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Flows of Mellin transforms with periodic
integrator

par Titus HILBERDINK

Résumé. Nous étudions les tranformées de Mellin N̂(s) =∫∞
1− x

−sdN(x) pour lesquelles N(x)− x est périodique de période
1 dans le but d’examiner les “flots” de telles fonctions vers la fonc-
tion ζ(s) de Riemann et la possibilité de prouver l’hypothèse de
Riemann avec cette approche. Nous montrons que, à part le cas
trivial N(x) = x, la borne supérieure des parties réelles des zéros
de n’importe quelle telle fonction est au moins 1

2 .
Nous examinons un flot particulier de telles fonctions {N̂λ}λ≥1

qui converge localement uniformément vers ζ(s) quand λ → 1,
et montrons qu’elles présentent un aspect similaire à ζ(s). Par
exemple, N̂λ(s) a à peu près T

2π log T
2π −

T
2π zéros dans la bande

critique jusqu’à la hauteur T , et une infinité de zéros négatifs,
environ aux points λ− 1− 2n (n ∈ N).

Abstract. We study Mellin transforms N̂(s) =
∫∞

1− x
−sdN(x)

for which N(x)−x is periodic with period 1 in order to investigate
‘flows’ of such functions to Riemann’s ζ(s) and the possibility of
proving the Riemann Hypothesis with such an approach. We show
that, excepting the trivial case where N(x) = x, the supremum of
the real parts of the zeros of any such function is at least 1

2 .
We investigate a particular flow of such functions {N̂λ}λ≥1

which converges locally uniformly to ζ(s) as λ → 1, and show
that they exhibit features similar to ζ(s). For example, N̂λ(s) has
roughly T

2π log T
2π −

T
2π zeros in the critical strip up to height T

and an infinite number of negative zeros, roughly at the points
λ− 1− 2n (n ∈ N).

Introduction

One idea of approaching the Riemann Hypothesis (RH) is to construct a
sequence or a flow of holomorphic functions converging to ζ(s), uniformly
on compact subsets of C \ {1} in such a way that all the functions in the

Manuscrit reçu le 22 janvier 2010.
Mots clefs. Zeros of Mellin transforms, Lindelöf function.
Classification math. 11M41, 30C15.
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sequence have no zeros in1 H 1
2
. Then by Hurwitz’s Theorem on the zeros

of the limit function, RH would follow. Less stringently, we would only
require that there are no zeros in half-planes converging to H 1

2
. To make it

worthwhile, it should be easier to locate the zeros of the sequence than of
ζ(s) itself.

The problem with such an approach is of course how to choose your
sequence or flow (if indeed this is possible). We shall restrict ourselves to
Mellin transforms; i.e.

N̂λ(s) =
∫ ∞

0
x−s dNλ(x),

where λ ranges over some interval, say λ ∈ [0, 1] with Nλ(x)→ [x] as λ→ 1.
Thus N̂λ(s)→ ζ(s).

For instance, one can imagine starting from very ‘smooth’ generalised
primes and integers and ‘flowing’ to the actual primes and integers as time
progresses. For example, we could start from N0(x) = x (x ≥ 1) and zero
otherwise and ‘flow’ to the function N1(x) = [x]. Then N̂0(s) = s

s−1 ‘flows’
to N̂1(s) = ζ(s).

There are many ‘natural’ properties that a typical integrator N(x) (or
its Mellin transform) in such a flow could be assumed to have, by analogy
with [x] and its Mellin transform ζ(s). One property we shall assume at
the outset is that N(x) = 0 for x < 1 and N(1) = 1. Thus N has a jump
at 1 and so N̂(s) = 1 +

∫∞
1 x−sdN(x), ensuring that N̂(s) is bounded away

from zero in half-planes far enough to the right (given that the integral
converges absolutely here). In this paper we shall further assume that for
x ≥ 1, N(x) − x is periodic with period 1. (This is true for the cases
N(x) = x and N(x) = [x] mentioned above). A further property that could
be considered is that N(x) forms part of a generalised prime system; i.e.
N(x) = exp∗Π(x) for some increasing function Π(x), or in terms of Mellin
transforms; log N̂(s) = Π̂(s). However, we shall not assume this here.

