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Remarks on strongly modular Jacobian surfaces

par Xavier GUITART et Jordi QUER

Résumé. Dans [3] nous avons introduit la notion de variété abé-
lienne fortement modulaire. Cette note contient quelques remarques
et des exemples de ce type de variétés, surtout pour le cas des sur-
faces Jacobiennes, qui complètent les résultats de [3].

Abstract. In [3] we introduced the concept of strongly modular
abelian variety. This note contains some remarks and examples of
this kind of varieties, especially for the case of Jacobian surfaces,
that complement the results of [3].

1. Introduction
One of the most impressive achievements of the last years in number

theory is the proof of the modularity of all rational elliptic curves by Breuil,
Conrad, Diamond and Taylor, following the ideas and techniques introduced
by A. Wiles. This fact, among several other equivalent ways, can be stated
as follows: every elliptic curve A/Q defined over the rational numbers is
Q-isogenous to a simple factor of some variety J1(N).

From Serre’s conjecture on modularity of mod p two-dimensional Ga-
lois representations, recently proven by Khare and Winterberger, one ob-
tains (cf. Ribet [8]) the more general characterization of the Q-simple va-
rieties A/Q that are Q-isogenous to a simple factor of some variety J1(N).
They are the varieties called of of GL2-type, defined by the condition that
End0

Q(A) is a number field of degree equal to dimA. Much of the interest of
these varieties lies in the fact that their L-function is equivalent to a product
of L-functions of classical modular forms for congruence subgroups Γ1(N).
In addition, if a Q-simple variety has this property then it is of GL2-type.

In [5] Pyle characterizes the abelian varieties B/K defined over a num-
ber field K that are simple factors of some abelian variety of GL2-type.
Equivalently, thanks to the modularity result stated in the previous para-
graph, this is a characterization of the the absolutely simple factors up to
isogeny of modular Jacobians J1(N). She calls them building blocks. The
non-CM building blocks are precisely the varieties admitting compatible
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isogenies between their Galois conjugates, and whose endomorphism alge-
bra has totally real center and has reduced degree equal to the dimension
of the variety.

In [3] we introduced the concept of strongly modular abelian variety as a
variety B/K over a number field K whose L-function L(B/K; s) is equiva-
lent to a product of L-functions of classical modular forms for congruence
subgroups Γ1(N). This property is characterized in [3, Theorem 5.3], with
the additional hypothesis of K/Q being a Galois extension, in terms of the
existence of compatible isogenies between Galois conjugates, the structure
of the endomorphism algebra of the variety, and properties of a certain
Galois cohomology class [cB/K ] attached to it.

In the present paper we continue the study of strongly modular abelian
varieties by complementing the results of [3] in three different aspects. First
of all, in Section 2 we prove that if the variety B/K is strongly modular then
the number field K must necessarily be Galois (and abelian) over Q; this
shows that the Galois condition can be removed from the hypothesis of the
main theorem [3, Theorem 5.3]. The proof is obtained from an elementary
general result (Lemma 2.1) about the field of definition of endomorphisms
of abelian varieties obtained by restriction of scalars, and the use of Ribet’s
results on twists of modular forms. Second, in [3] the cohomology classes
[cB/K ] were explicitly computed for the Jacobians of a certain family of
genus two curves. In Section 3 we extend this computation to the Jaco-
bians of a much wider class of genus two curves investigated by Rotger in
[10]. Finally, in Section 4, we make a detailed study of an example that
was already mentioned in [3]: it is an abelian surface B/K defined over a
biquadratic field K = Q(

√
2,
√
−3) as the Jacobian of an explicitly given

hyperelliptic curve C/K. It is a building block but it is not strongly modu-
lar over K; moreover, none of its twists is strongly modular over K. What
we do is to show how to twist the defining curve C in such a way that the
corresponding Jacobian is a strongly modular surface, but over the bigger
field K(

√
−1).

2. Restriction of scalars and L-series of building blocks
We begin by recalling the basic definitions and properties of the objects

we will be working with; more details can be found in [3].
An abelian Q-variety is an abelian variety B/Q with the property that for

each σ ∈ GQ = Gal(Q/Q) there exists an isogeny µσ : σB → B compatible
with the endomorphisms of B; that is, such that ϕ aµσ = µσ aσϕ for all
ϕ ∈ End0(B). A building block is an abelian Q-variety such that End0(B) is
a division algebra of Schur index t 6 2 whose center is a totally real number
field F and t[F : Q] = dimB. The building blocks are the non-CM Q-simple
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factors of the varieties of GL2-type (this is [5, §4]), and therefore they are
the absolutely simple quotients without CM of the varieties J1(N)Q.

