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On the number of places of convergence for
Newton’s method over number fields

par Xander FABER et José Felipe VOLOCH

Résumé. Soit f un polynôme de degré au moins 2 avec coeffi-
cients dans un corps de nombres K, soit x0 un élément suffisam-
ment général de K, et soit α une racine de f . Nous précisons des
conditions pour lesquelles l’itération de Newton, commençant au
point x0, converge v-adiquement vers la racine α pour un nombre
infini de places v de K. Comme corollaire, nous montrons que si f
est irréductible sur K de degré au moins 3, l’itération de Newton
converge v-adiquement vers chaque racine de f pour un nombre
infini de places v de K. Nous faisons aussi la conjecture que le
nombre de places telles que l’itération de Newton ne converge pas
a densité un et nous donnons des évidences heuristiques et numé-
riques.

Abstract. Let f be a polynomial of degree at least 2 with coeffi-
cients in a number field K, let x0 be a sufficiently general element
of K, and let α be a root of f . We give precise conditions un-
der which Newton iteration, started at the point x0, converges
v-adically to the root α for infinitely many places v of K. As
a corollary we show that if f is irreducible over K of degree at
least 3, then Newton iteration converges v-adically to any given
root of f for infinitely many places v. We also conjecture that the
set of places for which Newton iteration diverges has full density
and give some heuristic and numerical evidence.

1. Introduction
Let f be a nonconstant polynomial with coefficients in a number field K.

Newton’s method provides a strategy for approximating roots of f . Recall
that if α ∈ C is a root and x is close to α in the complex topology, then
one expects

0 = f(α) = f(x+ (α− x)) ≈ f(x) + f ′(x)(α− x) =⇒ α ≈ x− f(x)
f ′(x) .

Manuscrit reçu le 13 mars 2010.
Mots clefs. Arithmetic Dynamics, Newton’s Method, Primitive Prime Factors.
Classification math. 37P05, 11B99.
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So if x0 is a generic complex starting point for the method, the hope is that
successive applications of the rational map

(1.1) Nf (t) = N(t) = t− f(t)
f ′(t)

applied to x0 will give successively better approximations to α. For example,
this strategy succeeds if x0 is chosen sufficiently close to α. This all takes
place in the complex topology, and it raises the question: Does Newton’s
method work in other topologies?

In the non-Archimedean setting, many authors identify Hensel’s Lemma
with Newton’s method. (See, e.g., [3, I.6.4].) However, it is worth noting
that the usual hypotheses of Hensel’s lemma ensure that the starting point
x0 is so close to a root that Newton’s method will always succeed. The
outcome is less clear if the starting point is arbitrary.

Given x0 ∈ K, define xn+1 = N(xn) for all n ≥ 0, and suppose that
the Newton approximation sequence (xn) is not eventually periodic. For a
place v of K, we want to know if the sequence (xn) converges v-adically
to a root of f . The main result of [4] implies that if deg(f) > 1, then
there are infinitely many places v for which (xn) fails to converge in the
completion Kv. They also ask if there exist infinitely many places for which
it does converge [4, Rem. 10]. We are able to give a complete answer to this
question.

For the statement of the main theorem, we set the following notation and
conventions. For each place v of K, write Kv for the completion of K with
respect to the place v. Let Cv be the completion of an algebraic closure of
Kv with respect to the canonical extension of v. Fix an embeddingK ↪→ Cv.
The notion of v-adic convergence or divergence of the sequence (xn) will
always be taken relative to the topological space P1(Cv) = Cv ∪ {∞}.

If α ∈ K is a root of the polynomial f , we will say that α is exceptional
if the Newton approximation sequence (xn) converges v-adically to α for at
most finitely many places v of K. This property depends on the polynomial
f , but it is independent of the number field K and the sequence (xn) —
provided this sequence is not eventually periodic. (These are consequences
of the following theorem.)

