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The period-index problem in WC-groups IV:
a local transition theorem

par Pete L. CLARK

Résumé. Soit K un corps de valuation discrète complet avec
corps résiduel parfait k. En supposant des bornes supérieures pour
la relation entre l’indice et la période pour des groupes de Weil-
Châtelet sur k, nous déduisons des bornes supérieures correspon-
dantes pour la relation entre l’indice et la période pour des groupes
de Weil-Châtelet sur K. À une constante dépendant seulement de
la dimension d’un torseur près, nous retrouvons des théorèmes de
Lichtenbaum et Milne dans un contexte “sans dualité”. Nos tech-
niques utilisent les modèles LLR des torseurs sous des variétés
abeliennes avec bonne réduction et une généralisation de l’obs-
truction période-indice à la cohomologie plate. Dans un appendice,
nous considérons des sujets apparentés relevant de l’arithmétique
du corps.

Abstract. Let K be a complete discretely valued field with
perfect residue field k. Assuming upper bounds on the relation
between period and index for WC-groups over k, we deduce corre-
sponding upper bounds on the relation between period and index
for WC-groups over K. Up to a constant depending only on the
dimension of the torsor, we recover theorems of Lichtenbaum and
Milne in a “duality free” context. Our techniques include the use
of LLR models of torsors under abelian varieties with good reduc-
tion and a generalization of the period-index obstruction map to
flat cohomology. In an appendix, we consider some related issues
of a field-arithmetic nature.

Introduction
0.1. Notation and Terminology.

For a field K, we let Ksep denote a separable closure of K and K an
algebraic closure of K. We write gK for Gal(Ksep/K).

By a CDVF, we mean a field which is complete with respect to a discrete
valuation.
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If X/K is an integral variety, let Xreg denote its regular locus and I(X)
the index of X, i.e., the gcd of all degrees of closed points on X.

For M a gK-module and η ∈ H i(K,M) a Galois cohomology class, we
denote by P (η) and I(η) the period and index of η (c.f. [WCII, §2]). Espe-
cially, if A/K is an abelian variety, then H1(K,A) is canonically isomorphic
to the Weil-Châtelet group of A, which parameterizes torsors (X,µ)
under A. Under this correspondence, we have I(η) = I(X).

Let G/K be an algebraic group scheme. Then G gives rise to a sheaf
of groups on the flat (fppf) site of SpecK. We put H0(K,G) = G(K),
and we denote by H1(K,G) the first flat cohomology, a pointed set. If G
is commutative, for all i ≥ 0 we have flat cohomology groups H i(K,G).
Recall that flat and étale (= Galois, here) cohomology coincide when G/K
is a smooth, commutative group scheme [Mil, Thm. 3.9], and we shall not
be considering the étale cohomology of non-smooth group schemes, so we
do not distinguish notationally between flat and Galois cohomology. We
trust that no confusion will arise.

Recall that a principal polarization on an abelian variety A/K is a K-
rational element λ of the Néron-Severi group NS(A) such that the corre-
sponding homomorphism ϕλ : A → A∨ has the property that (ϕλ)/Ksep =
ϕL for some ample line bundle L ∈ Pic(A/K). We say that a polariza-
tion λ is strong if the line bundle L can be chosen to be K-rational. The
coboundary map in cohomology of the short exact sequence of gK-modules

0→ Pic0(A)(Ksep)→ Pic(A)(Ksep)→ NS(A)(Ksep)→ 0,

yields a homomorphism ΦPS : H0(NS(A)) → H1(K,A∨) such that λ ∈
NS(A)(K) is strong iff ΦPS(λ) = 0. We recall from [PoSt, §4] that

ΦPS(H0(K,NS(A))) ⊆ H1(K,A∨)[2].

It will then follow from Theorem 12 that any polarization can be made
strong by passing to a field extension of degree at most 22 dimA. Every
polarization on an elliptic curve (E,O) is represented by the K-rational
divisor n[O] for some n ∈ Z+, hence is strong.

0.2. The Main Theorem.

Main Theorem.
Let K be a complete discretely valued field with perfect residue field k.

a) Suppose that there exists i ∈ N and a function c : Z+ → Z+ such that:
for all abelian varieties A/k and all torsors η ∈ H1(k,A),

I(η) ≤ c(dimA)P (η)i.

Then there exists a function C : Z+ → Z+ such that for all finite extensions
L/K, all principally polarizable abelian varieties A/L and all torsors η ∈
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H1(L,A),
I(η) ≤ C(dimA)P (η)dimA+i.

b) Suppose that char(k) = 0, that there exists i ∈ N and a function c : Z+ →
Z+ such that: for all finite extensions l/k, all nontrivial abelian varieties
A/l and all torsors η ∈ H1(l, A), we have

I(η) ≤ c(dimA)P (η)dimA+i−1.