On the above assumptions N̂(s) has an analytic continuation to H0 \{1}
with a simple pole at s = 1. In fact, using the Fourier development of
N(x)−x, we shall show (Theorem 1) that there is an analytic continuation
to the rest of the complex plane as well, and furthermore N̂(s) satisfies
a ‘functional relationship’ akin to the functional equation for ζ(s). As a
corollary (Corollary 2) it follows that the associated Lindelöf function (see
below for the definition) is at least 1

2−σ for σ < 1
2 , except in the case when

N(x) = x. Denoting by Θ the supremum of the real parts of the zeros of
N̂ , this further implies that Θ ≥ 1

2 .

1For θ ∈ R, we denote by Hθ the half plane {s ∈ C : <s > θ}.
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In particular, this shows it is impossible to have a flow of such Mellin
transforms from s

s−1 to ζ(s) in which the zeros gradually move to the right
(unless RH is false).

In the final section, we discuss the zeros of a particular flow of such
Mellin transforms {N̂λ}λ≥1 whose integrator Nλ has Fourier coefficients
proportional to n−λ.

1. Some preliminaries and notation

Let S denote the space of functions f : R→ C which are zero on (−∞, 1),
right-continuous, and of local bounded variation. (See e.g. [2], pp.50-70.)
For α ∈ R, let Sα = {f ∈ S : f(1) = α}.

Let f ∈ S. If f(x) = O(xA) for some A, then we define the Mellin
transform by

f̂(s) =
∫ ∞

1−
x−s df(x).

This is well-defined for σ = <s > α, where α is the infimum of A for which
f(x) = O(xA). Indeed, in this half-plane, f̂ is holomorphic. Integrating by
parts gives

f̂(s) = s

∫ ∞
1

f(x)
xs+1 dx.

A function F holomorphic in a vertical strip (except possibly at a finite
number of isolated singularities) is said to be of finite order if

F (σ + it) = O(|t|A) (|t| ≥ t0, some t0),

for each σ in the interval of the strip. As such, we may define the Lindelöf
function µ(σ) to be the infimum of those A for which the above holds. It
is well-known that µ is a convex function. In our case (with F = N̂ and
N ∈ S1), µ will be decreasing and eventually zero since

|N̂(s)− 1| ≤
∫ ∞

1
x−σ d|N |(x)→ 0

as σ →∞.
Knowledge of the positivity of µ can be used for locating zeros because

of the following result: if f is of finite order in Hβ and has at most finitely
many zeros here and µ(σ) = 0 for σ sufficiently large, then µ(σ) = 0 for
σ > β. This was shown to hold for Beurling zeta functions in [4] (Theorem
2.3 and the Remarks following it) but actually the proof readily extends to
general functions.

Thus, for example, if µ(σ) > 0 for σ < 1
2 , then f(s) has infinitely many

zeros in each half-plane H 1
2−δ

for every δ > 0.



458 Titus Hilberdink

2. Main results and proofs

Suppose N ∈ S1 and N(x) = x−R(x) where R(x) has period 1. Extend
R to the whole real line by periodicity. Thus R is right continuous, locally
of bounded variation, and R(1) = 0. Since R is of bounded variation, it
possesses a Fourier series

a0 +
∞∑
n=1

an cos 2πnx+
∞∑
n=1

bn sin 2πnx

which converges to 1
2(R(x + 0) + R(x − 0)), and the series is boundedly

convergent (see [5], p.408). Also an, bn = O( 1
n).

Theorem 1. Suppose that N(x) = x−R(x) ∈ S1 where R is periodic with
period 1. Then N̂(s) has an analytic continuation to C \ {1} with a simple
pole at s = 1 with residue 1. Furthermore N̂(s) is of finite order and for
σ < 0 satisfies the relation

(2.1) N̂(s) = s

s− 1 +
∫ 1

0
x−s dR(x)

+ (2π)sΓ(1− s)
(

cos πs2

∞∑
n=1

ann
s − sin πs2

∞∑
n=1

bnn
s
)
.

The proof of Theorem 1 shows that the Lindelöf function of N̂ satisfies
µ(σ) ≤ 1

2 − σ for σ ≤ 0, while of course µ(σ) = 0 for σ ≥ 1. By convexity
one obtains upper bounds for all σ. We can get equality for σ ≤ 0 if we
know that an and bn are not identically zero. (Equivalently, since R is
right-continuous, if R is not constant; i.e. non-zero.)

Corollary 2. Under the assumptions of Theorem 1, if R 6≡ 0 then µ(σ) =
1
2 − σ for σ ≤ 0 and µ(σ) ≥ µ0(σ) for all σ, where

µ0(σ) =
{

0 if σ ≥ 1
21

2 − σ if σ < 1
2
.

