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Explicit Hecke series for symplectic group of
genus 4

par KiriLL, VANKOV

RESUME. Shimura a conjecturé la rationalité de la série de Hecke
des groupes symplectiques de genre n. La conjecture a été prouvée
par Andrianov pour un genre arbitraire mais une forme explicite
n’était connue que pour les cas des genres 1, 2 et 3. Dans l’ar-
ticle, la forme explicite des polyndmes rationnels pour la somme
de la série génératrice de Hecke dans le groupe symplectiques de
genre 4 a été présentée. Le calcul est basé sur l'isomorphisme de
Satake, qui permet de réaliser toutes les opérations dans ’algebre
des polynémes a plusieurs variables. Nous avons aussi calculé les
séries génératrices dans le cas spécial du choix des parametres de
Satake.

ABSTRACT. Shimura conjectured the rationality of the generating
series for Hecke operators for the symplectic group of genus n. This
conjecture was proved by Andrianov for arbitrary genus n, but the
explicit expression was out of reach for genus higher than 3. For
genus n = 4, we explicitly compute the rational fraction in this
conjecture. Using formulas for images of double cosets under the
Satake spherical map, we first compute the sum of the generating
series, which is a rational fraction with polynomial coefficients.
Then we recover the coefficients of this fraction as elements of
the Hecke algebra using polynomial representation of basis Hecke
operators under the spherical map. Numerical examples of these
fractions for special choice of Satake parameters are given.

1. Introduction

Let p be a prime. We consider the symplectic group Sp,,(Z) C GLg,(Z)
of genus n, and let

T(p), T1(p?), ... Tuo1(p?), [P],,

be n + 1 generators of the Hecke ring over Z for Sp,,. Let D,(X) denote
the generating power series of Hecke operators

() D,(X) = 3. T() X"
6=0
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The result presented in this article provides a complement to the solu-
tion of Shimura’s conjecture of rationality of generating Hecke power series
stated in [14] at p. 825 as follows:

“In general, it is plausible that D,(X) = E(X)/F(X) with
polynomials E(X) and F(X) in X with integral coefficients
of degree 2™ — 2 and 2", respectively”

(i.e. with coefficients in Hecke algebra

Lz = Z[T(p), T1(p*), ..., Tn_1(p*), [P],].)

The existence of a rational representation E(X)/F(X) was proved by
Andrianov in [1, 2, 3] for arbitrary genus n. For genus 1 and genus 2 the
results were given by Hecke and Shimura ([8], Theorem 3.21 in [15], and
Theorem 2 in [14]):

1
DM (x) = 7
p (X 1 —T(p)X + p[p], X*?
D (X) =

1 —pz[p]2X2 '
1—T(p)X +p(T1(p?) + (p? + 1)[pl) X2 — p*[p), T(p) X3 + pb[pJ5X 4

Andrianov was the first who obtained the expression for genus 3 using the
multiplication table of Hecke operators in [1]. Later, this result was pro-
duced by Miyawaki (see [10]), where he computed a few local factors of
some Siegel modular forms of degree 3 and made an interesting conjectures
related to modular liftings. No explicit results for higher genus were known
due to an enormous complexity of the Hecke algebra manipulations. Re-
cently the author together with Panchishkin developed a formal calculus
approach using a computer. We were able to compute more directly the
generating series in Shimura’s conjecture for genus 3 (see [12]), and then to
explore the case of genus 4. Below is the result for genus 3, where coefficients
in p are factorized into irreducible polynomials:

(1.2) D (X) = =
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where E3(X), F3(X) € Lzx) and
Es(X) = 1 - (T2(0?) + (5 — p+ D(p® +p + 1)[pl3) X?
+p'(p+ 1)[plsT(p) X°
—p'pls (T2(0?) + (0F = p+ (0 + p+ D[ply) X* +p'[pJ3 X°,

F3(X)=1-T(p)X

+2(Ta0?) + (7% + DT20%) + (% + 1)*[pl;) X°
—p* (Ta(p?) + [pls) T(p) X*

6 2 2 2 2
+°(T2(p?) + [Pls(T(p)* = 20T (p?) — 2(p — 1)T2(p?)

2 2 2 4
~ @2 - D@ -+ D+ DIpl))X

—p’pls (T2(?) + [pls) T(p) X
+pB[pl3 (T1(p?) + (0 + DTa(p?) + (0 + 1)*[pls ) X°
— P[P T(P) X +p™[pl3X°.