Then there exists a function C : Z+ → Z+ such that for all finite extensions
L/K, all principally polarizable abelian varieties A/L and all torsors η ∈
H1(L,A),

I(η) ≤ C(dimA)P (η)dimA+i.

0.3. Outline of the paper.
The theorem as stated above is admittedly rather technical. So we be-

lieve that most (if not all) readers will benefit from a discussion which
places it in a larger context. We do so at some length in §1, beginning in
§1.1 by recalling some prior instances of “transition theorems” in Galois
cohomology and field arithmetic. Throughout the rest of §1 we repeatedly
give examples and remarks to show that many of the complications in the
statement of the Main Theorem are necessary.

In §2 we introduce a new technical tool, the period-index obstruction
map ∆ in flat cohomology, which allows us to work with torsors with pe-
riod divisible by the characteristic of the ground field, a case that was
disallowed in our previous work on the subject. As a first indication that
our formalism is a fruitful one, we derive a foundational result (Theorem
12) bounding the index of any torsor under an abelian variety A in terms
of the period and dimA, which had up until now only been established in
special cases.

The philosophy of the present work is to analyze the local period-index
problem from geometric perspective, more precisely in terms of the geom-
etry of regular R-models of torsors. That we can proceed in this way is
thanks in large part to two recent deep results on regular models due to
Liu-Lorenzini-Raynaud and Gabber-Liu-Lorenzini. We begin §3 with care-
ful statements of these results (the latter of which is, as of this writing, not
yet publicly available). The rest of the section is devoted to a proof of the
Main Theorem as well as a more precise result (Theorem 7) for iterated
Laurent series fields over the complex numbers.

We have also included an Appendix, §4, which considers relations be-
tween the property of a field that all torsors under abelian varieties have ra-
tional points and some other, better known, properties of a field-arithmetic
nature.
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1. Motivating the Main Theorem
1.1. Transition theorems.

Recall the Ci property of fields: a polynomial with coefficients in K
which is homogeneous polynomial of degree n in more than ni variables
has a nontrivial zero. A field C0 if and only if it is algebraically closed
[FMV, Lemma 3.2]. Moreover:

Theorem 1. a) (Chevalley) A finite field is C1.
b) (Tsen) If K is Ci, then so is any algebraic extension L/K.
c) (Tsen) If K is Ci and L/K has transcendence degree j, then L is Ci+j.
d) (Lang) A CDVF with algebraically closed residue field is C1.
e) (Greenberg) If k is Ci, then k((t)) is Ci+1.

Proof. See [Ch], [Ts], [La52], [Gr67]. �

Part d) can be rephrased as: if K is a CDVF with C0-residue field, then
K is C1. This suggests that Greenberg’s theorem might be generalized to
the statement that a CDVF K with Ci residue field is Ci+1. In particular,
E. Artin conjectured that p-adic fields are C2. But this turned out to be
false: Qp is not Ci for any i.

More recently other numerical invariants of fields with properties analo-
gous to those of Theorem 1 have been considered. Especially, in [CG] J.-P.
Serre defined, for a prime number p, the p-cohomological dimension
cdp(K) of a field K as well as the cohomological dimension cd(K) =
supp cdp(K). The relation cdp(k) ≤ i satisfies all the properties of Theorem
1. Moreover, a C1 field satisfies cdp(k) ≤ 1 for all p and even the stronger
property mentioned above: if K is a CDVF with residue field k satisfying
cdp(k) ≤ i, then cdp(K) ≤ i+ 1 [CG, Prop. II.12].

In some cases there are relations between the cohomological dimension
and rational points on certain K-varieties. For a perfect field K, cd(K) ≤ 1
is equivalent to the condition that any torsor under a connected linear
group has a K-rational point. For a perfect field K, Serre conjectures that
cd(K) ≤ 2 implies that every torsor under a simply connected, semisimple
linear group has a K-rational point, which is now known to be true in
(at least) many cases. Finally, Voevodsky’s work gives an interpretation of
cd2(K) ≤ i in terms of the u-invariant of quadratic forms.
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There is a closely related problem on Brauer groups. Say a field K is
Br(d) if for all finite extensions L/K and all P ∈ Z+, every class in
Br(L)[P ] has a splitting field of degree dividing P d. A perfect field K is
Br(0) – that is, Br(L) = 0 for all finite L/K – iff cd(K) ≤ 1. Much of
the content of class field theory is encoded in the statement that local and
global fields are Br(1). It is not hard to show that if K is CDVF with
perfect Br(i) residue field, then K is Br(i+1). On the other hand, one has
the following “folk conjecture”, which can be traced back (in the form of a
question) to J.-L. Colliot-Thélène.
Conjecture 2. If a field K is Br(d), then the rational function field K(t)
is Br(d+1).