It follows that N̂ has infinitely many zeros in H 1
2−δ

for any δ > 0.
In particular, if we let Θ denote the supremum of the real parts of the

zeros of N̂ , then Θ ≥ 1
2 .

Proof of Theorem 1. We have for σ > 1,

N̂(s) = s

∫ ∞
1

N(x)
xs+1 dx = s

s− 1 − s
∫ ∞

1

R(x)
xs+1 dx.

The integral on the right converges for σ > 0, and so N̂(s) has an ana-
lytic continuation to H0 except for a simple pole at s = 1 with residue 1.
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We can extend further to the left by noting that a0 =
∫ 1

0 R(x)dx so that∫X
0 (R(x)− a0)dx = O(1). Hence for σ > 0,

N̂(s) = s

s− 1 − s
∫ ∞

1

a0
xs+1 dx− s

∫ ∞
1

R(x)− a0
xs+1 dx

= s

s− 1 − a0 − s
∫ ∞

1

R(x)− a0
xs+1 dx.

The final integral converges and is holomorphic for σ > −1 and so this ex-
tends N̂(s) holomorphically to H−1. Thus N̂(0) = −a0. Note that N̂(s) has
finite order for σ > −1 since in this range, writing V (x) =∫ x

1 (R(y)− a0)dy = O(1), we have

s

∫ ∞
1

R(x)− a0
xs+1 dx = s(s+ 1)

∫ ∞
1

V (x)
xs+2 dx = O(|t|2).

Also s
∫ 1

0
R(x)−a0
xs+1 dx converges for σ < 0 and equals s

∫ 1
0
R(x)
xs+1 dx + a0 =∫ 1

0 x
−s dR(x) + a0. Thus,

(2.2)

N̂(s) = s

s− 1 +
∫ 1

0
x−s dR(x)− s

∫ ∞
0

R(x)− a0
xs+1 dx for −1 < σ < 0.

Now we insert the Fourier series for R(x)− a0. If we ignore all problems of
convergence for the moment, the final integral of (2.2) becomes

s

∫ ∞
0

R(x)− a0
xs+1 dx = s

∫ ∞
0

1
xs+1

( ∞∑
n=1

an cos 2πnx+
∞∑
n=1

bn sin 2πnx
)
dx

= s
∞∑
n=1

(
an

∫ ∞
0

cos 2πnx
xs+1 dx+ bn

∫ ∞
0

sin 2πnx
xs+1

)
dx

= s
∞∑
n=1

(2πn)s
(
anΓ(−s) cos πs2 − bnΓ(−s) sin πs2

)

= −Γ(1− s)(2π)s
(

cos πs2

∞∑
n=1

ann
s − sin πs2

∞∑
n=1

bnn
s
)
,(2.3)

and the result follows formally. However, the term-by-term integration is
permissible since the Fourier series is boundedly convergent and an and bn
are both O(1/n) (the argument is identical to the special case bn = 1

n as in
[6], p.15).

Thus (2.3) holds for −1 < σ < 0. But the RHS of (2.3) is holomorphic
for σ < 0. Hence this provides the analytic continuation of N̂(s) to C \ {1}
and (2.3) holds for σ ≤ −1 also.

That N̂(s) is of finite order follows directly from (2.1). For
|Γ(1 − s)(2π)s cos πs2 | = O(|t|1/2−σ) and similarly for the term involving
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sin, while |
∑
ann

s| ≤
∑
|an|nσ = O(1) for σ < 0 and also for

∑
bnn

s.
Since |

∫ 1
0 x
−sdR(x)| ≤

∫ 1
0 1d|R|(x) = O(1), (2.1) gives, for σ < 0,

|N̂(σ + it)| = O(1) +O(|t|1/2−σ).
�

Proof of Corollary 2. Consider the final term in (2.1), which can be written
as

(2.4) Γ(1− s)(2π)s cos πs2

∞∑
n=1

ns
(
an − bn tan πs2

)
,

(σ < 0, s not an odd integer) and use the asymptotic bounds

|Γ(1− s)| = |Γ(1− σ − it)| ∼
√

2π|t|1/2−σe−
π
2 |t|,∣∣∣cos πs2

∣∣∣ ∼ 1
2e

π
2 |t|,

and

tan πs2 = tan
(πσ

2 + i
πt

2
)

= sgn(t)i+O(e−π|t|).