In this article we describe this symbolic computation approach for genus 4
(i.e. the case of Sp,). We present both numerator and denominator polyno-
mials expressed in the terms of Hecke operators in the section 2. Notations
of the article and some necessary facts about the Hecke algebras are given
in section 3. In the section 4 we define the Satake mapping of the Hecke
algebra to the symmetric polynomial ring, which is referred by Andrianov
and Zhuravlev in [7] as the spherical map. Then we discuss in details the
method of obtaining the main result in the section 5. Finally we give some

interesting properties of obtained polynomials in the section 6.
Generating series of a type

oo [e.e]
S atmm = I M)
m=1 pprimes §=0
are used as a classical method to produce L-functions for an algebraic
group G over Q, where A¢(m) are the eigenvalues of Hecke operators on an
automorphic form f on G. Hence these series and related congruences are of
number-theoretic interest. Particularly, we study here the generating series
of Hecke operators T(m) for the symplectic group Sp,, where As(m) =
Ar(T(m)). If we want to get Hecke series for a given Siegel modular forms
concretely, this kind of calculation is necessary.
Many examples of Hecke series as rational functions for some classical
groups over p-adic fields are given by Hina and Sugano in [9]. The explicit
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knowledge of the sum of the generating series of Hecke operators
oo
D,(X) = 3 T(")X® = B(X)/F(X)
0=0

gives a relation between the Hecke eigenvalues and the Fourier coefficients
of a Hecke eigenform f. This link is needed for constructing an analytic
continuation of L-function on Sp,,, which was done by Andrianov for Sp,
in [5]. An approach for constructing an analytic continuation of the spinor
L-function on Sps was indicated by Panchishkin at the talk on seminar
Groupes Réductifs et Formes Automorphes in the Institut de Mathéma-
tiques de Jussieu ([11]).

Similar technique of a symbolic computation can be used to discover
other interesting identities between Hecke operators, between their eigen-
values, relations to Fourier coefficients of modular forms of higher degree. In
[13] the author together with Panchishkin study the analogue of Rankin’s
Lemma of higher genus and formulate a modularity lifting conjecture for
convolutions of L-functions attached to Siegel modular forms.

2. The explicit formula for Sp,

Theorem 1 (Explicit Shimura’s conjecture for genus 4).
For genus g = 4 the summation of Hecke series D,(X) resolves explicitly
to the rational polynomial presentation:
5 _ Ea(X)
Fy(X)’

D{(X) = 3 T(p)X
6=0
where
14
Ei(X) =) e X"
k=0
is the polynomial of degree 14 and
16
Fy(X)=>_ £,X"
k=0

1s the polynomial of degree 16 with the coefficients e, and fi listed in the
Appendiz A.

The proof of this result is based on application of the spherical map in
order to carry out all calculations in the ordinary polynomial ring instead
of Hecke algebra. Using formal calculus on a computer it is possible to
find the explicit solution for the image 2(D,(X)) in terms of symmetric
polynomials. Similarly we find the images of basis Hecke operators, which
we use to compose and resolve a linear system of undetermined coefficients
and discover the desired expression in terms of Hecke operators.
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3. The Hecke algebras

In this section we briefly define the notations used in the article. We use
definitions from [7], where the detailed theory of Hecke rings is given in
Chapter 3 (see also [6]).

3.1. Hecke algebra for Sp,,. Consider the group of positive symplectic
similitudes

S = 5" = GSp;(Q) = {M € M2 (Q) | "M M = (M), u(M) > 0} ,

where Jn—( Of (I)" )
—in n

For the Siegel modular group I' = Sp,,(Z) C SL2,(Z) of genus n consider
the double cosets

(M) =TMT C S,

and the Hecke operators

T(w) = Y, (M),

where M runs through the following integer matrices
SDn(,u) = {diag(dl, N ,dn; €1,... ,en)} s

where di|---|dylen| - |e1, di,ej > 0, die; = p = p(M). Let us use the
notation for the Hecke operators

T(di,...,dn;e1,...,e,) = (diag(dr, ..., dn;e1,...,e5)) .

In particular we have the following n + 1 basis Hecke operators

T(p):T(l""717p7"'7p)7
——— ——
(3.1) " "
Ti(p*) =T,...,L,p,...,p,p% ., 05D, p) i =1,...,n,
n—u 7 n—1 7

generating the Hecke algebra over Z:

['n,Z = Z[T(p), T (p2)7 B Tn(pQ)] :

We denote as [p],, (or just [p] if the context of n is declared) the scalar
matrix Hecke operator [p] = T, (p?) = T(p,...,p) = pla, .
———

2n
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3.2. Operation of multiplication in Hecke algebras. In order to de-
fine an operation of multiplication (in the abstract Hecke algebra) we con-
sider without loss of generality for any subgroup I' of semigroup S a vector
space over QQ generated by all left cosets 'M (just as a formal base)

Lo(I',5) = {Z%‘(FMJ‘) la; €Q} -

For double cosets (M) = TMT C S that can be presented as a finite union
of disjoint left cosets