Theorem 1.1 (Main Theorem). Let f be a polynomial of degree d ≥ 2 with
coefficients in a number field K and let x0 ∈ K. Define the Newton map
N(t) = t − f(t)/f ′(t), and for each n ≥ 0, set xn+1 = N(xn). Assume the
Newton approximation sequence (xn) is not eventually periodic. Then the
following are true:

(1) There exists a finite set of places S of K, depending only on the
polynomial f , with the following property: if v is not in S, then
either (xn) converges v-adically to a simple root of f or else (xn)
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does not converge in P1(Kv). In particular, any multiple root of f
is exceptional.

(2) Denote the distinct roots of f in K by α = α1, α2, . . . , αr, and write
m1, . . . ,mr for their multiplicities, respectively. If α is a simple root
of f , define a polynomial

Eα(t) =
∑
i>1

mi

∏
j 6=1,i

(t− αj).

Then α is an exceptional root of f if and only if Eα(t) = (d− 1)×
(t− α)r−2.

(3) The sequence (xn) diverges in P1(Kv) for infinitely many places v.

The first conclusion of the theorem implies that, while Newton’s method
may detect roots of a polynomial f for infinitely many places of K, it fails
to do so for the polynomial f2 because the latter has no simple roots.

The first conclusion of the theorem is essentially elementary. The second
and third conclusions require a theorem from Diophantine approximation
to produce primitive prime factors in certain dynamical sequences; see The-
orem 3.3. The third conclusion also follows from a more general result of
Silverman and the second author [4]. The argument is greatly simplified in
our situation, so we give its proof for the sake of completeness.

In complex dynamics, a point P ∈ P1(C) = C ∪ {∞} is called excep-
tional for a nonconstant rational function φ : P1(C) → P1(C) if its set of
iterated pre-images

⋃
n≥1 φ

−n(P ) is finite. The conclusion of Theorem 1.1(2)
can be reformulated to say that a simple root α is an exceptional root of f
if and only if α is an exceptional fixed point for the Newton map Nf viewed
as a complex dynamical system. (This explains our choice of terminology.)
See Proposition 2.3.

In practical terms, conclusion (2) of the Main Theorem gives an algebraic
criterion for verifying whether or not a simple root of a given polynomial
is exceptional. The following corollary collects a number of the most inter-
esting special cases.

Corollary 1.2. Let K, f and (xn) be as in the theorem.
(1) If f has only one or two distinct roots, then all roots of f are ex-

ceptional. In particular, this holds if f is quadratic.1
(2) Suppose f has three distinct roots α, β, γ with multiplicities 1, b, c,

respectively. Then α is an exceptional root if and only if

α = bγ + cβ

deg(f)− 1 .

1In [4, Rem. 10] it was incorrectly suggested that a quadratic polynomial always has at least
one non-exceptional root.



390 Xander Faber, José Felipe Voloch

(3) Suppose f has degree d ≥ 3 and no repeated root. Then at most one
root of f is exceptional, and it is necessarily K-rational. Moreover,
α is an exceptional root if and only if there exist nonzero A,B ∈ K
such that

f(t) = A(t− α)d +B(t− α).
(4) Suppose f is irreducible over K of degree at least 3. Then f has no

exceptional roots.
We will see in Proposition 2.4 that two polynomials f and g have con-

jugate Newton maps if g(t) = Af(Bt + C) for some A,B,C ∈ K with
AB 6= 0; we call f and g dynamically equivalent if they are related in
this way. The first and third conclusions of the above corollary imply the
following simple statement:
Corollary 1.3. Let f ∈ K[t] be a polynomial of degree d ≥ 2 with no
repeated root. Then f has an exceptional root if and only if it is dynamically
equivalent to td − t.

The space of polynomials Polyd of degree d > 1 over K has dimen-
sion d+1. The subscheme of Polyd parameterizing polynomials with an ex-
ceptional root has two fundamental pieces: the polynomials with a repeated
root (of codimension 1 given by the vanishing locus of the discriminant of f)
and those with no repeated root. The latter subscheme consists of a single
dynamical equivalence class by Corollary 1.3.