Let B be a building block, and let F be the center of its endomorphism
algebra. Let K/Q be a Galois extension with Galois group G. We will say
that B is completely defined over K if B, its endomorphisms and all the
isogenies between B and its conjugated varieties are defined over K. If this
is the case, for each s ∈ G fix an isogeny µs : sB → B, and for s, t ∈ G define
cB/K(s, t) = µs asµt aµ−1

st . This map is a two-cocycle of G with values in the
G-module with trivial action F×. Its cohomology class [cB/K ] belongs to
H2(G,F×), it is independent of the choices of the µs and it is an invariant of
the K-isogeny class of B; moreover, it is a 2-torsion element. Let cB be the
inflation of cB/K to GQ; its cohomology class [cB] belongs to H2(GQ, F

×)[2]
(F× with trivial GQ-action) and it is an invariant of the Q-isogeny class of
B.

By considering an embedding of F into R one obtains a decomposition
of H2(GQ, F

×)[2] as

(2.1) H2(GQ, F
×)[2] ' H2(GQ, {±1})×Hom(GQ, F

×/{±1}F×2).

The first component of [cB] under this isomorphism, that we will denote
[cB]±, is obtained by taking the sign of cB. We will use thatH2(GQ, {±1}) is
canonically isomorphic to the 2-torsion of the Brauer group of Q, and we will
identify [cB]± with a rational quaternion algebra. The second component,
that we will denote [cB], is given by a coboundary of c2

B: if λ : GQ → F×

is a map such that c2
B(σ, τ) = λ(σ)λ(τ)λ(στ)−1 then the homomorphism

G → F×/{±1}F×2 : σ 7→ λ(σ){±1}F×2 is precisely [cB]. In practice,
a coboundary of c2

B can be computed by means of the degree map: fix
ρ : B → B̂ a polarization of B, and for each σ ∈ GQ fix a compatible isogeny
µσ : σB → B and define the degree of µσ by d(µσ) = µσ aσρ−1 a µ̂σ aρ, which
is an element of F×. Then c2

B(σ, τ) = d(µσ)d(µτ )d(µστ )−1, so the compo-
nent [cB] is the map d : σ 7→ d(µσ){±1}F×2.

Let B be a building block defined over a number field K, and let F be
the center of End0(B). For simplicity suppose that all the endomorphisms
of B are defined over K (see however remark 2.4). The L-series L(B/K; s)
is equivalent to a product of L-series of modular forms for Γ1(N) if and
only if the restriction of scalars ResK/QB is isogenous over Q to a product
of abelian varieties of GL2-type (see [3, Proposition 2.4] for the details). In
the case where K/Q is Galois, a necessary and sufficient condition for this
was given in [3, §5] in terms of the cohomology class [cB/K ]. Now we show
that, in fact, if ResK/QB is isogenous to a product of varieties of GL2-type
then K/Q is necessarily a Galois extension. This will be a consequence of
the following
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Lemma 2.1. Let k be a field and k a separable closure. Let K,L be subfields
of k of finite degree over k. Let B be an abelian variety over K. If the
endomorphisms of the variety A = ResK/k B are defined over L, then K ⊆
L.

Proof. We will see that GL ⊆ GK . Suppose this is not the case. Then there
exists an automorphism σ ∈ GL which does not belong to GK . Let ΣK
denote the set of k-embeddings τ : K → k. If we denote by τ0 the inclusion
τ0 : K ↪→ k, then στ0 6= τ0. We will construct an element ϕ ∈ Endk(A)
such that σϕ 6= ϕ, and this will be a contradiction with the fact that
Endk(A) = EndL(A).

Let A0 be the variety A0 =
∏
τ∈ΣK

τ
B, and for each ρ ∈ Gk

let φρ : ρA0 → A0 be the isomorphism which permutes the coordinates
according to the canonical isomorphisms ρ(τB) ' ρτB. By the construction
of the variety restriction of scalars, there exists a k-isomorphism λ : A0 → A
such that λ−1 aρλ = φρ (cf. [11, §1.3]).