(These hold as |t| → ∞, uniformly for σ in bounded intervals.) Thus the
term in (2.4) is, in modulus, asymptotic to

(2π)σ
√
π

2 |t|
1/2−σ

(∣∣∣∣ ∞∑
n=1

(an ± ibn)ns
∣∣∣∣+O(e−π|t|)

)
.

Since the coefficients an and bn are not identically zero and, furthermore,
are real, there is a least integer n0 for which an0 ± ibn0 6= 0. It follows that
for σ sufficiently large and negative,∣∣∣∣ ∞∑

n=1
(an ± ibn)ns

∣∣∣∣ ≥ 1
2n

σ
0 |an0 + ibn0 |.

This implies that µ(σ) = 1
2 − σ for σ sufficiently large and negative. By

convexity, µ(σ) ≥ µ0(σ) for all σ. But for σ ≤ 0, we already know that
µ(σ) ≤ 1

2 − σ, so we have equality here. �

Remarks.
(a) Theorem 1 and Corollary 2 extend immediately to the case where

N(x)− cx is periodic for some constant c.
(b) Similar results can be obtained more generally if R(x) =

N(x)− x is almost-periodic under some extra assumptions. For ex-
ample, suppose that

R(x) = a0 +
∞∑
n=1

an cos 2πλnx+
∞∑
n=1

bn sin 2πλnx,
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and that the series is boundedly convergent with an and bn both
O(1/n). Here suppose λn > 0 increases strictly and without bound.
If we assume that

∑ λσn
n converges for every σ < 0, then the same

method as in Theorem 1 shows that N̂ has an analytic continuation
to C \ {1}, is of finite order and satisfies

N̂(s) = s

s− 1 +
∫ 1

0
x−s dR(x)

+ (2π)sΓ(1− s)
(

cos πs2

∞∑
n=1

anλ
s
n − sin πs2

∞∑
n=1

bnλ
s
n

)
,

for σ < 0. Corollary 2 also holds in this case if the an and bn are
not identically zero (i.e. R(x) not constant).

(c) The inequality µ ≥ µ0 seems quite robust. It holds for the Beurling
zeta function associated to discrete g-prime systems (see [3]) but
also for those Mellin transforms contained in (a) and (b) above.
What is a natural setting for which this inequality is true?

3. A particular flow of Mellin transforms to ζ(s)

As Corollary 2 shows, it is impossible to construct a flow of Mellin trans-
forms with ‘periodic’ integrator converging to ζ(s) such that the supremum
of the real parts of the zeros converges to 1

2 from below. Nevertheless, it
might still be of interest to investigate a particular flow of such systems
with N(x)− x periodic.

Here we consider a particular flow of Mellin transforms {N̂λ(s)}λ≥1 con-
verging uniformly to ζ(s) as λ→ 1, and for which Nλ(x)− x has period 1
with Fourier coefficients proportional to 1

nλ
. We shall see that for λ > 1,

N̂λ(s) shares a number of characteristics of N̂1(s) = ζ(s). Thus N̂λ(s) has
roughly T

2π log T
2π −

T
2π zeros in H0 up to height T and an infinite number

of negative zeros, roughly at the points λ− 1− 2n (n ∈ N).
The Hurwitz zeta function ζ(s, a), defined for <s > 1 and 0 < a ≤ 1 by

the series
∑∞
n=0(n+ a)−s has (as a function of s) an analytic continuation

to C \ {1} and a simple pole at s = 1 with residue 1 (see for example [1],
Chapter 12). Its analytic continuation is given by ζ(s, a) = Γ(1− s)I(s, a),
where I(s, a) is the entire function

I(s, a) = 1
2πi

∫
C

zs−1eaz

1− ez dz,

where C is the contour which starts at −∞, goes along the negative real
axis (on the lower side) to −c where 0 < c < 2π, encircles the origin back
to −c and returns to −∞ on the upper side of the negative real axis. Note
that ζ(s, 1) = ζ(s). The definition actually makes sense whenever <a > 0
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(any s). As a function of a (for any given s), I(s, a) is holomorphic for
<a > 0.

Definition. For λ ≥ 1, let Nλ(x) = x−Rλ(x) for x ≥ 1 and zero otherwise,
where Rλ(x) is periodic with period 1 and is defined for 0 ≤ x < 1 by

(3.1) Rλ(x) = ρλ(ζ(1−λ, 1−x)−ζ(1−λ)) = ρλΓ(λ)
2πi

∫
C

z−λ(e−xz − 1)
e−z − 1 dz.

Here ρλ is a continuous function of λ (to be determined) and we set ρ1 = 1
so that R1(x) = {x}.