If (xn) converges v-adically to a root α of f , then evidently it is necessary
that α lie inKv. If α 6∈ K, then the Chebotarev density theorem imposes an
immediate restriction on the density of places for which (xn) can converge.
However, one could begin by extending the number field K so that f splits
completely, and then this particular Galois obstruction does not appear. It
seems that, in general, the collection of places for which (xn) converges to
a root of f is relatively sparse.
Conjecture 1.4 (Newton Approximation Fails for 100% of the Primes).
Let f be a polynomial of degree d ≥ 2 with coefficients in a number field K
and let x0 ∈ K. Define the Newton map N(t) = t−f(t)/f ′(t), and for each
n ≥ 0, set xn+1 = N(xn). Assume the Newton approximation sequence (xn)
is not eventually periodic. Let C(K, f, x0) be the set of places v of K for
which (xn) converges v-adically to a root of f . Then the natural density of
the set C(K, f, x0) is zero.

In Section 4 we give a heuristic argument and some numerical evidence
for this conjecture. We also formulate an amusing “dynamical prime num-
ber race” problem. The next section will be occupied with some preliminary
facts about the Newton map. We will prove the main result and its corol-
laries in Section 3, and in the final section we make some remarks on the
function field case.
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2. Basic geometry of the Newton map
In this section we work over an algebraically closed field L of character-

istic zero.
For a nonconstant polynomial f ∈ L[t], we may view the Newton map

N = Nf as a dynamical system on the projective line P1
L. The (topological)

degree of N is equal to the number of distinct roots of f , and the roots of
f are fixed points of N . We begin by recalling the proofs of these facts.

Proposition 2.1. Let f ∈ L[t] be a nonconstant polynomial, and let N(t) =
t − f(t)/f ′(t) be the associated Newton map on P1

L. If f is linear, then N
is a constant map. If deg(f) > 1, and if f has r distinct roots, then N has
degree r.

Proof. First suppose f(t) = At + B for some A,B ∈ L with a 6= 0. Then
N(t) = −B/A.

Now assume deg(f) > 1. If the distinct roots of f are α1, . . . , αr with
multiplicitiesm1, . . . ,mr, respectively, we can write f(t) = C

∏r
i=1(t−αi)mi

for some nonzero constant C. Define

(2.1) D(t) =
r∑
i=1

mi

∏
j 6=i

(t− αj).

Then f ′(t) = C ·D(t)
∏

(t− αi)mi−1, and

(2.2) N(t) = t− (t− α1) · · · (t− αr)
D(t) = tD(t)− (t− α1) · · · (t− αr)

D(t) .

Since D(αi) 6= 0 for any i = 1, . . . , r, it follows that the numerator and
denominator of this last expression for N have no common factor.

The leading term of D(t) is (
∑
mi)tr−1 = deg(f)tr−1, and so the lead-

ing term of the numerator in (2.2) is (deg(f) − 1)tr. As we have assumed
deg(f) > 1, we find N has degree r. �

Corollary 2.2. Let f ∈ L[t] be a polynomial of degree at least two, and
let N be the associated Newton map on P1

L. If the distinct roots of f are
α1, . . . , αr, then the set of fixed points of N is {α1, . . . , αr,∞}.

Proof. From (2.2), we see that each αi is a fixed point of N . Since the
numerator has strictly larger degree than the denominator,∞ must also be
fixed. A rational map of degree r has at most r+ 1 distinct fixed points, so
we have found all of them. �
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In fact, one can check that γ ∈ P1(L) is a ramified fixed point of N
if and only if γ is a simple root of f . We have no explicit need for this
fact, although it is the fundamental reason why simple roots play such a
prominent role in our main results.

Recall that if f is a polynomial with distinct roots α = α1, . . . , αr of
multiplicities m1, . . . ,mr, respectively, and if we assume m1 = 1, then we
defined the quantity

Eα(t) =
∑
i>1

mi

∏
j 6=1,i

(t− αj).

