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Power values of certain quadratic polynomials

par ANTHONY FLATTERS

RESUME. Soit f un polyndme quadratique & coefficients entiers
avec discriminant sans carré parfait et ¢ > 1 un entier tel que g et
le nombre de classes du corps de rupture de f sont premiers entre
eux. Dans cet article, nous calculons les puissances g-ieme qui
apparaissent comme valeurs entieres de f. La théorie des diviseurs
primitifs de suites d’entiers permet de déduire une borne sur les
valeurs possibles de ¢ qui est suffisamment petite pour que les cas
restants puissent facilement étre vérifiés. Ces résultats permettent
de trouver toutes les puissances parfaites qui apparaissent dans
certaines suites polynémiales récursives entieres, y compris la suite
de Sylvester.

ABSTRACT. In this article we compute the gth power values of the
quadratic polynomials f € Z[z] with negative squarefree discrim-
inant such that ¢ is coprime to the class number of the splitting
field of f over Q. The theory of unique factorisation and that of
primitive divisors of integer sequences is used to deduce a bound
on the values of ¢ which is small enough to allow the remain-
ing cases to be easily checked. The results are used to determine
all perfect power terms of certain polynomially generated integer
sequences, including the Sylvester sequence.

1. Introduction

In 1926, Siegel [35] proved that an affine curve of genus at least one has
only finitely many integer points. Siegel’s theorem is ineffective; it gives us
no way of explicitly determining all the integer points on such a curve. The
equation

(1.1) y? = f(=),
where ¢ > 3 and f(x) is a quadratic polynomial with two distinct roots
therefore has only finitely many integer solutions. The exact determination
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of all integer solutions to such an equation is generally very difficult. In
[5], Baker gave the first explicit upper bounds for the integer solutions of
equation (1.1) in the case where f is any integral polynomial with at least
two simple zeros. This result was obtained using his theorem about lower
bounds for linear forms in the logarithms of algebraic numbers. Given the
nature of the theory, these bounds are typically very large and the following
upper bound was derived

2
max{|z[, [y[} < expexp((5¢)"°(n'"" H)™),

where n = deg(f), H is the height of f. Since Baker’s result, there have
been many refinements to the theory of linear forms in logarithms which
allow smaller upper bounds to be obtained, for example, see the papers
[13, 15, 30, 37, 39]. In [11], a method is given for the complete determi-
nation of integral solutions to an equation of the form ay? = f(x) where
a € Z\ {0},p > 3 and f(x) is separable of degree at least 2. It was first
proved by Tijdeman [38], using Baker’s transcendence methods, that if f
has at least 2 simple rational zeros and if y¢ = f(x) has an integer solution
with |y| > 1, then ¢ is bounded above by a computable constant depending
only on f. Later this was improved by Schinzel and Tijdeman [31], who
showed that for P(z) € Q[z] with at least 2 distinct zeros, an integer so-
lution |y| > 1, to the equation y™ = P(x) implies m is bounded by an
effectively computable constant depending only on P. Once again however,
their technique is to use lower bounds for linear forms in logarithms and
the bound for m obtained is very large. There have been several improve-
ments to Schinzel and Tijdeman’s result. In [8], the authors prove that
if f is a monic irreducible polynomial of degree n > 2, b € Z \ {0} and
y* = bf(x) in integers z,vy, z, z > 1, then z < cM3"(log |2b|)® where M de-
notes the Mahler measure of F' and c is an effectively computable constant
depending only on n. See also [14] for the result that if f(x) is a monic
irreducible polynomial of degree n > 2 then y* = f(x) in integers implies
z < (6n3)397°|D(f)]""*, where D(f) is the discriminant of f. For further
results on this area consult [7, 23, 25, 26, 34]. We will approach the prob-
lem of finding solutions differently. In this paper, we use Bilu, Hanrot and
Voutier’s wonderful theorem about prime appearance in Lucas sequences
(see [10]) to give a very small bound on the exponent ¢ in equation (1.1)
(independent of the equation) in the case where f is a quadratic polynomial
whose discriminant belongs to a subset of the negative integers. The bound
on ¢ is small enough to allow a bare-hands approach to computing all in-
tegral solutions, and in particular does not use any transcendence methods
directly. We begin by stating our most general result.
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Theorem 1.1. Let f be a monic quadratic polynomial with integral coeffi-
cients such that D(f) is negative and squarefree with the property that the
class number h of Q(\/D(f)) is greater than one. Let q > 2 be a prime,
and assume x,y are integers such that

y' = f().
Then q < max{3, P(h)}, where P(h) denotes the greatest prime factor of
h.