3.1. Some properties.
(a) For m ∈ N, Rm is a polynomial in [0, 1) since ζ(−n, a) = −Bn+1(a)

n+1
where Bn(·) is the nth Bernoulli polynomial; i.e. for 0 ≤ x < 1

Rm(x) = ρm
m

(Bm(1)−Bm(1− x)) = (−1)m−1ρm
m

(Bm(x)−Bm(0)).

(b) For λ > 1, Rλ is continuous, while R1 is right continuous but has
jump continuities at the integers. Further, Rλ can be holomorphi-
cally continued to a neighbourhood of the interval [0, 1), since the
function

R∗λ(z) = ρλ(ζ(1− λ, 1− z)− ζ(1− λ)),

which agrees with Rλ on [0,1), is holomorphic for <z < 1. Hence we
have an expansion

Rλ(x) =
∞∑
n=1

an(λ)xn (0 ≤ x < 1)

for some coefficients an(λ). Expanding the integrand in (3.1) gives
a formula for the coefficients.

Rλ(x) = ρλΓ(λ)
2πi

∫
C

z−λ

e−z − 1

∞∑
n=1

(−1)nx
nzn

n! dz

=
∞∑
n=1

(−1)n

n!

(
ρλΓ(λ)

2πi

∫
C

zn−λ

e−z − 1 dz
)
xn

=
∞∑
n=1

(−1)n

n!
ρλΓ(λ)ζ(n− λ+ 1)

Γ(λ− n) xn.

Hence

(3.2) an(λ) = (−1)nρλ

(
λ− 1
n

)
ζ(n+ 1− λ).
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For λ > 1 the expansion is also valid for x = 1, since an(λ) =
O(n−λ). For λ = m ∈ N and n = m, (3.2) should be interpreted as
limλ→m am(λ) = (−1)m−1ρm/m. Of course in this case the expan-
sion is finite and is a polynomial of degree m.

(c) Fourier expansion: We have

Rλ(x) = −2ρλΓ(λ)
(2π)λ

(
cos πλ2

∞∑
n=1

1− cos 2πnx
nλ

+ sin πλ2

∞∑
n=1

sin 2πnx
nλ

)
which holds for all x ∈ R if λ > 1 and for x ∈ R \ Z if λ = 1 ([1],
p. 257).

By Theorem 1, N̂λ extends analytically to the complex plane except for a
simple pole at 1 and (after some calculation)

(3.3) N̂λ(s) = s

s− 1 +
∫ 1

0
x−s dRλ(x)

+ 2ρλ(2π)s−λΓ(λ)Γ(1− s) cos π(s− λ)
2 ζ(λ− s).

Using the functional equation for ζ(·) this becomes

(3.4) N̂λ(s) = s

s− 1 +
∫ 1

0
x−s dRλ(x) + ρλ

Γ(λ)Γ(1− s)
Γ(λ− s) ζ(s− λ+ 1).

For λ > 1 we have for σ < 1,∫ 1

0
x−s dRλ(x) =

∫ 1

0
x−sR′λ(x) dx(3.5)

=
∫ 1

0

∞∑
n=1

nan(λ)xn−s−1 dx

=
∞∑
n=1

nan(λ)
n− s

.

This series converges for all s 6∈ N and provides the meromorphic continu-
ation of the LHS to C with (at most) simple poles at the positive integers.
Thus (3.3)-(3.5) hold for all s ∈ C \ N.

Theorem 3. With Nλ as defined above, we have N̂λ(s) → ζ(s) as λ → 1
uniformly on compact subsets of C \ {1}.

Proof. This basically follows from the fact that Rλ → R1 uniformly on
[0, a] for every a < 1, but we need to be a little careful near 1 since R1 is
not continuous here. First consider σ > 0. Let K be a compact subset of
H0 \ {1}. We have for s ∈ K

|N̂λ(s)− N̂1(s)| =
∣∣∣∣s ∫ ∞

1

Rλ(x)−R1(x)
xs+1 dx

∣∣∣∣ ≤ A ∫ ∞
1

|Rλ(x)−R1(x)|
xσ0+1 dx
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for some constants A, σ0 > 0. Let η > 0. Then for all ε > 0, there exists λ0
such that for 1 < λ < λ0, |R1(x)− Rλ(x)| < ε for n ≤ x ≤ n+ 1− η (any
n ∈ Z) while in any case |R1(x) − Rλ(x)| ≤ C for some absolute constant
C (for all x). Hence

|N̂λ(s)− N̂1(s)| ≤ Aε
∫ ∞

1

1
xσ0+1 dx+A

∞∑
n=1

∫ n+1

n+1−η

C

xσ0+1 dx

≤ A1ε+ACη
∞∑
n=1

1
nσ0+1 ,

which can be made as small as we please. Hence N̂λ(s)→ N̂1(s) uniformly
on compact subsets of H0 \ {1}.