It follows that

D(t) =
r∑
i=1

mi

∏
j 6=i

(t− αj) = (t− α2) · · · (t− αr) +
∑
i>1

mi

∏
j 6=i

(t− αj)

= (t− α2) · · · (t− αr) + (t− α)Eα(t).
Therefore

N(t) = t− (t− α)(t− α2) · · · (t− αr)
D(t)

= α+ (t− α)
(

1− (t− α2) · · · (t− αr)
D(t)

)
= α+ (t− α)2Eα(t)

D(t) .

Since the leading term of Eα(t) is evidently (d−1)tr−2, and since D(α) 6= 0,
we have proved
Proposition 2.3. Let f ∈ L[t] be a polynomial of degree d > 1 with r > 1
distinct roots, and let α be a simple root of f . Then the Newton map Nf is
totally ramified at the fixed point α if and only if Eα(t) = (d−1)(t−α)r−2.

Recall from the introduction that two polynomials f, g ∈ L[t] are dy-
namically equivalent if g(t) = Af(Bt + C) for some A,B,C ∈ L with
AB 6= 0. Evidently this is an equivalence relation on the space of polyno-
mials L[t]. The Newton maps of dynamically equivalent polynomials share
the same dynamical behavior.
Proposition 2.4. Suppose f, g ∈ L[t] are dynamically equivalent polyno-
mials related by g(t) = Af(Bt + C) with A,B,C ∈ L and AB 6= 0. Let
σ(t) = Bt+ C. Then Ng = σ−1 ◦Nf ◦ σ.
Proof. The proof is a direct computation:

Ng(t) = t− g(t)
g′(t) = t− f(Bt+ C)

Bf ′(Bt+ C)

= 1
B

(
Bt+ C − f(Bt+ C)

f ′(Bt+ C)

)
− C

B

= 1
B
Nf (Bt+ C)− C

B
= σ−1 ◦Nf ◦ σ(t). �
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3. Proofs of the main results
For the duration of this section, we will assume the following to be fixed:

K number field with ring of integers OK
f fixed polynomial of degree d > 1 with coefficients in K
N Newton map for f as in (1.1)
x0 element of K
(xn) sequence defined by xn+1 = N(xn); assume it is

not eventually periodic

The letter p will always denote a nonzero prime ideal of OK . For such p
and for α ∈ K×, we say that p divides the numerator of α (resp. the
denominator of α) if ordp(α) > 0 (resp. ordp(α) < 0). We also write p` | α
(resp. p` || α) to mean that ordp(α) ≥ ` (resp. ordp(α) = `). Also, write Kp

for the completion of K with respect to the valuation ordp.

Proposition 3.1. Let S∞ be the finite set of prime ideals p of OK such
that

• ordp(α) < 0 for some root α of f ; or
• ordp(deg(f)) 6= 0; or
• ordp(deg(f)− 1) 6= 0.

The sequence (xn) does not converge to ∞ in P1(Kp) for any p outside S∞.

Proof. Let D be the polynomial given by (2.1). It was shown that deg(D) =
r − 1. Define its reciprocal polynomial to be

D∗(t) = tr−1D(1/t) =
r∑
i=1

mi(1− αit).

In particular, note that D∗(0) =
∑
mi = deg(f). By (2.2), we have

N(1/t) = D∗(t)− (1− α1t) · · · (1− αrt)
tD∗(t) .

Fix p 6∈ S∞ and suppose xn is such that ordp(xn) = ` < 0. Then xn 6= 0,
and we write yn = 1/xn. Hence

xn+1 = N(xn) = N(1/yn) = D∗(yn)− (1− α1yn) · · · (1− αryn)
ynD∗(yn) .

As p 6∈ S∞, we have

ynxn+1 = D∗(yn)− (1− α1yn) · · · (1− αryn)
D∗(yn) ≡ deg(f)− 1

deg(f) (mod p).

Consequently, ordp(xn+1) = ` = ordp(xn). We find ordp(xn+k) = ordp(xn)
for all k ≥ 0 by induction. Hence (xn) cannot converge to ∞. �
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Corollary 3.2. Suppose p is a prime ideal of OK such that p 6∈ S∞, as in
Proposition 3.1. If (xn) converges to γ ∈ P1(Kp), then γ is a root of f .

