..., z,; however
(1.4) now has to be replaced by

(1.6) F(z1,...,2,) #0.

For n = 2 this is of course the intractable abc-conjecture.

With (1.2) we get at once y? < C(6]y|)* in (1.5) and so it suffices to fix
A < 2. Now the failure of (1.6) is not so trivial; but (with z¢ = y?) it would
lead to a point (x1,72) = (3%,2%) on one of a finite set of fixed curves.
Now since 3 and 2 are multiplicatively independent a well-known result of
Liardet (see for example Theorem 7.3 (p.207) of [L]) implies that there are
at most finitely many such points unless 1 or x5 is constant on one of the
curves. But when a or b is constant in (1.2) then it is easy to establish the
finiteness, for example with n = 2 in Vojta’s Conjecture.
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Thus a fortiori there is no algorithm for the complete solution. Never-
theless we will use the same congruence method to show that the set is
indeed finite and in fact that the only solutions are y = +2,a = 0,b =1
and y=46,a=1,b=5and y = +6,a = b= 3.

Because both equations do actually have solutions, it may seem impossi-
ble that we can use congruences to prove the finiteness. And indeed it would
be impossible for equations that are polynomial in all the variables. Here
we have exponential terms like 3*. The values of this for example modulo
12 at « = 0,1,2,3,4,... are 1,3,9,3,9,...; of course eventually periodic
but not at once. So if we can show that 3% must be 1 modulo 12, then
we deduce a = 0 and not just a congruence for a. It is this principle that
we shall exploit, for various moduli the largest of which is 1820. In fact
the various moduli could be taken together to show that we get no more
solutions of (1.1) modulo 27927900 (and even 20475); however this kind of
simplification seems not to be possible for (1.2).

Of course our method is far too special to be considered as a contribution
to the theory of either the S-unit equation or the Vojta Conjecture. See also
the remark in the footnote of [Z1] (p.57). But its success with the fairly
natural equations (1.1) and (1.2) perhaps gives hope that it can be applied
to other interesting equations of the same sort. This is certainly true of
y? = 10% 4 6° + 1 also mentioned in [Z1] (p.60), for example; and already
there the same is noted for the two-variable equation y? = 5% 4+ 2% 4 7.

I am grateful to David Masser for advice on the preparation of this note.
After it was submitted for publication, Michael Bennett kindly drew my
attention to the article [BF] of Brenner and Foster; it turns out that they
had already proved our Theorem 2.1 about (1.1). However they considered
nothing like (1.2).

2. The equation 3% + 50 —7c =1
In this section we prove the following result.

Theorem 2.1. Let a,b,c in Ny = NU {0} satisfy (1.1); then either a =
b=c=0o0ora=b=c=1.

Proof. We need one simple observation.
Lemma 2.1. Leta, b, c be in Ny with (1.1) and abc = 0; thena =b = ¢ = 0.

Proof. At first let @ = 0. Then (1.1) appears as 5° = 7¢ which forces
b = ¢ = 0. Similarly if we start with b = 0. Finally, ¢ = 0 leads to 3 +5° = 2
and so again ¢ = b = ¢ = 0, which completes the proof of the present
lemma. O

Lemma 2.1 shows that either a = b =c¢ =0 or a,b,c € N and hence in
the following we may assume a, b, c € N.
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Let us consider the following table, where we calculate values of 3", 5™, 7™
modulo 1820

2 3 4 5 6 7
27 81 243 729 367

25 125 625 1305 1065 1685

7" (mod 1820) 49 343 581 427 1169 903
n 9 10 11 12 13

3" (mod 1820) | 1101 1483 809 607 1

5" (mod 1820) | 1145 265 1325 1165 365 5

7" (mod 1820) | 861 567 329 483 1561

n
3" (mod 1820)
5" (mod 1820)

||| W |+~

Here we get the same values for n = 1 and n = 13, hence we see a period
of length 12 when we calculate the table above for all n in N.

Now, for m, k in Ny we define {m}; = m + kNy. Then the values of n for
which the triple (3", 5", 7") lies in various congruence classes modulo 1820
form subsets {1}12,...,{11}12 of N.