In fact the same argument works for compact subsets of H−1 \ {1} if we
use the expression

N̂λ(s) = s

s− 1 − a0 + s(s+ 1)
∫ ∞

1

Vλ(x)
xs+2 dx,

where Vλ(x) =
∫ x

1 (Rλ(·)− a0), and noting that Vλ → V1 uniformly.
For σ < 0 we can use (3.4). The final term tends locally uniformly to

ζ(s), while∫ 1

0
x−s dRλ(x) = s

∫ 1

0

Rλ(x)
xs+1 dx→ s

∫ 1

0

R1(x)
xs+1 dx = − s

s− 1 ,

the convergence again being uniform. The result now follows. �

3.2. Zeros. Since N̂λ(s)→ ζ(s) locally uniformly, the Riemann Hypothe-
sis will follow if we can show that for all λ close to 1 (with some particular
choice of ρλ), N̂λ(s) has no zeros with σ > 1

2 . Slightly less restrictively, RH
is true if the following conjecture is true:

Conjecture. Given θ > 1
2 , there exists λθ > 1 such that for 1 < λ < λθ

and some suitable choice of ρλ, N̂λ has no zeros in Hθ.

It may even be the case that this conjecture is equivalent to RH. The
hope is of course that it is easier to show that for λ > 1, N̂λ has no zeros
in Hθ than it is for λ = 1.

Now we show that for λ ≥ 3
2 , N̂λ has only finitely many zeros in H 1

2 +δ
(any δ > 0). As λ gets closer to 1 however, we can only be certain of
having finitely many zeros in half-planes further to the right, since we do
not have the strong bounds on ζ in vertical strips. If we assume the Lindelöf
Hypothesis (LH), then N̂λ has only finitely many zeros in H 1

2 +δ for every
λ > 1.
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Theorem 4. (i) Let λ ≥ 3
2 . Then for every δ > 0, N̂λ(s) has at most

finitely many zeros in H 1
2 +δ and in every strip where σ ∈ [−A, 1

2 − δ]
(any A).
(ii) Let 1 < λ < 3

2 . Then for every δ > 0, N̂λ(s) has at most finitely many
zeros in H2−λ+δ (H 1

2 +δ on LH) and in every strip where σ ∈ [−A, λ−1−δ]
(σ ∈ [−A, 1

2 − δ] on RH).

Proof. For λ > 1,
∫ 1

0 x
−sdRλ(x) =

∑∞
n=1

nan(λ)
n−s → 0 as |t| → ∞ for every

σ. Hence from (3.4),

N̂λ(σ + it) = 1 + o(1) + ρλ
Γ(λ)Γ(1− σ − it)

Γ(λ− σ − it) ζ(σ − λ+ 1 + it).

The term on the right is, in modulus, asymptotic to

(3.6) |ρλ|Γ(λ) |ζ(σ − λ+ 1 + it)|
|t|λ−1 = O(|t|µ(σ−λ+1)−λ+1+ε),

for every ε > 0, where µ(·) is the Lindelöf function for ζ. Note that the
implied constant is independent of σ for a ≤ σ ≤ b, any a, b.

Let λ ≥ 3
2 . Consider σ ≤ λ−1 and σ > λ−1 separately. If σ ≤ λ−1, then

µ(σ−λ+1) = λ−σ− 1
2 , and the exponent of |t| in (3.6) is 1

2−σ+ε. This is
negative (for sufficiently small ε) if σ > 1

2 . If σ > λ−1, µ(σ−λ+1) < 1
2 , so

the exponent is also negative for ε small enough. Since the bound is uniform
in σ, and there are no zeros in HA for A sufficiently large, this implies that
for λ ≥ 3

2 , N̂λ has only finitely many zeros in H 1
2 +δ for each δ > 0.

If σ < 1
2 , then σ < λ− 1 and the expression in (3.6) is at least2

c|t|
1
2−σ,

for some c > 0, depending continuously on λ and σ. Hence for −A ≤ σ ≤
1
2 − δ, this is at least c1|t|δ (some constant c1 > 0) which tends to infinity.
Thus there are no zeros with |t| sufficiently large in such a strip, proving
assertion (i).