Proof. By Proposition 3.1 we see that γ 6= ∞. Formula (2.2) for N with
t = xn gives

xn+1 = xn −
(xn − α1) · · · (xn − αr)

D(xn) .

Letting n→∞ and subtracting γ from both sides yields

(γ − α1) · · · (γ − αr)
D(γ) = 0,

from which the result follows. �

With these preliminaries in hand, the theorem is a relatively easy conse-
quence of the following result of Ingram and Silverman on primitive prime
factors in dynamical sequences. This result was later made effective by
the first author and Granville. For the statement, recall that if (yn) is a
sequence of nonzero elements of a number field K, we say a prime ideal
p is a primitive prime factor of the numerator of yn if ordp(yn) > 0 but
ordp(ym) = 0 for all m < n.

Theorem 3.3 ([2, 1]). Let K be a number field and let φ ∈ K(t) be a
rational function of degree at least 2, let γ ∈ K be a periodic point for φ,
and let x0 ∈ K be a point with infinite φ-orbit; i.e., the sequence defined by
xn+1 = φ(xn) for n ≥ 0 is not eventually periodic. Then for all sufficiently
large n, the element xn − γ has a primitive prime factor in its numerator
if and only if φ is not totally ramified at γ.

Proof of the Main Theorem. Without loss of generality, we may enlarge the
field K so that it contains the roots of f .

Suppose α is a root of f with multiplicity m. Write f(t) = (t− α)mg(t)
for some polynomial g that does not vanish at α. Then

(3.1)
N(t) = α+ (t− α)− (t− α)g(t)

mg(t) + (t− α)g′(t)

= α+ (t− α)
((m− 1)g(t) + (t− α)g′(t)

mg(t) + (t− α)g′(t)

)
.

Let Sα be the finite set of prime ideals p of OK dividing at least one of the
following:

• the numerator or denominator of g(α) 6= 0;
• the numerator or denominator of a coefficient of g;
• the multiplicity m; or
• the integer m− 1, provided that m 6= 1.
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Assume first that m > 1. For each n ≥ 0, equation (3.1) gives

xn+1 − α = N(xn)− α = (xn − α)
((m− 1)g(xn) + (xn − α)g′(xn)

mg(xn) + (xn − α)g′(xn)

)
.

If p 6∈ Sα is a prime ideal of OK such that p` || xn − α for some ` > 0, we
see

m(m− 1)g(xn) ≡ m(m− 1)g(α) 6≡ 0 (mod p).
Consequently, p` || (xn+1−α). By induction, we have p` || (xn+k−α) for all
k ≥ 0. This shows (xn) does not converge p-adically to α for any p outside
of Sα.

We have just shown that (xn) converges v-adically to a multiple root
of f for at most finitely many places v. Combining this conclusion with
Corollary 3.2 shows that — outside of a finite set of places of K — the
sequence (xn) must either converge to a simple root of f or else diverge in
P1(Kv). In the statement of the theorem, we may take S to be the union
of the Archimedean places of K, the set S∞ (see Proposition 3.1), and the
sets Sα for all multiple roots α. This concludes the proof of Part (1) of the
theorem.

Now assume α is a simple root of f . Since m = 1, equation (3.1) yields

xn+1 − α = (xn − α)2
(

g′(xn)
g(xn) + (xn − α)g′(xn)

)
.

If p 6∈ Sα is a prime ideal that divides xn − α for some n, then p cannot
divide the denominator of the above expression. Hence p2 | (xn+1 − α). By
induction, p2` | (xn+` − α) for all ` ≥ 0, which shows (xn) converges to α
in the p-adic topology.

Now we must determine under what conditions there exist infinitely
many primes p as in the last paragraph. By Theorem 3.3 we see that for
each sufficiently large n, the numerator of xn−α admits a primitive prime
factor p if and only if the Newton map N is not totally ramified at α. Pro-
vided p 6∈ Sα, the previous paragraph shows that (xn) converges to α in
P1(Kp). Theorem 1.1(2) is complete upon applying the criterion given by
Proposition 2.3.