() = a5,

we denote
(M)= > (M)
M;eT\['MT

and consider an abstract Hecke algebra Lo(T',S) = Lo(T',S)! as a vector
space Lg(T, S)!' for fixed I'. Any nonzero element ¢ € £ can be written in
the form ¢ = 3-5*; a;(I'M;). Hence, the multiplication is well defined as

(Zaj(er)) (ZCL}(FM]'/)) = Zaja;-/ (FMij/), aj,ag-, €Q.
J 7' 7,3’

3.3. Hecke algebra for GL,,. Further, in order to define a mapping to
the polynomial ring, we need to introduce a Hecke algebra for general linear
group. Let G = GL,(Q) and A = GL,(Z). We note corresponding Hecke
algebra by Hg(A,G) = Lg(A, G)™. This algebra is generated by n basis
operators
(3'2) Wi(p):(diag(]‘""7]"p7""p))’1<i<n'

n— 7
Recall that every left coset Ag (g € G) has a representative of the form
S1

p C}yz ©tt Cin
2 ...
(3.3) 0P here 6y, 6, € 2.
0 0 - pn

The arbitrary element ¢ € Hg(A, G) is composed as a finite linear combi-
nation of left cosets Ag;:

(34) t= Z a; (Agj) .
J

We need to introduce another element related to the product of gener-
ators 7;(p), which will be later used for spherical map definition. Let 7,3
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be a double coset defined by

IL.op O 0
(3.5) Tap = Ta(p) = 0 pl, O :
0 0 pig

The double coset expansion of the product in the Hecke algebra Hg of two
generators m; and 7, where 1 <, j < n, has the form

Pa+5—b
mT =Y Tatjbb »
0<asn—j PaPj—b
0<b<j
a+b=i
where
(3.6) wi=pi(x)=(-1@*=1)--- (" = 1) fori>1
and @o(z) =1.

4. The spherical map

There are several methods to construct a mapping from a Hecke algebra
to a polynomial ring. We use the constuction by Andrianov and Zhuravlev
[7], where the description for general linear and symplectic groups is given
in terms of the right cosets of the double cosets, which generate the Hecke
algebra. This isomorphism plays a key role in our calculations. It allows to
carry out all computation in the polynomial ring where the multiplication
operation is much more straightforward than the product of double cosets.

4.1. The spherical map in general linear group case. The spheri-
cal map for the Hecke algebra of general linear group is defined for fixed
representative of a left coset of the form (3.3) as

n

w((Ag)) = [[(@p™)”

i=1
and for an arbitrary element (3.4) we have

w(t) = Zajw((/\gj))-
J

This definition is unique due to the fact that the diagonal (p‘;l, e p‘;") in
(3.3) is uniquely determined by the left coset.

Lemma 2.21 of chapter 3 in [7] gives the images of the basis elements
(3.2) of Hecke algebra for general linear group:

w(ﬂ-l(p)) = p_i(i+1)/2ei(m1> oo 7$n) (1 < 1 < TL),

where

ei(zy,...,xn) = Z Tay Ty

1<a << <n
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is the i—th elementary symmetric polynomial.

4.2. The spherical map in symplectic group case. The definition
of the spherical map in case of symplectic group is more complicated and
based on the case of general linear group. Consider an arbitrary element
(double coset) T' € L,, 7 as a finite linear combination of left cosets:

7= Y, (TM). with w(M) =
J

We choose the representative of a class in the form

6:ty—1
p%tD; *
M. — J
! ( 0 Dj>’

where D; is a triangular matrix of the form

p'ylj * .
Dj = 0 p% *
0 o 0 pMi

We define the mapping as
T) =Y bjayw(AD;).
J

In particular on page 146 of [7] we have the following formulas for basis
Hecke operators:

n
Zxosaxl, wn) =ao [[(1+ @),
i=1

Z pb(a+b+1 a—i,a)x%uJ(Wa,b(P))?

a+b<n
a1

(4.1)

where the coefficient [,,(r, a) is the number of a x a symmetric matrices of
rank r over the field of p elements. This coefficient is explicitly given by the
recurrent formula (6.79) in [7, Chapter 3, §6] on page 214:

gy PalP)
P P

where the function p;(x) was already defined by (3.6).
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Now we apply the above formulas to the power series (1.1) and obtain
the expression for the image of D,(X):

QAD,(X)) = 3 (1) X7 =
0=0

(4.2) o
> SO Rt (0 ) (w0 X))
0=0 0<6 < <In<o

where

(4.3) tp®,...,p°) = (diag(p™,...,p")) € Ho

is an element of the Hecke algebra for general linear group.

