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Dedicated to the memory of Prof. Shiing-Shen Chern on his birth centennial

Résumé. Le théorème bien connu de Wolstenholme affirme que,
pour tout premier p > 3, la (p−1)-ième somme partielle de la série
harmonique est congrue à 0 modulo p2. Si on remplace la série har-
monique par

∑
k≥1 1/nk pour k pair alors la congruence est vraie

seulement modulo p au lieu de modulo p2. On peut considérer des
généralisations aux sommes harmoniques multiples (SHM) et aux
aux sommes harmoniques multiples alternées (SHMA) qui sont
des sommes partielles de séries zêta multiples et, respectivement,
de sommes d’Euler alternées. Beaucoup de résultats dans cette di-
rection ont été obtenus dans les articles récents [6, 7, 8, 10, 11, 12],
que nous récapitulerons dans ce papier. Il apparait que, pour un
premier p, la (p−1)-ième somme partielle d’une SHM ou SHMA
générale n’est plus congrue à 0 modulo p ; cependant elle peut sou-
vent être exprimée en terme de nombres de Bernoulli. Donc c’est
un problème assez intéressant de trouver qui ils sont. Dans cet ar-
ticle, nous fournirons un cadre théorique dans lequel ce genre de
résulats peut s’exprimer et être étudié plus longuement. Nous cal-
culerons aussi quelques SHM supplémentaires modulo un premier
p quand le poids est inférieur à 13.

Abstract. The well-known Wolstenholme’s Theorem says that
for every prime p > 3 the (p−1)-st partial sum of the harmonic se-
ries is congruent to 0 modulo p2. If one replaces the harmonic
series by

∑
k≥1 1/nk for k even, then the modulus has to be

changed from p2 to just p. One may consider generalizations of
this to multiple harmonic sums (MHS) and alternating multiple
harmonic sums (AMHS) which are partial sums of multiple zeta
value series and the alternating Euler sums, respectively. A lot of
results along this direction have been obtained in the recent arti-
cles [6, 7, 8, 10, 11, 12], which we shall summarize in this paper. It
turns out that for a prime p the (p−1)-st sum of the general MHS
and AMHS modulo p is not congruent to 0 anymore; however, it

Mots clefs. Multiple harmonic sums, alternating multiple harmonic sums, duality, shuffle
relations.

Classification math.. 11M41, 11B50, 11A07.
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often can be expressed by Bernoulli numbers. So it is a quite inter-
esting problem to find out exactly what they are. In this paper we
will provide a theoretical framework in which this kind of results
can be organized and further investigated. We shall also compute
some more MHS modulo a prime p when the weight is less than
13.

1. Introduction
The multiple zeta values (MZVs) are defined by the infinite series:

(1.1) ζ(~s) = ζ(s1, . . . , sl) :=
∑

1≤k1<···<kl

k−s11 · · · k−sll .

Historically Euler was the first to study sums of this type. In recent years
many interesting and important applications of these values have been
found in diverse areas such as algebraic geometry and physics. To study
the algebraic structure of these values, Hoffman introduces in [4] the quasi-
shuffle algebra which reflects the two different kinds of shuffle relations
among MZVs.

In [10] we study the partial sums of these series which are called the
multiple harmonic sums (MHS for short) by the physicists [1, 2, 9]. Tautaro
[7] defines its alternating analog (AMHS for short) as follows. Let d > 0 and
let ~s := (s1, . . . , sd) ∈ (Z∗)d. We define the alternating multiple harmonic
sum as

(1.2) H(~s;n) :=
∑

1≤k1<k2<···<kd≤n

d∏
i=1

sgn(si)ki

k
|si|
i

.

By convention we set H(~s;n) = 0 any n < d, and H(∅; 0) = 1. We call
`(~s) := d and |~s| :=

∑d
i=1 |si| its depth and weight, respectively. Notice that

the depth `(~s) is sometimes called the length in the literature. When every
si is positive we recover MHS exactly. To facilitate our study we also need
to consider (cf. [5, 6])

(1.3) S(s1, . . . , sl;n) :=
∑

1≤k1≤···≤kl≤n

d∏
i=1

sgn(si)ki

k
|si|
i

.