Conversely, we want to show that there are infinitely many places for
which (xn) does not converge to any root of f . Choose γ an unramified
periodic point of N with period q > 1. Suppose p is a prime factor of xn−γ
for some n, and suppose further that N has good reduction at p and that
p does not divide the numerator or denominator of γ − α. Then

xn+q = N ◦ · · · ◦N︸ ︷︷ ︸
q times

(xn) ≡ N ◦ · · · ◦N︸ ︷︷ ︸
q times

(γ) = γ (mod p).

By induction, we find that xn+kq ≡ γ (mod p) for each k ≥ 0. In particular,
this shows that xn+kq 6≡ α (mod p) for any k ≥ 0, and hence (xn) does not
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converge to α in the p-adic topology. By Theorem 3.3, we see that xn − γ
has a primitive prime factor for each sufficiently large n, and so the above
argument succeeds for infinitely many prime ideals p, which completes the
proof of the theorem. �

Proof of Corollary 1.2. If f has only one root, then it must be a multiple
root. Hence there are only finitely many places v of K such that (xn)
converges v-adically by part (1) of the theorem.

Suppose now that f has exactly two distinct roots. If neither of them is
simple, then we conclude just as in the last paragraph. If at least one of the
roots is simple, say α, then by definition we have Eα(t) = d−1. Part (2) of
the theorem shows that (xn) converges to α for only finitely many places
of K.

Next suppose that f has three distinct roots α, β, γ of multiplicities 1, b, c,
respectively. Then 1 + b+ c = d = deg(f), so that

Eα(t) = b(t− γ) + c(t− β) = (d− 1)t− (bγ + cβ).

The criterion given in part (2) of the theorem for α to be exceptional
becomes

Eα(t) = (d− 1)(t− α).
Comparing coefficients in these last two expressions for Eα gives the second
conclusion of the corollary.

Now we assume that f has degree d ≥ 3 and no repeated root. Suppose
α is an exceptional root of f . Then the theorem gives

Eα(t) = (d− 1)(t− α)d−2.

Write f(t) = A(t−α)g(t) for some A ∈ K× and monic polynomial g ∈ K[t]
with g(α) 6= 0. As f has no repeated root, writing g(t) =

∏
i>1(t− αi) and

differentiating shows
Eα(t) = g′(t).

Hence g(t) = (t− α)d−1 +B for some B ∈ K, and then

f(t) = A(t− α)d +AB(t− α)

Note B 6= 0, else f has a repeated root. Upon replacing B with B/A, we
have derived the desired form of f given in conclusion (3) of the corollary.
The coefficient of the td−1 term of f is −Adα. (Note that d − 1 > 1 by
hypothesis.) Since f has coefficients in K, we conclude that α is also in K.
Moreover, it follows that α is uniquely determined by the coefficient of the
td−1 term of f , and hence f can have at most one exceptional root. The
coefficient of the linear term is (−1)d−1Adαd−1 +B, which shows B ∈ K.

To complete the proof of conclusion (3), we must show that if f(t) =
A(t − α)d + B(t − α), then α is an exceptional root. But the argument in
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the previous paragraph can be run in reverse to see that Eα(t) = (d− 1)×
(t−α)d−2, and so we are finished by the second part of the main theorem.

The final conclusion of the corollary follows immediately from the third
because an irreducible polynomial in K[t] has no K-rational root. �

Proof of Corollary 1.3. If f is quadratic with two simple roots, then it has
the form f(t) = A(t− α)(t− β) for some A ∈ K and α, β ∈ K. We leave it
to the reader to check that f(t) is dynamically equivalent to t2− t. On the
other hand, we saw in Corollary 1.2 that every quadratic polynomial has
an exceptional root.