4.3. Practical computation. The algorithm was programmed and the
results were computed using Maple system. We found more practical and
suitable for direct programming the formulas for spherical mapping in the
article [4]. Remark that the notation €2 belongs in that article to the spher-
ical mapping of the Hecke algebra for general linear group. It corresponds
to our mapping w defined above with substitution of all z; by x;/p for
i = 1,...,n. Therefore we used the formula (1.7) on page 432 of [4] and
then performed the substitution. This formula gives direct expression for
images of the elements ¢ of a type (4.3) including images of m,3(p) defined
by (3.5). In our notation it can be written as

(4.4) w(t(p(é)) —p > (n—i)s; P%()J(?zl)) 7

where

e1(x)" ’
Q) = > (wz)Ve(wa),
WESy
1-— %(w)(a)
C(l') = O{l;[Z 1— (ZL‘)(O‘) )

function ¢(x) was defined by (3.6), the notation (x) is used for n-tuple
(21,22, ..., 2n), then (2)(®) = {252 - 287 (wx)®) = mf;(l)xzf@) . -J:5w7‘(n).
The set ¥ = {(a)} = {(ov,002,...,an)} = {aj,1 < i < j < n}, where
a;; is defined by placing of 1 and —1 within the set of n zeros a;; =
(...,0,1;0,...,0,—1;,0,...) € Zy. The element of Hecke algebra for the
general linear group noted as t(p®) is t(p,...,p’). Numbers (k) =
(k1,...,kt) denote the quantities of ¢ distinct elements in the set of in-
tegers (0) = (01,...,0,), that is the number d; occurs in (§) exactly k;
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times, the next number following d; in the ordering of (§) and distinct from
01 appears t here ko times, etc. Note, that all k; > 0 and k1 + -+ -+ k; = n.
Now we consider n = 4. The set X consists of 6 elements

¥ =4{(1,-1,0,0),(1,0,-1,0),(1,0,0,—1),
(0,1,-1,0),(0,1,0,-1),(0,0,1,—-1)}.

Then the expression for ¢(x) takes the explicit form
_ (pry — @) (pr3 — x1) (pra — 21) (pr3 — 22)(pra — T2) (Pr4 — 3)
c(z) = 5 .
PP (g — w1) (23 — w1)(wg — @1) (w3 — w2) (24 — 22)(24 — 73)

In order to find images of Hecke operators (4.1) we need to apply the
formula (4.4) to all t(p®) of a type (3.5), that is, for the following set

{(9)} =1{(0,0,0,1),(0,0,1,2),(0,1,2,2),(1,2,2,2),(0,0,1, 1),
(0,1,1,2),(1,1,2,2),(0,1,1,1),(1,1,1,2),(1,1,1,1)}.

Further we will see that in order to compute the series (1.1) we need an
expanded set {(4)} with components up to 14. We can dramatically reduce
this set by taking the common degree of p from the operator t(p‘;l, e p‘;”)
outside of the double coset matrix (multiplying the element by the corre-
sponding degree of p). Therefore, we need to compute just 680 primitive
elements of the form t(1,17‘52,])537 p54) reducing the variable d1, and where
0 <02 <03 <0g <14,
Below are some examples of the values of these images:

w(t(1,1,1,1)) =1,

w(t 1,1,1,]3) p_l(x1+:c2+x3+x4),

w

) —

t(1,1,p,p)) = p 3(x122 + L1203 + 2174 + Tox3 + Toxy + 2374)
) = p_3(96‘1$2$3 + 12024 + 12374 + Tox324)
3

(t(

(t(
w(t(1,p,p,p))
w(t(1,p,p,p*)) = p~ 2 (prdaoxs + prizoxy + prdusxy — x3x3xs + prizias

— 23x3xy + privsry + privexi — virexi — 3xiwowswy + 3prizoxsTy
+ px%xgxi — x%mgzci - x%x%m + px%m%u + px%:chi - x%xga:?l

+ p:clx%xg + pa:lx;’u — ycla:%:c% + pxm%x% + 3px1x%x3:c4 — 3x1x%x3x4
+ pxlx%xi — :L’lx%xi + pxlxgxg — lexgcc%m + Bpxlxzxgm

+ 3pr1@oxsr] — 3w1T2w3x] + Pr122x] + pr1aiTy + pri23] — v1250]
+ pr1T3T + privsTy + praTITy — V3TZT4 — ToT3T] + pr3TIT]

+ pToTiTy + prorial — ToxiTy + prowsry) .