We then go on to consider the case where the ring of integers of the
splitting field of f is a unique factorisation domain and we obtain the
following result.

Theorem 1.2. Let f be a monic quadratic polynomial with integer coeffi-
cients. Further, suppose that —D(f) € {7,11,19,43,67,163}. If the equa-
tion (1.1) is soluble in integers x,|y| > 1,q > 2 prime, then q < qo, where

13 if D(f) =T,

_ )7 D=1,
©=3 5 ifD(f)=-11,
3 if D(f) = —43,—67, —163.

Moreover, if q is prime and D(f) = —3,—8, then equation (1.1) has no
integer solutions x,y with y > 1 for ¢ > 3.

Remark. Monic quadratic polynomials f, g € Z[x] have equal discriminant
if and only if f(x) = gz + k) for some k € Z. It follows that in order to
determine the integer solutions to the equations y? = g(x) where D(g) is
fized, it is enough to determine them for the equation y? = h(x) where h is
a quadratic polynomial such that D(h) = D(g).

An immediate corollary to Theorem 1.2 is the following.

Corollary 1.3. Let |y| > 1 be an integer which satisfies equation (1.1) with
q>1, then

(a) If D(f) = =7, the only solutions are
(v,9) € {(2,13),(2,5),(2,3), (£2,2)}.

(b) If D(f) = —11, the only solutions are (y,q) € {(3,5), (£3,2)}.
(¢) If D(f) = —19, the only solutions are (y,q) € {(5,7), (£5,2)}.
(d) If D(f) = =8, the only solution is (y,q) = (3,3).
(e) If D(f) = —43, the only solution is (y,q) = (£11,2).
(f) If D(f) = —67, the only solution is (y,q) = (+17,2).
(9) If D(f) = —163, the only solution is (y,q) = (+41,2).

(f) =

(h) If D —3, the only solution is (y,q) = (7, 3).
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Remark. The procedure which is implemented to derive this corollary also
works for the case D(f) = —4. There is no need for us to give this here,
since by our previous remark it suffices to study the equation

y=a® 41,
which was shown to have no non-trivial solutions by Lebesgue in [27].

Bugeaud [16] (with a correction by Bilu [9]) proved that for Dj, Do
squarefree positive integers, the only solutions of the Diophantine equa-
tion

Dya® + Dy = 4y"
in positive integers x,y, m odd, n > 5 prime with ged(Diz, Doy) = 1 and
ged(n, h(Q(v/—D1D29))) =1 are given by
(y,n) € {(2,5),(2,7),(2,13),(3,5),(3,7),(4,7),(5,7) }.
Our main results can be extracted from Bugeaud’s. The approach here also
uses the deep result of Bilu, Hanrot and Voutier [10] but is more explicit in
that we identify (in the case D1 = m = 1) the equations where each of these

powers appear. Many special forms of this equation have been considered
via similar methods in the papers [3, 4] and the survey article [2].

1.1. Applications. The above results can be used in the explicit deter-
mination of all perfect power terms in sequences generated by certain qua-
dratic polynomials. The study of perfect power terms in integer sequences
is becoming increasingly popular. In [32], it is shown using Baker-type esti-
mates that any non-degenerate binary linear recurrence sequence has only
a finite number of terms which are perfect powers, and in [33] the same
result was proven for non-degenerate n-th order linear recurrences. In [19]
it is shown that the only squares in the Fibonacci sequence are 0,1,144 and
in [29] it is shown using transcendence methods that the only cubes in the
Fibonacci sequence are 0,1,8. In [17] it is shown that 0,1,8,144 are the only
perfect power terms in the Fibonacci sequence, which was a long standing
open problem. This result uses a combination of Baker theory and the mod-
ular method which has grown out of Wiles’ proof of Fermat’s last theorem.
In addition, for results on perfect powers in arithmetic progressions see the
papers [6, 22, 24] which also use a combination of classical methods and
the modular method.
The sequences that interest us are the following.