Let ψ be a diagonal endomorphism of A0; that is, one of the form∏
τ∈ΣK ψτ , with each ψτ an element of End(τB). Since στ0 6= τ0 we can,

and do, choose such a ψ with σψτ0 6= ψστ0 . Consider now the endomorphism
of A given by ϕ = λ aψ aλ−1. If σϕ = ϕ then λ−1 aσλ aσψ = ψ aλ−1 aσλ, and
therefore φσ aσψ = ψ aφσ. But the restriction of φσ aσψ to στ0B is equal to
σψτ0 , whereas the restriction of ψ aφσ to στ0B is equal to ψστ0 . But we chose
ψ with σψτ0 6= ψστ0 , so σϕ 6= ϕ and therefore not all the endomorphisms of
A are defined over L; this is a contradiction, thus GL is indeed contained
in GK as we aimed to see. �

Proposition 2.2. Let B be a building block defined over a number field
K. If ResK/QB is isogenous over Q to a product of abelian varieties of
GL2-type without CM, then the extension K/Q is abelian.

Proof. Since each abelian variety of GL2-type is isogenous over Q to a
modular abelian variety, we can suppose that A is isogenous over Q to a
product of the form

∏
f Af , for some weight two newforms f . The minimal

field of definition of the endomorphisms of Af is an abelian extension Lf/Q
by [2, Proposition 2.1]. On the other hand, suppose that Af and Ag are
simple factors over Q of ResK/QB such that HomQ(Af , Ag) 6= 0. Then by
[9, Theorem 4.7] we can suppose that there exists a Dirichlet character χ
such that f = g⊗ χ. If we identify χ with a Galois character χ : GQ → Q×

via class field theory, and we denote by M the fixed field of the kernel
of χ , then HomM (Af , Ag) 6= 0. That is, there exists a homomorphism
between Af and Ag defined over the abelian extension M . This implies that
the endomorphisms between Af and Ag are defined over the composition
MLfLg, which is abelian. Thus, all the endomorphisms of ResK/QB are
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defined over a certain abelian extension L. Now lemma 2.1 implies that
K ⊆ L, so that K is also abelian over Q. �

Theorem 2.3. Let B be a building block whose endomorphisms are defined
over a number field K. Then B is strongly modular over K if and only if
K/Q is abelian, B is completely defined over K and [cB/K ] belongs to the
subgroup of classes of symmetric cocycles Ext(G,F×) ⊆ H2(G,F×).

Proof. Suppose that L(B/K; s) is a product of L-series of modular forms.
Then the variety ResK/QB is isogenous over Q to a product of abelian vari-
eties of GL2-type, and by proposition 2.2 the extension K/Q is necessarily
Galois. Now the result follows from [3, Theorem 5.3]. �

Remark 2.4. A non-CM abelian variety of GL2-type is isogenous over Q
to a power of a building block. Analogously, if K/Q is a Galois extension
with Galois group G, then an abelian variety of GL2-type is isogenous over
K to a power of a K-building block. A K-building block is a Q-variety B
defined over K, with compatible isogenies defined over K and such that the
endomorphism algebra End0

K(B) is a central division algebra over a number
field E, with index t 6 2 and t[E : Q] = dimB. Observe that with this
terminology, a building block is the same as a Q-building block. To a K-
building block one also attaches a cohomology class as follows: for each s ∈
G fix a compatible isogeny µs : sB → B and define cB/K(s, t) = µs asµt aµ−1

st .
Now cB/K is a two cocycle of G with values in E× (endowed with the
trivial G-action), and its cohomology class [cB/K ] belongs to H2(G,E×).
Combining proposition 2.2 with [3, Theorem 5.3] as we did in the proof of
theorem 2.3 we have the following

Theorem 2.5. Let B/K be a K-simple abelian variety. B is strongly mod-
ular over K if and only if K/Q is abelian, B is a K-building block and
[cB/K ] ∈ Ext(G,E×).

3. Cohomology classes attached to Jacobian surfaces with QM
We begin this section by recalling some notations and results from [10].