These expressions are symmetric polynomials as expected. The written form
becomes very long for higher degree (J). In order to be able to present
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intermediate results preserving the structure of these polynomials we use
the symmetric monomials of four variables m;,,i,:,, more precisely
L. = Z1 12 7,5
Myiyigiziy = Z w(‘rl Lo T3 .’L‘4 )
weS,/ Stab(z 1x12m33x44)
where the sum is normalized by the stabilizer Stab(zi'z2zi2%) so the
resulting coefficient is equal to 1 and i1 > 49 > i3 > i4 > 0. For example,
mio00 = 1 + T2 + T3 + T4,
mi100 = T1X2 + 13 + 124 + T2x3 + Tox4 + 2324,
2 2 2 2 2 2
Mo110 = T1T2x3 + T1T2X4 + X7L3T4 + T1X5T3 + T1X5%4 + L1223
2 2 2 2 2 2
+ T1x22y + T1X3T4 + X1X3TY + XT3T4 + T2T3X4 + T2X3Xy ,
_ .3.3.3.3
m3333 — :le2$3$4 .

Using this notation the previously listed examples of w(-) images become
the short expressions:

w(t(1,1,1,1)) =1 = moooo ,
w(t(1,1,1,p)) =p 1mlooo,
w(t(1,1,p,p)) =p 3mnoo»
w(t(l,p,p,p)) =p~ m1110,
w(t(L,p,p,p%)) = p~?(pmsi10 + (p — 1)maz10 + 3(p — 1) ma111) -

Finally, using formulas (4.1) and (4.4) we obtain the images of basis
Hecke operators for the symplectic group (3.1), which we present here in

QT (p)) = zo (Mmi111 + ma110 + M1100 + Mi000 + 1),
Q(Tl( %)) =2ip 2 ((p— 1)*(p + 1)(4p* + 3p® + 3p” + p+ 1) mun
p—1)(3p* + 2p + 1) (ma2111 + mi110)

(4.5) T (P )
*(p— 1) + p+ 1)(ma111 + mi110)
Ma211 + Ma110 + M1100)) ,

=250 (0 — Dp + D* + 1) miin

ma111 + Mi110))

p(
p(
p'(
) = agp (0 — 1) (4p* + 3p° + 3p” +p+1)m1111
+p7(
+p°(
Q(T3(p%))
+p4(
) =

—10
mi111 -

Q([p]
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5. The proof of the formula

First we find the image under spherical map of the Hecke series. Then us-
ing formulas (4.5) we construct an equation with undetermined coefficients
in order to write the spherical image in terms of Hecke operators.

5.1. Spherical image of Hecke power series. Following the manipula-
tions with the series in the book [7] on page 150 we introduce the following
substitutions:

5y = 01 + 05,
03 = 01 + 0%,
0y =01 + 0y,
§=106+68+3,

where 0 < 8, < 05 < ) < ¢ and § > 0. Continuing the formula (4.2) using
the above substitutions we obtain for n =4

D, (X)) = 3 (1) X7 =
0=0

(0.]
— Z Z p4(51+3(52+253+54 w(t(pl;l’plsg’plsg’pih)) (HZ'OX)é
0=0  0<01<02<03<04 <0

01
5 8" 1061 +36,+28% 46 [ L1L2L3L4
IR G e et
61>0, 80 p
0<8,<05<9)

X W(t(l,p52,p53,p54)))
- ((wow1zawsea )™ (w0 X) w(t(L,p'2, p's, ') p*s 2540,
4120, 520
0<6}<3, <5,

X (l’oX)(S:l) .

In the last formula we separate and perform an independent summation on
61 and [ variables. These two series result in

s 1
E (1‘0:(}1.%2.%‘3:(}4)() b= X
5150 1-— TOIL1X2X3T4

and
1

roX)P = —— .
52)(0 ) 1—$0X

In the rational representation of the series D, (X) = E(X)/F(X) the degree
of the numerator E(X) for n = 4 is equal to 14. Moreover, the spherical
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image of the denominator F(X) is explicitly known
Q(F(X)) = (1 - $0X)(1 — xole)(l — xonX)(l — $0$3X)(1 - 1‘01‘4X)
X (1 — l‘oxleX)(l — xoxlng)(l — $0$1$4X)(1 — (L‘oxgng)
X (1 — $0$2$4X)(1 - 1’0.%3%4)()(1 — $0$1$2$3X)(1 — x0x1x2x4X)
X (1 — $0$1$31‘4X)(1 — x0x2x3x4X)(1 — x0x1x2x3x4X) .
Therefore we obtain

Q(E(X))Z( > w(t(l,p%pdé,p‘si))p%é*%é*‘sg(on)54>

0<8,<0, <3,
X (1 = 2021 X)(1 — 202X ) (1 — Zox3X)(1 — 2924 X)
X (1 — zor122X)(1 — 2oz123X) (1 — 22124 X ) (1 — ZO2223X)
X (1 — zoraws X)(1 — zox324X) (1 — 2ox12223X ) (1 — TOZ12224X)

X (1 — 1‘01’1.%'3$4X)(1 — x0x2x3$4X) .