Definition 1.4. Let g,,(z) = 22 — mx + m where m € N and furthermore
choose a € N such that a > m and ged(a,m) = 1. Fiz m # 0,4 and define
a sequence G (a) = (G%m)(a))ngo where G%m)(a) = gp(a), for g}, the
n-th iterate of gm. We will call G(™ (a) a generalised Sylvester sequence of
type m.
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Remark. Note that the assumption a > m will ensure that the terms
of these sequences are positive and strictly increasing, and therefore the
sequence is not eventually periodic.

This class of sequences contains, as special cases, the Fermat numbers [36,
A000058] which is G)(3) and the Sylvester sequence G (2) [36, A000215].

It was shown by Mohanty in [28] that the n-th term G%m)(a), of a gener-
alised Sylvester sequence of type m satisfies the following special recurrence
relation,
GI(@) = m+ (a = m)Gy™ ()G (0)...G (),

which when combined with an easy congruence condition allows one to show
that any two distinct terms of the sequence are coprime. Aside from this the
Sylvester sequence has some unusual properties which make it especially
interesting. The Sylvester sequence has the property that its n-th term is
the closest integer to H2" for some real number H > 0, see [36]. In fact

this property holds for all sequences G(Y)(a), and in general Gim (a) is the
closest integer to H{" + ™= for some real number Hy > 0, (see [20]) which
can be derived from the work done in [21]. The Sylvester sequence gives a
way of obtaining infinitely many Egyptian fraction representations of 1, see
[36]. A consequence of Corollary 1.3 is that the Sylvester sequence has no
terms which are perfect powers. This fact seems not to have been previously
established, all that has been known is that there are no terms in G} (2)
which are squares, [36]. In fact we can deduce much more.

Corollary 1.5. The only perfect power terms in a generalised Sylvester
sequence of type 1 are G(()l)(a) when a is itself a perfect power, and Ggl)(19).

We therefore know exactly which inputs give rise to perfect power terms
and the position of these perfect powers in the sequence. The methods
which we apply can also be used to give results for generalised Sylvester
sequences of types 2 and 3.

2. Proofs of the Main Results

Throughout this section for a a quadratic algebraic integer we denote

by @, the algebraic conjugate of o not equal to a and by up (o, @), the
expression ag:g". In addition by (x) we will mean the principal ideal gen-

erated by x. We begin with a few definitions which will allow us to state
the theorem of Bilu, Hanrot and Voutier that is instrumental in the proof
of Theorems 1.1, 1.2 and hence Corollary 1.3.

Definition 2.1. A Lucas pair is a pair of algebraic integers (a, [3) such
that % is not a root of unity and o + B, af are non-zero coprime rational
integers.
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For a Lucas pair (a, @) the sequence (u,(a,@)),>1 is called the Lucas
sequence associated to a. We now give the classical definition of a primitive
prime divisor of a term in a Lucas sequence.

Definition 2.2. A prime divisor p of u,(«, &) is called a primitive prime
divisor of up(a, @) if pt (o — @)?uy(a, @)...un_1(a, @).

However for the purposes of this paper, the following definition is more
convenient and will be used throughout.

Definition 2.3. Let A = (a;)i>1 be an integer sequence. We say that a
prime p is a primitive prime divisor of an if p | an but p 1 an, for any
m < n with a,, # 0.

The reason that we use Definition 2.3 in this work is because it reduces
the amount of case checking that needs to be done in the proofs of Theorem
1.2 and Corollary 1.3.