The main purpose of [10] is to generalize the well-known Wolstenholme’s
Theorem to other MHS. At about the same time, in [5] Hoffman extended
his earlier results of [4] concerning multiple zeta values to MHS and be-
gins the study of their mod p structures. In [6] Hoffman further computed
these sums modulo a prime p when the weights are less than 10. In another
direction, Tautaro and the author [7, 8] recently started to consider the
congruence properties of AMHS. We found that similar to MHS the con-
gruences often involves Bernoulli numbers. However, Euler polynomials and
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Euler numbers also play significant roles. For example, Fermat’s quotient
qp = (2p − 1)/p naturally appears in many congruence relations of AMHS.

In this paper we will first provide a theoretical framework in which the
above mentioned congruence relations can be organized and further in-
vestigated. Then we sketch an idea of carrying out the computation on
computers. At the end we provide as examples some more computations
of MHS and AMHS with weights less than 13. We want to point out that
because the S-sums enjoy a nicer duality relation (see section 3) we will
concentrate on them in this paper for the MHS.

2. The setup
Let P denote the set of primes. For every prime p we denote by Fp =

Z/pZ the set of equivalent classes of integers modulo p. Define an additive
group

A(n) :=
∏

p∈P, p>n
Fp

with the addition carried out componentwise. For any positive integer n we
define

Q(n) = {a/b ∈ Q : a/b is reduced and if a prime p|b then p ≤ n}

regarded as a commutative ring with identity. For example, because no
primes greater than p−1 can appear in the denominator of H(~s; p−1) and
S(~s; p− 1) by their definitions we must have

H~s := (H(~s; p− 1))p∈P ∈ A(1), and S~s := (S(~s; p− 1))p∈P ∈ A(1).

Throughout this paper, by abuse of notation we will denote by the same
S~s its projections to A(|~s|+ 2). This should cause no confusion.

Lemma 2.1. The subset of rational numbers Q(n) can be embedded in A(n)
diagonally. Namely, the map Q(n) −→ A(n), r 7−→ (r)p∈P,p>n is a group
monomorphism.

Proof. Suppose (xp)p, (yp)p ∈ A(n) are the images of two rational numbers
x and y in Q(n) respectively. If xp = yp for all p > n then we have

x− y ≡ 0 (mod p)

for all but finitely many primes p. Let x = a/b and y = c/d be their reduced
fraction representations. Then we must have ad−bc is divisible by infinitely
many primes. Hence ad = bc which implies x = y. �

Letting Q(n) act on A(n) diagonally through multiplication we see that
A(n) becomes a faithful Q(n)-module by the lemma. Now we can define
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the sub-Q(n+ 2)-module of A(n+ 2) generated by the weight n MHS and
AMHS by

M(n) =
〈
S~s ∈ A(n+ 2) : |~s| = n, all components of ~s are positive

〉
,

AM(n) =
〈
H~s ∈ A(n+ 2) : |~s| = n, all components of ~s are in Z

〉
,

respectively. Both of these two modules are free since A(n) is clearly free.
For example, in weight 3 we have by [10, Thm. 2.13,Thm. 3.1]

S1,1,1 = (S(1, 1, 1; p− 1))p>5 S2,1 = (S(2, 1; p− 1))p>5

= 0 ∈ A(5), = (−Bp−3)p>5 ∈ A(5),
S3 = (S(3; p− 1))p>5 S1,2 = (S(1, 2; p− 1))p>5

= 0 ∈ A(5), = (Bp−3)p>3 ∈ A(5).

So as a sub-Q(5)-module, M(3) = 〈S1,1,1, S3, S2,1, S1,2〉 is generated by
(−Bp−3)p>5 in A(5). By the same reason we can summarize the results
in [6] and [10] in the following

Theorem 2.1. We have

M(1) = 〈0〉, M(2) = 〈0〉, M(4) = 〈0〉,
M(3) =

〈
(Bp−3)p>5

〉
, M(5) =

〈
(Bp−5)p>7

〉
, M(6) =

〈
(B2
p−3)p>8

〉
,

M(7) =
〈
(Bp−7)p>9, S4111

〉
, M(8) =

〈
(Bp−3Bp−5)p>10, S611

〉
,

M(9) =
〈
(Bp−9)p>10, (B3

p−3)p>10, S6111
〉
,

where we have used shorthand S4111 = S4,1,1,1 and so on.