In order to obtain an explicit expression for the image of the numerator
E(X) we compute all (w(t(l,péé,pﬁé,p‘sﬁ))p%%%é*% (on)‘sQ) up to &) <
14, add them together and multiply considering only resulting powers of X
up to 14. These expressions are very long, it took hours of processor time
to compute all sums and products. Intermediate results would fill hundreds
of pages of paper. However, the final result is quite short (using symmetric
polynomial notation) and it is published in [16], showing some interesting
properties of this polynomial (e.g. a functional equation).

5.2. Inverting the spherical image. In order to obtain the result of
the theorem 1 we applied the method of undetermined coefficients to each
coefficient of Q(E(X)) and Q(F(X)). Let us take as a reference the variable
xo. In expressions for Q(E(X)) and Q(F(X)) this variable has the same
degree as X for each summand. The expression for Q(T(p)) (see (4.5))
includes the variable zg in degree 1, other images of basis Hecke operators
Q(T;(p)) include zp in degree 2. Therefore, to reconstruct the particularly
given coefficient of degree k of the polynomial E(X) or F(X) we need to
construct all possible products of T(p), T1(p?), T2(p?), T3(p?) and T(p)
so the resulting degree of xg in the spherical image will be equal to k. For
example, consider the coefficient of the degree 3 in polynomial E(X). We
computed before its image (see [16])

Qes) = 23p 7 (p + 1) (p (ma222 + m3221 + Mma211
+ m3111 4+ Ma220 + Ma210 + M2110 + M1110)

+ (p? + 4p + 1) (magaz + mazar + mao11 + mar11 +mii)) -
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All possible products of generators of the Hecke ring having the degree 3 of
xo under the spherical mapping are: T'(p)T1(p?), T(p)T2(p?), T(p)T3(p?)
and [p]T(p). Then

Q(es) = K1QT(p))2T1(p?)) + K20(T(p))2T2(p”))
+ K3Q(T(p))2T3(p°)) + KaQ(T(p))2([p)) -

Expanding these products we construct a linear system of K; variables by
comparing the coefficients of appropriate monomial symmetric functions.
This system resolves uniquely due to the fact that the spherical mapping
constructed on basis Hecke operators is an isomorphism. In the example
above we find that K1 = 0, Ky = 0, K3 = p*(p + 1) and K4 = p*(p +
1)(p?> + 1)(p® — p? + 1). In practice for higher degree there exist many
choices of products of generators and the expansion of them becomes a not
trivial task even for a computer. Fortunately, there is a functional equation
for coefficients of the denominator F(X) due to the symmetric structure of
the spherical image polynomial:

£, =fi6_; - (p'°[p))"®, i=0,...,16.

Therefore we used the approach of undetermined coefficient for only lower
degree f;, where ¢ = 0,...,8. The same computational problem exists for
the higher degree coefficient of the numerator. To overcome the unnec-
essary manipulations and blind guessing of the T—product combination
we noticed that it is possible to lower the degree of the equation for the
particular coefficient e; for ¢ > 7 by dividing this equation on factoring
Q([p]) = #3p~Y21292374 in appropriate degree and using the same prod-
ucts (with non zero coefficients) of T(p)"*T(p)2T(p)=*T(p)*T(p)* as for
already computed ej4_;.

6. Remarks

Remark 2. The result of the Theorem 1 is compatible with the result of the
earlier work [12], where the same method was applied for the case of genus
3. Considering the projection from genus 4 to 3 corresponding to Siegel
operator acting from Sp, to Sps in Hecke algebra by taking [p], to zero,
T® (p) to TC)(p), and T§4) (p?) to TES) (p?) for i = 1,2,3, we obtain the
exact formula of generating power series (1.2). All formulas (3.1) for the
images of basis Hecke operators transform to the exact formulas for lower

(4)

genus as well. The spherical image Q(D)") under a projection x4 = 0

transforms into Q(D,(,g)). This genus lowering procedure is valid for g = 2
and g =1 as well.

We noticed a very interesting symmetry property within the coefficients
of the spherical image of the numerator. Knowing this relation in advance
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would let us to limit computation of coefficients almost in half just up to
degree 7, reproducing the most time consuming higher degree coefficients
using this property.

Proposition 3. Polynomial Q(E

(E(X )) has the following functional relation
between its coefficients Q(ey), k =

e, 14:
9(914—145)(?, o, T1,T2,T3, 1"4) —

_ _ 1 1 1 1 1
—-D 6($(2)$1932953$4)7 kQ(ek) ( y XOX1X2X3T4y ——y ——5 —— >
p x1 $2 1'3 Ty

Remark 4. It is suggested that this functional relation is true for all n in
the following form:

QE)(xgy...,Tn, X)

2ry .. x, X2 1 1
-yl om) (L, L2
P x0 Ty X

For a special case of a choice Satake parameters x; the spherical image
of the numerator E(X) can be considerably simplified.