For rational numbers a and b we denote by (a, b)Q the quaternion algebra
over Q generated by ı,  with ı2 = a, 2 = b and ı + ı = 0. Let B be an
indefinite quaternion algebra over Q of discriminant D > 1. We denote by
n and tr the corresponding reduced norm and trace. Let O be a maximal
order in B. A curve C/Q is said to be a QM -curve with respect to O if O
can be embedded in the endomorphism ring of its Jacobian.

Fix an element µ ∈ O such that µ2 +D = 0, whose existence is guaran-
teed by Eichler’s theory of optimal embeddings, and call the pair (O, µ) a
principally polarized order. A twist of (O, µ) is an element χ ∈ O∩NB×(O)
such that χ2 + n(χ) = 0 and χµ+µχ = 0, so that B ' (−D,−n(χ))Q. The
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pair (O, µ) is said to be twisting if it admits some twist in O, and B is said
to be twisting if it contains some twisting polarized maximal order. In fact,
B is twisting if and only if B ' (−D,m)Q for some integer m dividing D.

If (B, ρ)/Q is a polarized abelian variety and R is a subring of End(B),
the field of moduli kR is defined to be the smallest number field such that
for any σ ∈ Gal(Q/kR) there exists an isomorphism φσ : σB → B with1

φ∗σ(ρ) = σρ and such that for each r ∈ R the following diagram commutes:

σB

σr
��

φσ // B

r

��
σB

φσ // B.

For any curve C, we will see its Jacobian as a polarized abelian variety,
with the canonical polarization induced by C. The field of moduli of C,
denoted by kC , is the smallest number field such that σC and C are iso-
morphic for all σ ∈ Gal(Q/kC). Note that this is the same as the field of
moduli kZ for the subring Z ⊆ End(Jac(C)). The following result is [10,
Theorem 4.1].
Theorem 3.1 (Rotger). Let C/Q be a smooth irreducible curve of genus
2 such that End(Jac(C)) is isomorphic to a maximal order O in B. Fix
an isomorphism O ' End(Jac(C)), let µ ∈ O such that µ2 + D = 0 and
suppose that under the previous isomorphism the Rosati involution is given
by ϕ′ = µ−1ϕµ for all ϕ ∈ O, where the bar denotes the canonical involution
on B. Suppose that the polarized order (O, µ) is twisting and let m | D such
that B ' (−D,m)Q. Then there exist elements ωm and ωD/m belonging to
O such that µωm = −ωmµ and µωD/m = −ωD/mµ, with the property that

(1) ω2
m = m and ω2

D/m = D/m,
(2) kZ[ωm] and kZ[ωD/m] are at most quadratic extensions of kC ,
(3) kO = kZ[ωm] · kZ[ωD/m].

Let C be a curve as in the previous theorem (in particular we continue
with the same notation for the elements µ, ωm and ωD/m), and let B be
its Jacobian. For each σ ∈ Gal(Q/kC) the isomorphism σC ' C induces
an isomorphism of polarized abelian surfaces φσ : σB → B. In particular,
φσ is an isogeny, but it is not guaranteed to be a compatible one. However,
the map ϕ 7→ φσ aσϕ aφ−1

σ : B → B is a Q-algebra automorphism of B,
so by the Noether-Skolem theorem it is inner: there exists a ψσ ∈ B×
such that φσ aσϕ aφ−1

σ = ψ−1
σ

aϕ aψσ. Since ψσ is uniquely determined up to
multiplication by rational numbers, we can choose ψσ such that µσ = ψσ aφσ
is a compatible isogeny. In particular, if kC = Q then B is a building block.

1Recall that a polarization ρ for B is an isogeny ρ : B → B̂, and that the pullback of ρ by φσ
is φ∗σ(ρ) = φ̂σ aρ aφσ .
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Recall that the degree of a compatible isogeny µσ is defined to be d(µσ) =
µσ aσρ−1 a µ̂σ aρ, which in our case can be identified with a rational number
since the center of B is equal to Q. The map

d : Gal(Q/kC) → Q×/{±1}Q×2

σ 7→ d(µσ) · {±1}Q×2

is a homomorphism, and it gives the degree component [cB] of [cB] under
(the restriction of) the isomorphism (2.1). We will use the following notation
to indicate elements in Hom(Gal(Q/kC),Q×/{±1}Q×2): if t ∈ kC and δ ∈
Q× we denote by (t, δ)P the homomorphism that sends σ ∈ Gal(Q/kC)
to δ · {±1}Q×2 if σ

√
t = −

√
t, and that sends σ to the trivial element if

σ
√
t =
√
t. Observe that any element of Hom(Gal(Q/kC),Q×/{±1}Q×2)

can be expressed (in a non-unique way) as a product of morphisms of the
form (t, δ)P .