Remark 2.2. Numerical evidence shows that (Bp−7)p>9 and S4111 ∈ A(9)
are Q(9)-linearly independent and (Bp−3Bp−5)p>10 and S611 ∈ A(10) are
Q(10)-linearly independent. Note that even though for p = 37 we have
S(6, 1, 1; p− 1) 6≡ 0 (mod p) while Bp−5 ≡ 0 (mod p) this is not enough to
show the linear independence. What we need is to show that there do NOT
exist two rational numbers a, b ∈ Q(10) such that

aS(6, 1, 1; p− 1) + bBp−3Bp−5 ≡ 0 (mod p) ∀p > 10.

At the moment we cannot exclude the possibility that a is a multiple of 37
and therefore the the above congruence holds for p = 37.

Remark 2.3. Numerical evidence shows that S6111 can be removed from
M(9). In fact, for all primes p between 11 and 2000 we have

S(6, 1, 1, 1; p− 1) ≡ − 1
54
B3
p−3 −

1889
648
Bp−9 (mod p).

See [10, Conj. 3.12].
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Definition 2.4. An l-tuple of indices I = (i1, . . . , il) is called admissible
if ij ≥ 3 and ij is odd for every j = 1, . . . , l. We call |I| = i1 + · · · + il its
weight. For an admissible index I we abuse the notation by putting

p− I := (p− i1, . . . , p− il), BI :=
l∏
j=1
Bij .

The following conjecture is the first obstacle to understanding the mod
p structure of the MHS.

Conjecture 2.1. For any positive integer n, if I1, . . . , Ik are pairwise dis-
tinct, admissible and have the same weight n then (Bp−I1)p, . . . , (Bp−Ik)p ∈
A(n) are Q(n+ 2)-linearly independent.

Assuming Conjecture 2.1 we can obtain a lower bound for the size of
M(n).

Proposition 2.1. If Conjecture 2.1 is true then

(2.1) rankQ(n+2)M(n) ≥
∑

1≤k≤bn/3c
2|(n−k)

(
(n− k)/2− 1
k − 1

)

where when n = 3, k = 1 we set
(0

0
)

= 1.

Proof. For all positive integers k ≤ n we define

Ik,n :=
{
I = (i1, . . . , ik) : |I| = n, 3 ≤ ij is odd for all j = 1, . . . , k

}
,

Jk,n :=
{
I = (i1, . . . , ik) : |I| = n, 1 ≤ ij is odd for all j = 1, . . . , k

}
.

Then we only need to show that the right hand side of (2.1) is the cardi-
nality ]In of the set In :=

⋃n
k=1 Ik,n. But we have an obvious one-to-one

correspondence for all k ≤ n/3:
f : Jk,n−2k −→ Ik,n

I = (i1, . . . , ik) 7−→ (i1 + 2, . . . , ik + 2)

with the inverse map f−1(i1, . . . , ik) = (i1−2, . . . , ik−2). This implies that

]In =
bn/3c∑
k=1
]Jk,n−2k.

But clearly for any k ≤ n/3 there is another one-to-one correspondence

g : Jk,n−2k −→
{

(y1, . . . , yk) : y1 + · · ·+ yk = (n− k)/2,
y1, . . . , yk ∈ N

}
I = (i1, . . . , ik) 7−→

(
i1 + 1

2
, . . . ,

ik + 1
2

)
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whose inverse is g−1(y1, . . . , yk) = (2y1 − 1, . . . , 2yk − 1). In particular, if
n and k have different parity then Jk,n−2k = ∅; otherwise, ]Jk,n−2k =((n−k)/2−1
k−1

)
. The proposition follows immediately. �

Let us turn to AMHS now. By the main result of [7, 10] we get
AM(1) =

〈
(qp)p>3

〉
, AM(2) =

〈
(q2p)p>4

〉
, AM(3) =

〈
(q3p)p>5, (Bp−3)p>5

〉
.

By the computation in the last section of [8] we find that

AM(4) =
〈
(q4p)p>6, (qBp−3)p>6,H(1,−3),H(1,−1,−2),

H(−1, 1, 1, 1),H(1,−1,−1,−1)
〉
,

where we have used H(~s) to denote (H(~s; p − 1))p>|~s|+2. Similar to the
situation for MHS where Conjecture 2.1 is the main obstacle we need to
resolve the following conjecture first in order to understand the mod p
structure of AMHS.