Proposition 5. Consider the degree homomorphism v corresponding Sa-
take parameters (xo,x1, T2, 23,24) = (1,p,p?,p>,p*). Then the polynomial
Q(E) takes the form

Q(E(X)) = (1-pX)(1 - p*X)(1 - p*X)*(1 - p*X)
x (1+p°X)(1 - p°X)*(1 — p°X)*(1 — p" X)(1 — p°X)
X (14 pX +p°X +20°X + p* X + 95X + 205X +p" X 4+ p8X +p?X?)

(compare to the similar result in genus 3 [12]).

The explicit result of the Theorem 1 makes it possible to compare the
spinor Hecke series of genus 4 with the Rankin product of two Hecke se-
ries of genus 2 computed in [13]. We formulated there a conjecture on a
holomorphic lifting from GSpy x GSpy to GSpy.

The result presented in this article was put into thesis of the author’s
dissertation [17], which was successfully defended in November 2008. The
author is very grateful to Alexei Panchishkin for posing the problem and
active discussions.
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Appendix A. Coefficients of the theorem on explicit Shimura’s
conjecture for genus 4

ey = 17

e; =0,

es = —p*((p° +p° + 20" + 20" + V[p] + P> +p+ 1)(p* —p+ 1) T3(p*)
+ T2(p%)),

es=p'(p+ 1)((p* +1)(p* — p* + 1)[p] + T3(p*)) T(p),

es=p (PP +p+1)(P* —p+1)(0* +3p" +p° +2p* + p— 1)[p]?
+ @ +p+1)(P* —p+1)(20° +p — 2)Ts(p")[p]
~ (P +p+ )@~ p+ DT’
+ (20 + 2+ p” + p— D) Ta(p)[p)

T2 (p*)T5(p?) + p(* + p + 1)T1(pH)[p] — (»* +p+ )T (»)*[p)) ,
plo( +D)(P*+ )" —p°—p* = 1)[p] — (* + DT3(p?)
— T2(p*))T(p)[p],
eg = p14((p16 - p15 o p o 3p12 o 5p10 o 8p8 +p7
— 8p® — 5p* — 4p> — 1)[p)’

+ (2 = —p? —5p® + 2" — P8 —6p* — 8p? +p — 2)T3(p?)[p)?

+ (07— pt— 4p? + 2p — )T3(0%)’[p] + pT3(07)°
— 2% +3p° +p* = PP+ 3p” + p+ 1) T2 (p?) [P
— (3" + p+ )T (p*) Ts(p?)[p] — (0° — p* + T1(p*) [p)?
— T1(p*)Ts(p*)[p] + P°(P* +p — T(p)*[p)*) ,
er =—p?(p- 1)+ (@ +p+ 1)@ —p+1)(p* +1)[p]
+ P +p+ D) —p+ DTs(p?) + Ta2(p?))T(p)[p)°,
= fp“((p”" —3p'2 — 3p!0 — p® — 9p® — 8p® — 7p* — 5p® +p—1)[p)°
+ (' — p” — 4p® — 6p° — 8p* — 9p* + 3p — 2)T3(p)[p)?
— (0" + 4p* = 3p+ DT5(0")’[p] + pTs(p?)’
— P+ 205 — p° + 2p* + PP + 4p” + 1)T2(p?)[p)?
- (* +3p" + T2 (p") T3(p”)[p] + (0° — p* — DT1 (") [p)?
— T1(p*)Ts(p*)[p] — p(0”* — p* — DT (p)*[p]*)[p] .
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eo = p?(p+ (P> + 1)(p° — 2p* — 1)[p] — (p* + 1)T3(p?)

— T2(p*))T(p)[p)’,

e = —p*((0* —p+1)(@° +p+1)(0° + 20" +p° + 3p° + p— 1)[p)”
— P -p+1)@*+p+ 1)@ —3p° —p+2)T3(p°)[p]
— (P —p+ )P +p + DT(p?)’
+ (p° +3p* + p* + p— 1)Ta2(p”)[p]
— Ta(p*)T3(p*) + p(p° + p+ 1)T1(p?)[p]
— (P +p+D)T@’P)P’,

enn = —p"' (p+ 1)((P* + 1)(p* — p*> + 1)[p] + Ts(»*)) T(p)[p]" .