Now suppose d = deg(f) > 2. Again by Corollary 1.2, we know that f
has an exceptional root α if and only if f(t) = A(t − α)d + B(t − α) for
some nonzero A,B ∈ K. If we let ζ ∈ K be such that ζd−1 = −B/A, then
−(ζB)−1f(ζt+ α) = td − t. �

4. The density of places of convergence
In this section we collect a few pieces of evidence for Conjecture 1.4.

4.1. A heuristic argument. Suppose that f ∈ Q[t] is a polynomial of
degree d ≥ 3, and for the sake of this discussion we may assume that none of
its roots are exceptional. Let x0 ∈ Q and let (xn) be the associated Newton
approximation sequence. We showed in the proof of the main theorem that
for (xn) to converge to a root of f in Qp, it is necessary and sufficient that
xn ≡ α (mod p) for some root α of f — at least once one discards finitely
many primes p. This means, in particular, that the orbit (xn (mod p))
eventually encounters a fixed point of the reduction Ñ : P1(Fp)→ P1(Fp).

In fact, for any prime p outside of a certain finite set, the orbit (xn
(mod p)) is well defined and eventually becomes periodic with some period
`(p). The key observation is that Ñ has roughly dq periodic points with
period in the interval [2, q], while it has far fewer fixed points: approximately
d of them. If we expect that (xn (mod p)) attains any of the values in
P1(Fp) with equal probability, then we should expect the density of the set
of primes for which `(p) = 1 to be zero. Combining this heuristic with the
last paragraph shows the set of primes for which (xn) converges to a root
of f must have density zero.

4.2. Two numerical examples. In this section we consider two examples
of cubic polynomials. The first example, f(t) = t3 − 1, has no exceptional
roots. The second, g(t) = t3 − t, has an exceptional root. The evidence for
our density conjecture is somewhat ambiguous for both of these examples,
but it exhibits several other features that are of independent interest.
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We consider first the cyclotomic polynomial f(t) = t3−1 over the rational
field. Its Newton map is given by

Nf (t) = 2t3 + 1
3t2 .

By Corollary 1.2(2) we know that f has no exceptional root.
Tracing through the proofs of Proposition 3.1 and of the main theorem,

we see that aside from the primes p = 2, 3, the sequence (xn) converges
in P1(Qp) (to a root of f) if and only if f(xn) ≡ 0 (mod p) for some n.
For any particular x0, one can treat the primes p = 2, 3 by hand. We used
Sage 4.3.3 to compute the quantity

(4.1) δ(x0, X) = #{p ≤ X : (xn) converges to a root of f in Qp }
π(X)

for x0 = 2, 3, 4, 5 and X up to 200, 000 in increments of 20, 000. One knows
that (xn) is not eventually periodic in any of these cases because, for ex-
ample, Newton’s method applied over the reals converges to 1. The data
is summarized in Table 4.1. The values of δ(x0, X) are clearly decreasing
with X, although it is not immediately obvious that they are tending to
zero as predicted by our density conjecture.

X\x0 2 3 4 5
20K 2.431 2.476 2.962 2.962
40K 1.951 1.975 2.284 2.308
60K 1.568 1.634 1.800 1.816
80K 1.276 1.365 1.544 1.544
100K 1.178 1.209 1.376 1.345
120K 1.088 1.115 1.292 1.239
140K 0.9915 1.022 1.184 1.145
160K 0.9058 0.9467 1.062 1.069
180K 0.8628 0.9301 0.9852 1.016
200K 0.8396 0.9064 0.9119 0.9564

Table 4.1. Some convergence data for the polynomial
f(t) = t3− 1. This table shows the value of 100 · δ(x0, X) as
given by (4.1). The results are rounded off to four decimal
places. We write 20K for 20, 000, etc.

For the second example, consider the polynomial g(t) = t3 − t. Corol-
lary 1.2(3) shows that α = 0 is an exceptional root of g, but that ±1 are
non-exceptional. As in the previous example, we may work modulo p for
primes p > 3 to determine whether or not the sequence (xn) converges or
not, and the remaining cases we may check by hand.
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In contrast to the last example, we would like to determine if one of the
roots ±1 is a limit of the sequence (xn) more often than the other. To that
end, define

(4.2)
δ+(x0, X) = #{p ≤ X : xn → +1 in Qp }

π(X)

δ−(x0, X) = #{p ≤ X : xn → −1 in Qp }
π(X) .