Theorem 2.4 (Bilu, Hanrot and Voutier [10]). Let a,b,n € Z with
4 <n <30 and n # 6. Then, up to equivalence, all Lucas pairs (o, &) =
(%‘/E, G_T\/E) and n such that u, (o, @) fails to have a primitive prime di-
visor (in the context of Definition 2.3) are listed in the following table.

n | (a,b)

5 | (1,—7), (1, —11), (12, —76), (12, —1364)
7(1,-19)

8 |(2,-24),(1,-7)

102, -8),(5,-3), (5, —47)

12 (1,5), (1, —7), (1, —11), (2, —56), (1, —15), (1, —19)
18| (1,-7)

18| (1,-7)

30 (1,-7)

In particular, for all Lucas pairs (o, @), uy(o, @) has a primitive prime
divisor for each n > 30.

For a complete list of all such Lucas pairs (a, &) such that wu,(«a, @)
fails to have a primitive prime divisor (in the context of Definition 2.2) for
n =2,3,4,6 see the paper [1].

Remark. Here two Lucas pairs (o, &) and (8, 3) are said to be equivalent
Zf% = & = 41. Thus, it is clear that if (o,@) and (B,3) are equivalent,

a,a) = u,(B3,3) for alln € N.

I

—

then u,

Now we have everything that is needed to prove the results stated in the
introduction.
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Proof of Theorem 1.1. Factorise f(z) over the ring of integers R of
Q(v/D(f)) to obtain

Y =z’+ar+b=(z—a)(z—a).

where a = —2tv2U) sz(f)_ The ring R is not a unique factorisation domain, so
we work with ideals. Hence
(2.1) (! =(r—a)lz—a).

Now let p be a prime ideal dividing both (x — «a), (x — @), so
r—a€p and z—a€EPp

a—a=,/D(f)ep.

It follows that D(f) € p. In addition, p | (x — a)(z — &) = y4, thus p | y
and hence y € p. We now claim that D(f) and y are coprime. Suppose not.
Then ged(D(f),y) = p1---pr, for some r € N where the p;’s are distinct
rational primes. Also

and thus

4yt = (2x + a)® = D(f)
and so p1 -+ pr | (22 + a). Then for some integers ki, ko, k3 with p; t k3 for
each i, we have
pl---plky = pi-- pika +p1 - prks
so that
it pt ey = py - prka + ks
which implies p; | k3, a contradiction. Hence D(f),y are coprime and thus
there exist integers m,n € Z with

my +nD(f) = 1.

This in turn implies that 1 € p, a contradiction to the fact that p is prime.
Hence (z — ), (x — &) are coprime, and so by (2.1), we have

(x —a) =11

for some integral ideal I. Since ¢ is coprime to h and I is principal, I too
must be principal. Therefore

(x —a) = (B)* = (87
for some 8 € R. From which we easily deduce
r—oa=c¢3?

for some unit € of R. In R, the only units are +1 and so themselves are ¢-th
powers. Thus

(2.2) xr— o =01,
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for some § € R. By applying the non-trivial Galois automorphism one
obtains

(2.3) T —a=04

We now claim that the pair (6, 6) is a Lucas pair. If either of § + 6, 50 equal
0 then the equations (2.2) and (2.3) along with the condition that D(f) is
squarefree imply that = ¢ Z, so this is a contradiction. So both § 4 J, 86 are
non-zero. The fact that D(f),y are coprime forces § 4 &, 36 to be coprime
also. The only roots of unity in R are +1 so if % is a root of unity it must
be either 1 or —1. So we would have either § = +4. If 6 = , then o = &
which cannot hold as f is irreducible over Q. If § = —¢, then 6 +J = 0 and
we have already ruled this out. Thus % is not a root of unity. So (4,0) is
indeed a Lucas pair.
Using equations (2.2) and (2.3) we see that

a—oa=2081—4

—\/D(f) = ky/D(f)uy(.5),

where k is some non-zero rational integer. Now u,(d, d) is an integer, hence
k = 41 which gives

and thus

ug(8,6) = +1.