Conjecture 2.2. Let n be a positive integer. Assume I1, . . . , Ik are pair-
wise distinct, admissible and of weight w1, . . . , wk ≤ n, respectively. Then
(qnp )p, (qn−w1

p Bp−I1)p, . . . , (qn−wkp Bp−Ik)p ∈ A(n) are Q(n + 2)-linearly in-
dependent.

By the proof of Prop. 2.1 we can easily find the following result..

Proposition 2.2. If Conjecture 2.2 is true then

(2.2) rankQ(n+2)AM(n) ≥ 1 +
n∑
m=3

∑
1≤k≤bm/3c

2|(m−k)

(
(m− k)/2− 1
k − 1

)
,

where when m = 3, k = 1 we set
(0

0
)

= 1.

3. A brief review of duality and other relations
We treat only MHS in this section. Let’s first recall the definition of the

duality operation on MHS. Let k be a positive integer and ~s = (i1, . . . , ik) of
weight n = |~s|. We define the power set to be the partial sum sequence of ~s:
P (~s) = (i1, i1+i2, . . . , i1+· · ·+ik−1) as a subset of (1, 2, . . . , n−1). Clearly P
provides a one-to-one correspondence between the compositisons of weight
n and the subsets of (1, 2, . . . , n−1). Then ~s∗ is the compositison of weight
n corresponding to the complimentary subset of P (~s) in (1, 2, . . . , n − 1).
Namely,

~s∗ = P−1((1, 2, . . . , n− 1)− P (~s)
)
.

It’s easy to see that ~s∗∗ = ~s so ∗ is a convolution. For example, if i1, ik ≥
1, i2, . . . , ik−1 ≥ 2 then we have the dual

(i1, . . . , ik)∗ = (1i1−1, 2, 1i2−2, 2, 1i3−2, . . . , 2, 1ik−1−2, 2, 1ik−1).
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Here, we set 1n = {1}n where for an ordered set (s1, . . . , st) we denote by
{s1, . . . , st}n the set formed by repeating (s1, . . . , st) n times. An important
relation between ~s and its dual is the following:

(3.1) `(~s) + `(~s∗) = |~s|+ 1.

Next we define the reversal of ~s by ←s = (sl, . . . , s1). By substitution of
indices k → p− k it’s easy to show that

(3.2) H←
s

= (−1)|~s|H~s, S←s = (−1)|~s|S~s.

The following important result is due to Hoffman:

Theorem 3.1. ([5, Thm. 6.7]) For all ~s = (s1, . . . , sl) we have in A(1)

(3.3) S~s∗ = −S~s.

We also have the following equalities:

S~s =
∑
~r�~s
H~r,(3.4)

H~s =
∑
~r�~s

(−1)`(~s)−`(~r)S~r(3.5)

where ~r ≺ ~s means ~r can be obtained from ~s by combining some of its parts,
and for prime p

S(←s ; p− 1) ≡
∑⊔l
j=1 ~si=~s

(−1)`(~s)−l
l∏
j=1
H(~sj ; p− 1) (mod p)(3.6)

H(←s ; p− 1) ≡
∑⊔l
j=1 ~si=~s

(−1)`(~s)−l
l∏
j=1
S(~sj ; p− 1) (mod p)(3.7)

where
⊔l
j=1 ~si is the catenation of ~s1 to ~sl.

To put congruences (3.6) and (3.7) inside our theoretical framework, we
define multiplication componentwise on A(n) so that A(n) now becomes
a Q(n)-algebra. As a convention, if an element e ∈ A(n) appears in an
expression which makes sense in A(m) for some m > n we take e as its
image of projection from A(n)→ A(m). By this extension of definition we
can now write down the following equations in A(1):



306 Jianqiang Zhao

S←
s

=
∑⊔l
j=1 ~si=~s

(−1)`(~s)−l
l∏
j=1
H~sj(3.8)

H←
s

=
∑⊔l
j=1 ~si=~s

(−1)`(~s)−l
l∏
j=1
S~sj .(3.9)

In [6] Hoffman extended his theory of the Hopf algebra of the quasi-
symmetric functions to MHS in a very insightful way.