Now consider 1 < λ < 3
2 . If σ ≥ λ, then µ(σ − λ + 1) = 0 and the

exponent in (3.6) is negative. For λ−1 ≤ σ < λ, µ(σ−λ+ 1) ≤ λ−σ
2 (using

µ(α) ≤ 1−α
2 for 0 ≤ α ≤ 1) and the exponent in (3.6) is 1− λ+σ

2 + ε. This
is negative for σ > 2− λ, and the result follows.

If LH holds, then µ(σ−λ+1) = 0 for σ > λ− 1
2 and µ(σ−λ+1) = λ−σ− 1

2
for σ ≤ λ− 1

2 . Hence the exponent in (3.6) is now

1− λ+ ε if σ > λ− 1
21

2 − σ + ε if σ ≤ λ− 1
2
.

2Assuming ρλ 6= 0. If ρλ = 0, the result is trivially true.
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Both are negative if σ > 1
2 for sufficiently small ε.

As in part(i), if σ < λ− 1, then σ−λ+ 1 < 0 and the expression in (3.6)
is at least c|t|

1
2−σ → ∞. For σ ≥ λ − 1 we cannot deduce anything about

(3.6) for large |t| unless we know that ζ has no zeros in certain strips inside
the critical strip. On RH, the above argument applies for σ − λ + 1 < 1

2 ,
and (ii) follows. �

Remark. For λ > 3
2 , the zeros in any right half-plane (apart from at most

a finite number of exceptions) actually lie in a region{
σ + it : − A

log |t| ≤ σ −
1
2 ≤

B

log |t| , |t| ≥ 2
}
,

for some constants A,B. For N̂λ(s) = 0 if and only if
(3.7)
s

s− 1 +
∫ 1

0
x−s dRλ(x) = −2ρλ(2π)s−λΓ(λ)Γ(1− s) cos π(s− λ)

2 ζ(λ− s).

Take σ such that |σ− 1
2 | ≤ λ−

3
2 − δ for some δ > 0, and |t| ≥ 2. The LHS

of (3.7) is 1 + o(1), while the RHS is, in modulus,

∼ |ρλ|Γ(λ)
(2π)λ−σ−

1
2
|t|

1
2−σ|ζ(λ− σ − it)|.

Since λ − σ ≥ 1 + δ, this is � |t|
1
2−σ, uniformly in σ. In particular, for

1
2 − σ > A/ log |t| and A sufficiently large, the LHS of (3.7) is less than
the RHS in modulus, and hence there are no zeros for |t| sufficiently large
in this range. Similarly, for σ − 1

2 > B/ log |t| and B sufficiently large, the
LHS is greater than the RHS in modulus.

We can be more precise. Let σ = 1
2 + θt

log |t| where θt = O(1). Then for a
zero σ + it with large |t|, we need

|ρλ|Γ(λ)
(2π)λ−1 e

−θt |ζ(λ− σ − it)| ∼ 1.

Since |ζ(λ− σ − it)| ∼ |ζ(λ− 1
2 − it)|, this requires

θt = log
( |ρλ|Γ(λ)

(2π)λ−1

∣∣∣ζ(λ− 1
2 − it

)∣∣∣)+ o(1).

As such and taking t ≥ 2, the RHS of (3.7) is, using Stirling’s formula,
asymptotically

− ρλΓ(λ)
(2π)λ−1 e

−θt+ iπ
2 (λ− 1

2 )e−i(t log t−t−t log 2π)ζ
(
λ− 1

2 − it
)

∼ −
ρλζ(λ− 1

2 − it)
|ρλζ(λ− 1

2 − it)|
e−i(t log t−t−t log 2π−π2 (λ− 1

2 )).
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At a zero, we want this to be asymptotic to the LHS of (3.7); i.e. to 1. Since
argζ(λ− 1

2−it) is bounded (as λ > 3
2), we therefore want t log t−t−t log 2π =

2πk +O(1) for k ∈ Z; i.e.

f(t) := t

2π log t

2π −
t

2π = k +O(1).

Since f(t) is continuous we should expect a zero σk + itk for each k suffi-
ciently large. The number of such zeros with tk ≤ T is therefore roughly
f(T ); i.e. we should expect, for λ > 3

2 ,

T

2π log T

2π −
T

2π +O(1)

zeros up to height T .