Therefore the g-th term of the Lucas sequence (uy,(6,0)),>1 fails to have
a primitive divisor, so by Theorem 2.4, coupled with the facts D(f) is
squarefree, h > 1 and ¢ is prime means that ¢ < 3. We have not taken into
account the case where ¢ is not coprime to h. When ¢ | h, the above method
does not apply as I? principal does not imply I principal in general. So for
these values of ¢, we need to solve the equation y? = f(z) by hand. U

Remark. Actually, the proof of the above theorem tells us that we only need
to check the cases ¢ = 2,3 and q is a prime divisor of h. So we only need
check at most 2 4+ w(h) cases, where w(h) is the number of prime factors
of h.

Proof of Theorem 1.2. Let f(z) = 2% + az + b be such that a,b € Z and
with discriminant D(f) where —D(f) € {7,11,19,43,67,163}. Let R be
the ring of integers of the splitting field of f over Q. In addition, let us
assume ¢ > 30 and that there are integers x,y which satisfy equation (1.1).

We have the factorisation of f(x) as (z —a)(x — &), for a = ety o) VQD(f). We
may assume that x —« and x — & are coprime in R. If x — « and x — & have
a common factor d € R, then d has to divide \/D(f), which is a prime of
R as D(f) is a rational prime. This means that d is either a unit or a unit
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multiple of \/D(f). Assume that d = +,/D(f) then we can re-write our
equation y? = f(z) as

24 s=py) ( xl;(?)> ( xli?)) |

Now the terms on the RHS of (2.4) are pairwise coprime. We know that the
two bracketed terms are coprime so all we need to check is that D(f) has

r—o

no factors in common with A = say. Suppose that € is a non-trivial
/D) Y pp

common factor of A and D(f), then as € | D(f) we have e = +/D(f) or
+D(f). Applying the non-trivial Galois automorphism tells us that € = +e.
Now € | A, so e | A also. This is a contradiction and so ¢ must be a unit.
Hence, as R is a unique factorisation domain, each of D(f), A, A is a unit
multiple of a g-th power. However, since ¢ > 2, D(f) is not a ¢-th power
so there are no integer solutions to (2.4). Therefore we assume that  — «
and x — a are coprime in R. Then equation (1.1) implies that

r—oa==x0

for some 8 € R. Once again +1 are g-th powers so

r—a=~7

for some v € R. Applying the non-trivial Galois automorphism yields

z—a=47%

The last two equations imply that

a—a=9"-7%

—\/D(f) = ky/D(Fug(r,9),

for some non-zero k € Z. Once again k = +1 which gives

(2.5) ug(7,7) = £1.

As before we can now apply the result of Theorem 2.4 to conclude that
uq(7y,7) has a primitive prime divisor for all ¢ > 30 and equation (2.5) is
therefore untenable. Hence for (1.1) to be soluble in integers x, y we require
that ¢ < 30.

We will now prove the statement for D(f) = —7; the other cases follow
similarly. Assume that we have a solution to (1.1) for ¢ > 13. Then we know

that equation (2.5) holds for some v € Z {H'Tﬁ}, and the ¢gth term in the
Lucas sequence (u,(7,%))n>1 fails to have a primitive prime divisor. From

Theorem 2.4 we have a complete list of conjugate pairs (v,7) and positive
integers n such that w,(v,7) fails to have a primitive prime divisor. By the

which in turn yields
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equivalence condition of Theorem 2.4 we may assume that the only candi-
date for = is 1+\2ﬁ’ consequently the only n > 13 for which u,(v,7) fails

to admit a primitive prime divisor, are n = 18,30. Computing the values

of uy (HTE, 1—2£ for n = 18, 30, the values +1 are never obtained, so
there are no solutions to (2.5) when g > 13, which establishes the result for

D(f) = 1.