4. Some useful reduction results
In [6] Hoffman studied the mod p structure of the MHS of weight up

to 9. In order to consider the general case we first need to provide some
reduction relations among the sums because according to the next result
there are too many sums of a fixed weight.

Lemma 4.1. The number of different MHS of weight w is 2w−1. The num-
ber of different AMHS of weight w is 2 · 3w−1.

Proof. The number of MHS of weight w and depth d is obviously equal to(w−d
d−1

)
. So the number of MHS of weight w is

w∑
d=1

(
w − 1
d− 1

)
=
w−1∑
j=0

(
w − 1
j

)
= 2w−1.

Similarly, The number of AMHS of weight w and depth d is obviously equal
to
(w−d
d−1

)
· 2d. Then the number of AMHS of weight w is

w∑
d=1

(
w − 1
d− 1

)
2d =

w−1∑
j=0

(
w − 1
j

)
2j+1 = 2 · 3w−1.

�

Lemma 4.2. Suppose ~s has weight n, depth l and positive components. If
w and l have the same parity then S~s can be written as a sum of products
of the form S~s1 · · ·S~sk where either k > 1 and all the weights |~sj | < n or,
k = 1 and `(~s1) < l.

Proof. This follows easily from (3.2), (3.5) and (3.9):

S~s +
∑
~r≺~s

(−1)`(~s)−`(~r)S~r = H~s = −S~s +
∑⊔l

j=1 ~si=~s,l≥2

(−1)l
l∏
j=1
S~sj .
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So we have

S~s = 1
2

 ∑⊔l
j=1 ~si=~s,l≥2

(−1)l
l∏
j=1
S~sj −

∑
~r≺~s

(−1)`(~s)−`(~r)S~r

 .
�

Thanks to [10, Thm. 3.1 and Thm. 3.5] we know that to determine M(n)
we only need to solve S(~s), |~s| = n, where

`(~s) is odd and 3 ≤ `(~s) ≤ n/2 if n is even,
and

`(~s) is even and 4 ≤ `(~s) ≤ (n+ 1)/2 if n is odd.
So we have the following table:

|~s| 9 10 11 12 13 14 15
`(~s) 4 3,5 4,6 3,5 4,6 3,5,7 4,6,8

Table 4.1. The key depths according to the weight.

5. Computations of M(n) for n < 13

We now summarize the idea of our computer aided computation. For any
fixed weight, first we will use the reduction relations given above among
the MHS to reduce the number of sums that we really need to compute
and think them as unknowns, then by using Maple or any other algebra
system we can solve these unknowns by regarding the shuffle relations and
dualities as equations.

We illustrate this by carrying out the computation for M(9) in detail.
By Table 4.1 we only need to solve the 28 depth four sums. By Maple, the
shuffle relations produced by multiplying S1 with the following 27 weight 8
sums are enough to produce virtually the same solution of Hoffman in [6]:
S4112, S3221, S3212, S3122, S2411, S2321, S2312, S2231, S2141,

S41111, S32111, S31211, S31121, S31112, S23111, S21311, S21131, S22211,

S22121, S22112, S14111, S13211, S13121, S311111, S131111, S113111, S221111.

Similarly, we found the following:

M(10) =
〈
Bp−3Bp−7, B

2
p−5, S22141, S811, S61111

〉
,

M(11) =
〈
Bp−11, B

2
p−3Bp−5, Bp−3S611, S7211, S7121, S611111, S2261, S3431

〉
,

M(12) =
〈
B4
p−3, Bp−3Bp−9, Bp−5Bp−7, Bp−3S6111,

Bp−5S4111, S22512, S291, S33132, S42213
〉
.
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Note that in weight 10 if we indeed need S22141 then M(10) can NOT be
generated by height one sums Sh1...1 in Hoffman’s terms, because S∗511111 =
S61111, S

∗
4,16 = S7111 = 1

4Bp−3Bp−7 + 1
8B

2
p−5 − 5

4S811, S
∗
3,17 = S811, S∗2,18 =

S91 = 0, and S110 = 0.
Also in weight 10, we find S2332 = 0. In weight 12 we find S534 = S435 =
S23232 = S23322 = 0.
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