Proposition 3.2. Let C be a curve as in Theorem 3.1, and let d be the
degree map associated to its Jacobian B. Then d(σ) ≡ 1 mod {±1}Q×2

for all σ ∈ Gal(Q/kO). If σ ∈ Gal(Q/kZ[ωh]) does not fix kO, then d(σ) ≡ h
mod {±1}Q×2, for h ∈ {m,D/m}.

Proof. Let σ be an element in Gal(Q/kO), and let ρ be the polarization
on B given by C. By the definition of the field of moduli there exists a
compatible isomorphism φσ : σB → B such that φ∗σ(ρ) = σρ. If we use ρ to
compute the degree we find that

d(φσ) = φσ aσρ−1 a φ̂σ aρ = φσ aφ−1
σ

aρ−1 a φ̂−1
σ

a φ̂σ aρ = 1.

Let σ be an element in Gal(Q/kZ[ωh]) that does not fix kO. By the definition
of kZ[ωh] there exists an isomorphism φσ : σB → B compatible with the
endomorphisms in Z[ωh]. By what we said above, there exists an element
ψσ ∈ B such that µσ = ψσ aφσ is an isogeny that is compatible with all
the endomorphisms of B. The ψσ satisfies that φσ aσϕ aφ−1

σ = ψ−1
σ

aϕ aψσ
for all ϕ ∈ B, and if ϕ belongs to Z[ωh] this implies that ϕ = ψ−1

σ
aϕ aψσ.

Therefore, ψσ commutes with every element in Z[ωh], which implies that ψσ
belongs to Z[ωh]⊗Q. Hence, we have that ψσ = a+ bωh for some a, b ∈ Q
with b 6= 0. Indeed, if b was 0 then ψσ would be compatible with all the
endomorphisms of B, but since σ does not fix kO this is not possible. Again,
using ρ to compute the degree of µσ we find that

d(µσ) = d(ψσ aφσ) = ψσ aφσ aσρ−1 aψ̂σ aφσ aρ
= ψσ aφσ aφ−1

σ
aρ−1 a φ̂−1

σ
a φ̂σ aψ̂σ aρ

= ψσ aρ−1 aψ̂σ aρ = ψσ aψ′σ.



178 Xavier Guitart, Jordi Quer

But the Rosati involution of an endomorphism ϕ is given by ϕ′ = µ−1ϕµ,
and therefore

d(µσ) = ψσ aψ′σ = (a+ bωh)(a+ bωh)′ = (a+ bωh)µ−1(a− bωh)µ
= (a+ bωh)2 = a2 + hb2 + 2abωh.

The degree d(µσ) belongs to Q×, and since b 6= 0 then necessarily a = 0
and d(µσ) ≡ h (mod Q×2). �

When B is a building block, we can use this knowledge of the degree
map to compute [cB].

Proposition 3.3. Suppose that kC = Q, and let kZ[ωh] = Q(
√
th) for

h ∈ {m,D/m}. The sign and degree components of [cB] are given by

(3.1) [cB] = (tm, D/m)P · (tD/m,m)P ,

(3.2) [cB]± = (tm, D/m)Q · (tD/m,m)Q · (−D,m)Q.

Proof. The expression for the degree component follows from Proposition
3.2. First of all, the degree homomorphism d is the inflation of a homo-
morphism from Gal(kO/Q), and we know that kO = Q(

√
tm,
√
tD/m). Note

that we are not assuming this to be a degree 4 extension: it can also be a
quadratic or a trivial extension. Let σ ∈ Gal(kO/kZ[ωm]) that does not fix
kO; it restricts to a generator of Gal(Q(√tD/m)/Q), and as we have seen
d(σ) ≡ m mod {±1}Q×2. This gives the part (tD/m,m)P of the degree
homomorphism. In the same way, if τ is an element from Gal(kO/kZ[ωD/m])
that does not fix kO, it restricts to a generator of Gal(Q(

√
tm)/Q) and

d(σ) ≡ D/m mod {±1}Q×2, which gives the part (tD/m,m)P .
Now, to prove the identity (3.2) we use [7, Theorem 2.8], which gives

a formula for the Brauer class of the endomorphism algebra of a building
block. Particularized to our case, and having computed the degree compo-
nent, this formula gives

(−D,m)Q = [cB]± · (tm, D/m)Q · (tD/m,m)Q.