We are now left to prove the claims when D(f) = —3,—8. Let f(z) =
2?2 + ax + b be an integral polynomial of discriminant —3 (as before, the
case D(f) = —8 is similar). Then for integers z,y, y > 1 with

y? = 2% + ax + b,

we have the factorisation

(2.6) y' = (z —a)(z - a),

where o = %‘/j’ Note that the RHS of equation (2.6) lies in the ring
Z|w] where w = _1%\/_73 As before we may assume that * — a and z — @
are coprime in Z|w]. Therefore, we have from equation (2.6)

(2.7) r—a=20-71

where 7, d € Z]w] with ¢ a unit.
Since § is a unit, it is itself a ¢-th power (as ¢ is a prime larger than 3)
then from equation (2.7) we have

(2.8) r—oa=¢l,

for some ¢ € Zlw]. Again applying the non-trivial Galois automorphism
gives

(2.9) x—a=é.
Subtracting (2.9) from (2.8) gives
el —el=a—a=—/-3.
Factorising the LHS of the above gives
(€ — ugle, €) = —v/=3.
Note that € — € = ¢y/—3 for some non-zero integer c. Hence,
cuq(e, €) = —1,

and since uq(e, €) is an integer we know ¢ | 1. So ¢ = +1 and we end up
with the following equation

(2.10) uq(e, €) = £1.
It follows immediately from Theorem 2.4, that u,(e, €) has a primitive prime

divisor for all ¢ > 30, so for (2.10) to hold we must have ¢ < 30. Moreover,
the only pairs (n,v) € Nx Z]w] with n > 4 such that u, (v, ¥) fails to have a
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primitive prime divisor are (10, + (%)) Since ¢ is prime, we conclude
that there are no solutions to (2.10). O
Now consider Corollary 1.3. Once again, we will prove only the case that

D(f) = —7 since the other cases follow similarly and this is the situation
which gives rise to the highest bound for the exponent q.

Proof of Corollary 1.3. Note that for the equation
y? = f(2)

to have integer solutions z, y with |y| > 1 we have that equation (2.5) holds,
where v € Z {HT\E} As in the proof of Theorem 1.2 the only candidate

for ~ is H?ﬁ When v = 1+‘F, we see that equation (2.5) for ¢ > 5 is
only satisfied for ¢ = 5,13. It may be assumed that ¢ is prime. Therefore,
to fully solve this equation we need only look at the cases ¢ = 2,3,5,13.
Without loss take f(z) = x? + 2 + 2, since it has discriminant —7. First
solve the equation y? = f(x) in integers x,y. Completing the square gives

2 1\?
y=[r+3) + 7/4
and multiplying through by 4 gives
(2y)2 = 2z +1)* + 7

and so

2y —2x—1)2y+2x+1)="17.
So it is clear that (2y — 2z — 1) = £1,£7 and running through the possi-
bilities yields that x = —2,1 and y = 2.

—14+v/=7 1
2

and a = ———, so

0

The zeros of f are o =

y? = (& — a)(x — a).

As in the proof of Theorem 1.2 assume that the two factors on the RHS of
the equation are coprime. Therefore

T —a =109,

for some (8 € Z[HT\E] We only need to check the cases ¢ = 3,5,13. Now
—1 is a perfect ¢-th power, so
1—+-=7 q

rhep =

LEV=T] Write € = YHVV=T

for some € € Z|
gives

(2.11) 2y 4 2071 — 207/ 7 = (U 4+ VV-T)4.

then substituting in the above
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First deal with the case ¢ = 13. Expanding out the bracket in equation
(2.11) and equating real and imaginary parts yields

(2.12) f1(U, V) = —4096
(2.13) 91(U, V) = 8192x + 4096
where

f1(U, V) = V(13U — 20020°V? + 63063U5V* — 5885886V ¢
+ 171671504V — 1310946U2V 10 4 117649V1%)

and

g (U, V) = U — 546U V? 4 35035U°V* — 5885880 V° 4 3090087U° V8
— 480680203V 10 + 15204370V 12,

From (2.12), V' | 4096. Using the polroots command in PARI, see [18],
we compute polroots ( f(z) + 4(‘)/&) where

fl(xa V)

fla) = 15

where V is fixed and takes on the values +2% where d runs from 0 to 12
inclusive. We find the integer solutions to (2.12) to be

V=1U=+l.