Perhaps with the help of a computer we now look for (a,b,c) with 1 <
a,b,c <12 such that

374+ 5° —7°=1 (mod 1820).

In fact we find that (a,b,c) = (1,1, 1) is the only triple as required and this
proves that a, b, ¢ lie in the set {1}12, which means that

(2.1) a=b=c=1 (mod 12).

However, we rerun the procedure above modulo 341. Due to (2.1) we just
consider values with n =1 (mod 12) and get the table

n 1 13 25 37 49 61
3" (mod 341) |3 148 254 141 136
57 (mod 341) |5 191 67 36 284 5
7" (mod 341) |7 112 87 28 107

Here we see a period of length 60 and, as before, we find that (1,1, 1) is the
only solution of (1.1) modulo 341 from the table above. This implies that

a=b=c=1 (mod 60).

Let us continue with the following table modulo 50

n 1 61 121
3" (mod50) |3 3 3
5 (mod 50) |5 25 25
7™ (mod 50) |7 7 7
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Here we have only the two classes {1}o = {1} and {61}¢0, in which the first

class is finite because the sequence 5" (mod 50) is not periodic but only

eventually so. Now looking for solutions of (1.1) modulo 50 forces b = 1.
Thus with (1.1) we get the new equation

(2.2) 7¢ - 30 = 4,

And here

n 1 61 121
7 (mod9) |7 7 7
3" (mod9) |3 0 0

which forces in a similar way a = 1. Now (2.2) implies that ¢ = 1 and this
completes the proof of Theorem 2.1. O

3. The equation y2 =324+ 2041
In this section we prove the following result.

Theorem 3.1. Let y in Z and a,b in Ny satisfy (1.2); then either y = +2
anda=0,b=1o0ory=+46 anda=1,b=5 ora=>b=3.

At first we note that y # 0 and hence we may assume y € N without loss
of generality.

Lemma 3.1. Let y in N and a,b in Ny with ab = 0 satisfy (1.2); then
y=2anda=0,b=1.

Proof. At first let @ = 0. Then b # 0 because 3 is not a square. Further
b=1leads to y> = 4 and so y = 2. If now b > 2 then 4 | 2® and so

y* =2 (mod 4),

impossible because y? = 0,1 (mod 4).
Otherwise we have ¢ in N and b = 0 which leads to

=2 (mod 3),
impossible because y? = 0,1 (mod 3). This completes the proof. O
Therefore we may assume that a,b are in N.
Lemma 3.2. Let y,a,b in N satisfy (1.2); then 6 divides y.
Proof. We calculate (1.2) modulo 2. Then
¥ =3"4+2"+1=14+0+1=0 (mod ?2),

hence g2 is even and so is .
Similarly we consider (1.2) modulo 3. Here

(+Dy—1)=y*—1=3"+2"=2"20 (mod 3).
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So neither y + 1 nor y — 1 is divisible by 3 and hence 3 divides y, which
completes the proof of the present lemma. O

Lemma 3.2 shows that y = 6z for some z in N and thus (1.2) appears as
(3.1) 3622 = 3%+ 2° + 1.

Lemma 3.3. Let z,a,b in N satisfy (3.1). Then ezactly one of the following
holds:

(1) 2 =1 and eithera=1,b="5 ora=>b=3,

(2) x is odd, a =1 (mod 8), and b =3 (mod 6) with a # 1, b # 3.

Proof. Considering (3.1) modulo 36 we get

(3.2) 0=3%4+2"4+1 (mod 36).
Further we calculate in the table below 3™ and 2™ modulo 36 for 1 < n < 8.
n 12 3 4 5 6 7 8

3" (mod36)|3 9 27 9 27 9 27 9
2" (mod36)|2 4 8 16 32 28 20 4

Here we note that we get the same values for n = 2 and n = 8. Hence we
see a period of length 6 when we calculate the table above for all n in N or
rather we get a partition of N with the classes
(3.3) {1}o= {1}, {2}6 =2+ 6No,..., {T}6¢ = 7 + 6No.
We now look for all (a,b) with 1 < a,b < 7 satisfying (3.2) and with the
table above we find

(a,b) = (1,5),(3,3),(5,3),(7,3).