ez = p**((2p° + 2p* + 2" + [p] + (0* —p+ D(P* +p+ 1)T3(p?)
+T2(p))[p)°

€13 = 07

€14 = —P64[P]7,
fO = 17
fl = _T(p)7

f = p((p° + 20° + 2p* + 2p* + 1)[p] + (0" + 2p* + 1) T3(p)
+(* + DT2(p?) + T1(p?))

fs = p*((p" —p° —p* —p* = 1)[p] — T3(p*) — T2(p*))T(p),

£y = —p°((p* + 1)2(p° — p* +2p* — 2p” + 2p — 1)[p)?
+20* —p+ D'+ 1)(p"* +20° +p* + p— 1) T3(p") [p]
+ (P =+ D@ +p+ D)+ 20— T30’
—2(p* —p+1)(p* + 1)T2(p*)[p] + 2(p — 1)T2(p*) T3 (p*)
—Ta(p*) + 2p(p* + DT1 () [p] + 2T1(1*)T3(p?) — T(p)*[p)
— T(p)*Ts(p?)) .

f5 = p((p" + p™* + 4p° + 2p" + 3p° + 3p* + 2p* — 1)[p]?
+ (20" + 2p° + 3p* + 2p* — 2)T3(p)[p]
~T3(p%)” + (0 + 3p% — ) T2(p?)[p]
— T2(p*)Ts(p%) + 3p°T1(p%)[p] — pT(p)*[P)) T (p),

295



296 Kirill VANKOV

fs = —p"((p" + D> + 1)°(2° + 20" + 2p° + 2p* + 2p — 1)[p)°
+ (" + 1)(2p° + 2p" + 4p° — 2p* + 2p° + 4p — 3)Ts5(p”) [p)”
— (P + 120" = 2+ 3)T3(0) [p] — (0 + 1) T5(p")°
+ (p* +1)(20° + 4p” + 4p° + 4p® + dp — 1) T2 (p) [p)?
+2(* + 1)(p* + 2p — )T (p*)Ts(p) [p] — (0* + 1) T2(p*) T3(p?)
+2p(p% + 1)To2(p%) [p] + (20° + 207 +20° + 20° + 2p — )T (p?)
+2(p — DT1(02) T3(p)[p] — T2 () T3(p%)° + 20T1(p°) T2(p°) ]
— (P + 1) +p" — p* + DT (p)*[p)°
+(p— D@* +p+ DT(P)*Ts(p%)[p] — T(p)*T2(p)[p))
£, = —p'"((2p"% + p"* +3p" + p” + p* + 2% — p° + p* — p* + p+1)[p]
+ (p” + 2p° — 2p° + 2p* — 2p* + 3p + 2)T3(p?)[p)?
—(p° — p+p* — 3p — DT3(p%) [p] + pT3(p?)’
+(p° + 2p* — 2p° + DT (p?)[p)* — (20° — )T (p*) T3(p?) [p)
+(2p" + DT1(p?)[p) + T1(P) T3 (p%) [p] — p*T(p)’[P)*) T(p) ,
f8 — p22((p18 4 4p17 4 3p16 4 8p15 4 12p14 + 8p13 + 14p12 4 12p11
+20p" + 4p° + 20p® + 16p° + 10p* — 4p® + 5p® + 1)[p*
+2(2p'° 4 2p° + p8 + 6p” + 4p°® + 8p* — 6p> + 6p* + 1) (p* + 1)
x T3(p?)[pI® + (p° + 4p° + 8p* — 12p° + 10p? + 1)T3(p?)*[p]*
—4p*(p — 1)T3(p>)’[p] + p° T3 ()"
+2(2p" + 3p° + 2p° + 5p* — 2p° + 3p* + 1)(p" + )T2(p?)[p)°
+ (2% + 4p° + 10p* — 8p® + 6p” + 2)T2(p*) T3 (p*) [p)°
— 4> Ty (p?)T3(p?)’[p] + (3p* + 2p% + 1) Ta(p?)’[p)?
+22p° +p* +20° + 1) (p" + DT1(p%) [p)’
+ (4p° + 2p* + 4p* + 2)T1 (p°) T3(p*) [p)?
+2(p* + 1)T1 (") To(p?)[p)” + T1(p*)°[p)”
— (P +2p" +2p° + 2p* + 2p° + 2p — 1)T(p)*[p]?
—2(p" + p — VT(p)*T3(p*)[p]” + T(p)*Ts(p*)"p]
— 2pT(p)*T2(p?)[p]?)

3
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and the higher degree coefficients f; are obtained from the following rela-
tions:

fo=f;-p''p], fio="f-pPp)°, fuu="f pp]’, fi2="£f-pp]

fiz = f3-p[p)°, fia="f-pPpl° fis=1£ pOp|", fic="Ff- p*[p

(1]
2]

3]

(4]

(5]

[6]

[7]

B

9

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

]8
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