This implies that
g1 (U, V) = £741376
which, by substituting into (2.13), yields z = —91 or 90 and so we conclude

that y = 2. By substituting ¢ = 5 into equation (2.11) and solving in the
same way we find that the only solutions to

Y =+ +2
are x = —6,5 and y = 2. Similarly for ¢ = 3 we find that the only solutions
to

y3 =224+ z+2
are x = —3,2 and y = 2. Therefore, from the remark below Theorem 1.2,
the only solutions to the equation y? = f(z) where f(x) has discriminant

—Tarey =2and g =2,3,5,13 and so we have proven part (a) of Corollary
1.3. O
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3. Applications to polynomially generated sequences

In this section we show how Theorems 1.1,1.2 and Corollary 1.3 can be
applied to deduce perfect power results for generalised Sylvester sequences
of types 1,2 and 3.

Proof of Corollary 1.5. We are looking to solve the equation y? = 22 — 241
in integers x,v,q where y,q > 1. Since 22 — x + 1 has discriminant equal
to —3 we see from Corollary 1.3 that the only integer solution (y, q) to this
equation is (7, 3). Hence if we have a perfect power term in such a sequence,
the previous term x must satisfy

22—z +1=343.

Solving the previous equation gives x = —18,19. So to see 343 appearing
in our generalised Sylvester sequence of type 1, we see that the previous
term needs to be 19, since all terms in the sequence are positive. However,
19 is not the image of any integer under the mapping z — 2% — z + 1, so if
we have 343 appearing it must be because we have chosen 19 as our initial
input. This concludes the proof. O

Remark. From the above result, we see that the Sylvester sequence has no
perfect powers since it is G (2).

Lemma 3.1. The only perfect power terms in a generalised Sylvester se-
(2)

quence of type 2 are G’ (a) when a is a perfect power.

Proof. We are looking for integer solutions to the equation
y? = 2? — 2z + 2.

The polynomial on the RHS of the above has discriminant equal to —4, and
so by the remark below Theorem 1.2, we can invoke Lebesgue’s result, [27]
to show that this equation has no integer solution (z,y) with y > 1. O

Corollary 3.2. The only perfect power terms in a generalised Sylvester
sequence of type 3 are Gés)(a) when a is a perfect power, and Gg3)(2()).

Proof. To see this, we simply observe that generalised sequences of type 3
are more or less the same as those of type 1. Since 22 — 3z +3 = (z —
1)2 — (z — 1) + 1, we see that G®)(a) = GM(a — 1). The statement of this
corollary then follows from Corollary 1.5. U

We finish with an example to illustrate that the bound in Theorem 1.1
is sharp, and to show how we can find all power terms in the sequences
coming from this polynomial by iterating it upon an integral input.

Example 3.3. Let f(z) = 22 + 2 + 6. We wish to solve the equation
y? = f(x) in integers x,y, q = 2. Note that D(f) = —23, so f(x) satisfies
the hypotheses of Theorem 1.1 and we conclude at once that ¢ < 3 since
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h(Q(v/—23)) = 3. To show that our bound is sharp we need only show there
are solutions when g = 3. When q = 3 the equation defines an elliptic curve
and the equation can be solved by using the MAGMA package, [12]. We find
that the integer solutions to the equation are

(z,y) €{(22,8), (—23,8), (—42,12), (41, 12), (—2,2), (1,2), (14, 6),
(—15,6), (3625, 236), (—3626, 236)}.

The case q = 2 is straightforward, we can rearrange the equation a little to
obtain

2y —2x—-1)2y+2z+1) =23.
Using the fact that the two factors on the LHS are factors of 23 gives that
the only solutions in this case are

(z,y) € {(5,£6),(—6,%6)}.

As before we can now use this information to show that form > 1, a € Z,
f™(a) is a perfect power exactly when n =1 and

a = —3626,—42, —23, —15, -6, —2, 1,5, 14, 22, 41, 3625.

Hence no term beyond the first in the sequence (f™(a))n>1 s a perfect power.
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