Here H2(GQ, {±1}) is identified with the 2-torsion of the Brauer group of
Q. From this (3.2) follows immediately. �

4. A concrete example
Let B6 = (2, 3)Q be the rational quaternion algebra of discriminant 6.

Let ı,  be elements in B6 such that ı2 = 2 and 2 = 3, and let µ = 2+ ı.
The order O = Z[ı, (1 + )/2] is maximal, and the elements ω2 = ı and
ω3 = + ı are twists of (O, µ). For ease of notation, we define the subrings
R2 = Z[ı] ' Z[

√
2], R3 = Z[+ ı] ' Z[

√
−3] and R6 = Z[µ] ' Z[

√
6].
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We will consider the following genus two curve:

C : Y 2 =
(
−4 + 2

√
2
)
X6 − 122X5 − 72

(
28 + 2

√
2
)
X4 + 16 · 122X3

+ 123
(
28− 6

√
2
)
X2 − 48 · 123X + 8 · 123

(
4 + 2
√

2
)
.

It has been obtained by particularizing to −4/27 the value of the parameter
j in the family of curves described in [1, Theorem 15]. Let B be the Jacobian
of C, which is a polarized abelian surface (with the canonical polarization
given by C). The results on the arithmetic of such curves of [1, §3.6] give
us the following information about B:
Proposition 4.1 (Baba-Granath). The endomorphism algebra of B is iso-
morphic to B6, and under this isomorphism the Rosati involution attached
to the canonical polarization of B is given by ϕ′ = µ−1ϕµ. The several fields
of moduli are kZ = Q, kR3 = Q and kO = kR2 = kR6 = Q(

√
−3). Finally,

all the endomorphisms of B are defined over K = Q(
√

2,
√
−3).

If σ ∈ GQ restricts to the non-trivial automorphism of Q(
√

2)/Q then
the map (x, y) 7→

(
−24
x ,

(−24)3/2y
x3

)
is an isomorphism σ

C → C, that gives
rise to an isomorphism σB ' B defined over K. Therefore, B is a building
block completely defined over K.

Proposition 4.2. The sign and degree components of [cB] are [cB] =
(−3, 3)P and [cB]± = (−6, 3)Q.

Proof. This is a direct application of Proposition 3.3. Indeed, Proposition
4.1 directly gives that in this case t2 = −3 and t3 = 1. �

We will use this result to see that [cB/K ] is not symmetric. As in (2.1)
we have a decomposition

H2(G,Q×) ' H2(G, {±1})×Hom(G,Q×/{±1}Q×2),
where G = Gal(K/Q) acts trivially on Q×; we denote by [cB/K ]± and
[cB/K ] respectively the components of [cB/K ] under this identification. Since
G is abelian, the component [cB/K ] is always symmetric, so we are only
concerned with the symmetry of the component [cB/K ]±.

The groups H2(G, {±1}) and Ext(G, {±1}) have dimension 3 and 2 re-
spectively as Z/2Z-vector spaces, and we will write down explicit bases for
them (the reader can consult [6, §2] for proofs of the following statements
related to these bases). If ε : G→ {±1} is a character, for each σ ∈ G fix a
square root

√
ε(σ) and let cε : G×G→ {±1} be the map

cε(σ, τ) =
√
ε(σ)
√
ε(τ)
√
ε(στ)

−1
.

It is a 2-cocycle and its cohomology class does not depend on the choice
of the square roots. Let ε2 denote the character G → {±1} with kernel



180 Xavier Guitart, Jordi Quer

Gal(K/Q(
√

2)), and let ε−3 be the character with kernel Gal(K/Q(
√
−3)).

Then a basis of Ext(G, {±1}) is given by {[cε2 ], [cε−3 ]}. Denote by χ2 and
χ−3 the additive version of the characters ε2 and ε−3 (i.e. the same char-
acters but viewed as taking values in {0, 1}), and define a cocycle c2,−3 by
the formula

c2,−3(σ, τ) = (−1)χ2(σ)χ−3(τ).