Together with (3.3) this implies that for a,b € N we have either a = 1 and
b e {5}6 or a is in one of the sets {3}¢,{5}6,{7}6 and b € {3}¢.
Consider first @ = 1. Then (3.1) appears as

362 = 2" +4
and hence
(62 + 2)(62 — 2) = 2°.
Thus 6z + 2 and 6z — 2 are powers of 2 and (6x + 2) — (6 — 2) = 4 yields

6x + 2 =8 and 6z — 2 = 4 respectively; so x =1 and b = 5.
Otherwise a # 1 is odd and b =3 (mod 6). Now b = 3 in (3.1) leads to

3622 =3%+9

and similar to above we see that 6x 4+ 3 and 6x — 3 are powers of 3 with
(6x + 3) —(6x — 3) = 6; hence x = 1 and a = 3, which completes the first
part of the lemma.
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Let now b # 3. Since a is odd (3.1) yields
362°=3+0+1=4 (mod 8)

and thus z is odd. So z = 2z + 1 and now

1
3622 = 288'2(2;) +36=4 (mod 32).

Therefore (3.1) leads to
3=3" (mod 32).

For the values of 3" (mod 32) we consider the following table

n 1 3 5 79
3" (mod32) |3 27 19 11 3

Here we see a period of length 8 and hence that a =1 (mod 8). Therefore
the present lemma is proved. O

Lemma 3.4. There are no x,a,b in N with (3.1) which satisfy the condi-
tions of the second part of Lemma 3.35.

Proof. Suppose that we have such x, a,b in N. We then consider (3.1) mod-
ulo 120. Therefore we use the table

n 3 5 7
3" (mod 120) | 27 3 27
2" (mod 120) | 8 32 8

Similar to above we see a period of length 4 and @ = 1 (mod 8) with a # 1
implies that a is in the set {5}4 = 5 4+ 4Ny. Further we note that

36 (mod 120), z =41 (mod 10),
362> ={ 84 (mod 120), z=+3 (mod 10),
60 (mod 120), 2z =5 (mod 10).

Therefore we find that b € {5}4 as well because 3622 # 12 (mod 120). So

the left side of (3.1) is 36 (mod 120) and hence we have x = +1 (mod 10).

Further b € {5}4 implies that b =9 (mod 12) because b = 3 (mod 6).
Next we consider (3.1) modulo 560. Therefore we use the following table

n 5 9 13 17
3" (mod 560) | 243 83 3 243
2" (mod 560) | 32 512 352 32

Thus we see a period of length 12. Now a = 1 (mod 8) with a # 1 means
that a is in one of the sets {5}12,{9}12, {13}12 and b =9 (mod 12) shows
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b € {9}12. Further, z = £1 (mod 10) and we get

36 (mod 560), x=4+1,+£29 ( )

3622 = 116 (mod 560), z=49,4£19 (mod 70),
T =1 436 (mod 560), z=+11,431 ( )

( )

196 (mod 560), xr =421

and thus we see that a is not in the set {13};2.
Finally, let us consider (3.1) modulo 208. Here we have a table

n 5 9 13 17
3" (mod 208) | 35 131 3 35
2" (mod 208) [32 96 80 32

Again we see a period of length 12 and as above it follows that a is in one
of the sets {5}12,{9}12,{13}12 and b € {9}12. And = € N is odd so we find

36 (mod 208), xz=41 (mod 26),

116 (mod 208), z =43 (mod 26),

68 (mod 208), =45 (mod 26),

3622 = ¢ 100 (mod 208), x =47 (mod 26),
4 (mod 208), z=49 (mod 26),

196 (mod 208), = =+11 (mod 26),

52 (mod 208), 2 =13 (mod 26).

But this forces a € {13}12, which is a contradiction to above; and this
completes the proof of the present lemma. O

Now the proof of Theorem 3.1 follows directly from the lemmas above.

[AV]
[BF]
(€]
[CZ1]
[CZ2]

[CZ3]

[ESS]

[HS]
(L]
(M]
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