Theorem 5. Let λ > 1. Then N̂λ has
T

2π log T

2π −
T

2π +O(log T )

zeros in the rectangular strip {σ + it : 0 ≤ σ ≤ 1, 0 ≤ t ≤ T}.

Proof. Choose σ0 sufficiently large so that |<N̂λ(σ0 + it)| ≥ c > 0 for all t.
(This is possible since |<N̂λ(σ+ it)| ≥ 1−

∫∞
1 x−σdNλ(x) = 2− N̂λ(σ)→ 1

as σ →∞.)
Denote by n(T ) the number of zeros in the rectangular strip

{σ + it : 0 ≤ σ ≤ σ0, 1 ≤ t ≤ T}.

This differs from the required number by O(1). Let γ denote the (anti-
clockwise) boundary path of this strip. We may assume without loss of
generality that there are no zeros of N̂λ on γ. Then

n(T ) = 1
2π∆γ argN̂λ,

where ∆γargN̂λ is the continuous variation of the argument of N̂λ around γ.
On the right-hand vertical, N̂λ(σ0 + it) → 1 as t → ∞. Hence the vari-

ation of the argument along this vertical line segment is O(1). For the top
horizontal, we use Lemma 9.4 of [6] (with ‘2’ replaced by ‘σ0’). Since N̂λ

has finite order, this Lemma implies that the variation along here is at
most O(log T ). The variation along the bottom horizontal is trivially O(1).
Finally on the left vertical, we have

N̂λ(it) = 2ρλΓ(λ)(2π)it−λΓ(1− it) cos π(it− λ)
2 ζ(λ− it) + 1 + o(1)

∼ ρλΓ(λ)
(2π)λ−

1
2
t

1
2 e−i(t log t−t−t log 2π)e

iπ
2 (λ− 1

2 )ζ(λ− it).
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Since ζ(λ − it) is bounded and bounded away from zero, arg N̂λ(it) =
−(t log t− t− t log 2π) +O(1), and the variation of the argument along the
(downward) left hand vertical is T log T − T − T log 2π +O(1). �

Remark. It seems plausible that the O(log T )-term can be replaced by
O((log T )κ), with κ decreasing steadily from 1 to 0 as λ varies from 1 to 3

2 .

3.3. Zeros on the negative real axis. For λ = 1, N̂λ(s) = ζ(s) has
zeros on the negative real axis at −2k for each positive integer k — the
so-called trivial zeros. Very similar behaviour occurs for λ > 1.

We require the following elementary result.

Lemma 6. Suppose f is holomorphic and real valued on [0,∞). Suppose
further that, as x→∞,

f(x) = cos πx2 + o(1) and f ′(x) = −π2 sin πx2 + o(1).

Then for every sufficiently large integer n, the interval (2n, 2n+2) contains
exactly one zero, say xn, and xn = 2n+ 1 + o(1).

Proof. For n ∈ N, f(2n)− (−1)n → 0, so for n sufficiently large, the sign of
f(2n) is (−1)n. Hence there is at least one zero in each interval (2n, 2n+2)
(for n large). In fact the zero(s) must be close to 2n+ 1 since for |h| ≤ 1,

f(2n+ h)− (−1)n cos πh2 → 0,

uniformly in h, and cos πh2 is bounded away from zero if |h| ≤ h0 < 1.
Now for x = 2n + y, f ′(x) = (−1)n−1 π

2 sin πy
2 + o(1), so for x ∈

[2n+ h, 2n+ 2− h] (any fixed h > 0), (−1)n−1f ′(x) > 0 for n large enough;
i.e. f is monotonic in this interval. Thus can be at most one zero, say xn.
This must satisfy xn = 2n+ 1 + o(1). �

Theorem 7. Let λ > 1. For every sufficiently large positive integer n,
N̂λ(λ − x) has exactly one zero xn in each interval (2n, 2n + 2) (n ∈ N).
Furthermore xn = 2n+ 1 + o(1) as n→∞.

Proof. Apply Lemma 6 with

f(x) = (2π)xN̂λ(λ− x)
2ρλΓ(λ)Γ(x+ 1− λ)

= ζ(x) cos πx2 + (2π)x

2ρλΓ(λ)Γ(x+ 1− λ)
( x− λ
x− λ− 1 +

∞∑
m=1

mam(λ)
m− λ+ x

)
(using (3.3) and (3.5)). The final term and its derivarive tend to 0 as x→∞,
while ζ(x) → 1, ζ ′(x) → 0, so f satisfies the conditions of Lemma 6 and
the result follows. �
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