A basis for H2(G, {±1}) is then given by {[cε2 ], [cε−3 ], [c2,−3]}. The inflation
of these cohomology classes to H2(GQ, {±1}) ' Br(Q)[2] is as follows:
Inf([cε2 ]) = (2,−1)Q, Inf([cε−3 ]) = (−3,−1)Q and Inf([c2,−3]) = (2,−3)Q.

We know that Inf([cB/K ]±) = (−6, 3)Q, and it is easy to check that the
only elements in H2(G, {±1}) whose inflation is (−6, 3)Q are [c2,−3] and
[cε2 ] · [c2,−3]; this means that [cB/K ]± = [c2,−3] or [cB/K ]± = [cε2 ] · [c2,−3].
Since neither of the two options belong to Ext(G, {±1}) we see that [cB/K ]±
is not symmetric. This means that B is not strongly modular over K; what
is more, no variety Q-isogenous to B is strongly modular over K.

Let L = K(
√
−1) and let γ =

√
6 +
√

18 which is in L. Let Cγ be the
quadratic twist of C:

Cγ : γY 2 =
(
−4 + 2

√
2
)
X6 − 122X5 − 72

(
28 + 2

√
2
)
X4 + 16 · 122X3

+ 123
(
28− 6

√
2
)
X2 − 48 · 123X + 8 · 123

(
4 + 2
√

2
)
.

and denote by Bγ its Jacobian. Now we can use [3, Lemma 6.1] to see
that it is strongly modular over L. First of all, since L/Q is Galois, we see
that Bγ is a building block also completely defined over K. Moreover, the
cohomology class [cBγ/L] is the product of [cB/L] with the cohomology class
in H2(Gal(L/Q), {±1}) associated to the exact sequence

1→ Gal(L(√γ)/L) ' {±1} → Gal(L(√γ)/Q)→ Gal(L/Q)→ 1.

The cohomology class attached to this exact sequence turns out to be equal
to [cε−1 ]·[cε−3 ]·[cε−6 ]·[c2,−3]. This implies that [cBγ/L] is symmetric, because
the factor [c2,−3] vanishes. In conclusion, Bγ is strongly modular over L, so
L(Bγ/L; s) is equivalent to a product of L-series of newforms for Γ1(N).

We want to find the newforms the product of whose L-series is the L-
function of the variety Bγ/L. Since the curve Cγ has good reduction for
primes different from 2 and 3 we must look for newforms of level a product
of a power of two and a power of three. Using Magma [4] we found a modular
form f ∈ S2(Γ1(24 ·34), χ), where χ is the quadratic character of conductor
12, whose Fourier expansion begins with

f = q −
√

3 q5 + 3
√
−1 q7 − 3

√
3 q11 + q13 − 2

√
−3 q17 − 6

√
−1 q19

+ 3
√

3 q23 + 2 q25 − 5
√
−3 q29 − 3

√
−1 q31 + · · · ,
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and a modular form g ∈ S2(Γ1(26 · 34), χ) whose Fourier expansion begins
with:

g = q −
√

3 q5 + 3
√
−1 q7 − 3

√
3 q11 − q13 + 2

√
−3 q17 + 6

√
−1 q19

− 3
√

3 q23 + 2 q25 − 5
√
−3 q29 − 3

√
−1 q31 + · · · .

We computed the p-th Euler factor of L(Bγ/L;T ) and checked the identity

Lp(Bγ/L;T ) = Lp(Af ;T )2 · Lp(Ag;T )2

for all primes p < 1000, p 6= 2, 3. Here, the L-series of Af means the product
of the L-series of the Galois conjugate forms of f , and similarly for g. We
also checked that no modular forms of smaller levels produce identities of
this type.

These numerical verifications give a good checking of the correctness of
the computations in the paper and also provide a near certainty of the
equivalence of L-series

L(Bγ/L; s) ∼ L(Af ; s)2 · L(Ag; s)2,

although in order to have a complete proof of this equivalence one should
compute the conductor of Bγ/L in order to bound the levels of the forms
to look for identities, and the standard mathematical software available
cannot perform that computation.
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