Our findings are summarized in Table 4.2. The data appears to indicate
that the primes for which (xn) converges are split roughly in half between
those that converge to +1 and those that converge to −1. Most of the data
suggests a bias toward the root +1 (most strongly for x0 = 5), although we
have no explanation at present for this behavior.

X\x0 2 3 4 5
20K 1.547 / 1.503 1.547 / 1.194 1.503 / 1.415 1.592 / 1.194
40K 1.047 / 0.9993 0.9755 / 0.9041 0.9993 / 0.9517 1.142 / 0.8327
60K 0.8915 / 0.7925 0.8420 / 0.7760 0.8255 / 0.7760 0.9080 / 0.7099
80K 0.7656 / 0.6508 0.7273 / 0.6763 0.7146 / 0.7146 0.7784 / 0.6252
100K 0.6568 / 0.6151 0.6255/ 0.6359 0.6568/ 0.6151 0.6672 / 0.5317

Table 4.2. Some convergence data for the polynomial
g(t) = t3− t. This table shows the value of 100 ·δ±(x0, X) as
given by (4.2). It is represented in the form 100·δ+ / 100·δ−,
and the results are rounded off to four decimal places. We
write 20K for 20, 000, etc.

One could also stage a “dynamical prime number race” in this context.
That is, we could ask for what proportion of X do we have δ−(x0, X) <
δ+(x0, X). For x0 = 2, 4, 5, the data in Table 4.2 shows that δ+(x0, ·) is
running faster than δ−(x0, ·) at the five X-values at which we observed
them. For x0 = 3, we see that δ−(x0, ·) overtakes δ+(x0, ·) at least once in
the interval (80K, 100K]. In any case, we intend to explore these phenomena
further.

5. Remarks on the function field case
Although the results in [4] work for global fields of positive character-

istic, our results do not. We present three highlights of these failures over
the function field Fp(X). First of all, Proposition 2.1 may give a Newton
map of degree much smaller than expected. For example, the polynomials
f(t) = tp+1 − 1 and g(t) = tp(t− 1) have Newton maps Nf (t) = 1/tp and
Ng(t) = 1, respectively.
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Theorem 1.1(2) may also fail in this context. For the polynomial f(t) =
tp+1 − 1, observe that Nf ◦Nf (t) = tp

2 . Thus

f(x2n) = xp+1
2n − 1 = x

(p+1)p2n

0 − 1 = (xp+1
0 − 1)p2n = f(x0)p2n

.

Hence f(xn) can only be v-adically small if f(x0) was small to begin with,
which is to say that there are at most finitely many places of Fp(X) for
which (xn) converges. On the other hand, suppose α is a root of f . As f
has no repeated root, we see that

Eα(t) = d

dt

(
tp+1 − 1
t− α

)
= 1− αtp

(t− α)2 = −α(t− α)p−2 6= 0,

contrary to what one might predict from the theorem.
Finally, Corollary 1.2(3) fails for h(t) = tp − t: all of its roots are excep-

tional. Indeed, one checks that Nh(t) = tp, and so for any root α of h and
any x0 ∈ Fp(X), we have

xn − α = xp
n

0 − α = (x0 − α)pn
.

It follows that the only places v of Fp(X) for which xn can be close to α
are those for which x0 is already close to α; in particular, there are only
finitely many such places if x0 is not a root of h.

The examples given here are all defined over the constant field Fp. Propo-
sition 2.4 suggests the following definition: a polynomial f with coefficients
in Fp(X) is isotrivial if there exist constants A,B,C ∈ Fp(X) with AB 6= 0
for which Af(Bt+C) is defined over Fp. The proposition implies that f is
isotrivial if and only if Nf is isotrivial as a dynamical system. It would be
interesting to see which of our results carry over for non-isotrivial polyno-
mials.
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