Indeed, some of the most exciting recent work in the field has been the
verification of this conjecture in certain special cases: when K = k(C) is
the function field of a curve over (i) a p-adic field (Saltman [Sa]), (ii) an
algebraically closed field (de Jong [deJ]), (iii) the function field of a curve
over a finite field (Lieblich [Lie]). (In some cases, one must restrict to classes
of period prime to p.) See also the recent paper [HKS] for more information
on such results.

1.2. Property WC(i).
A field K is WC(i) if for every abelian variety A/K and every η ∈
H1(K,A)[P ], the index of η divides P i. In particular, a field is WC(0) iff
every torsor under an abelian variety A/K has a K-rational point.

Remark 1.2.1: Let L/K be a finite field extension, A/L an abelian variety,
and B = ResL/K be the Weil restriction of B from L down to K. Shapiro’s
Lemma gives a canonical isomorphism H1(L,A) = H1(K,B). It follows
that the property WC(i) is automatically inherited by all algebraic field
extensions.

Example 1.2.2: A PAC field is WC(0). In particular, separably closed =⇒
WC(0).1

Theorem 3. (Lang, [La56]) A finite field is WC(0).
Geyer and Jarden have constructed many non-PAC WC(0) fields [GeJa].

Example 1.2.3: The field k = R is not WC(0): e.g. the smooth model of
y2 = −(x4 + 1)

is a genus one curve without an R-point. On the other hand, since gR =
Z/2Z, every Galois cohomology group H i(R,M) with i > 0 is 2-torsion.
In particular, any nontrivial torsor under a real abelian variety has period
equals index equals 2, so R is certainly WC(1).

1For more about the PAC property, see the Appendix.
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In view of the local transition theorems for properties Ci and Br(i), one
might guess that if K is a complete discretely valued field with WC(i)
residue field k, then K is itself WC(i+1), at least in equal characteristic.
However, this is generally very far from being the case, and is not even true
in the (most favorable) case in which k is algebraically closed of character-
istic 0.

For g ∈ Z+, let us write Cg for the iterated Laurent series field
C((t1)) · · · ((tg)).2 In particular C1 = C((t)). The field Cg has cohomo-
logical dimension g at every prime p, has property Cg but not Cg−1, and
has property Br(g-1). The absolute Galois group of Cg is isomorphic to
Ẑg = (lim

←−
Z/nZ)g.

The following two classical results limit the WC(i) properties of these
fields:
Proposition 4. (Lang-Tate [LaTa, p. 678]) Let g, n ∈ Z+ with n > 1.
a) Let E/Cg be any elliptic curve with j(E) ∈ C.
Then there exists a torsor η ∈ H1(Cg, Eg) with P (η) = n, I(η) = ng.
b) Let E/C2g be any elliptic curve with j(E) ∈ C.
Then there exists a torsor η ∈ H1(C2g, E

g) with P (η) = n, I(η) = n2g.

Theorem 5. (Shafarevich [X]) For every n > 1, there exists an abelian
variety A/C((t)) and a torsor η ∈ H1(C((t)), A) such that P (η) = n, I(η) >
n.

So C1 = C((t)) is not WC(1).

1.3. Property Almost WC(i).
We do not know whether C((t)) is WC(2). However, it is at least “very

close”:
Theorem 6. There exists a function f : Z+ → Z+ such that: for any
g ∈ Z+, any g-dimensional abelian variety A/C((t)) and any torsor η ∈
H1(C((t)), A), we have

I(η) ≤ f(g)P (η)2.

This motivates the following moderate loosening of the WC(i) property:
A field k is almost WC(i) if there exists a function f(g) such that: for

all finite extensions l/k, all abelian varieties A/l and all η ∈ H1(l, A), we
have

I(η) ≤ f(dimA)P (η)i.
Thus Theorem 6 asserts that C1 = C((t)) is almost WC(2). Moreover,
Proposition 4 shows that C((t)) is not almost WC(0), whereas Theorem 5
does not rule out the possibility that C((t)) is almost WC(1).

2Here we are, of course, using C to denote the field of complex numbers, although any alge-
braically closed field of characteristic 0 would serve as well.
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More generally, we shall prove:

Theorem 7. For all i ∈ Z+, the field Ci is almost WC(i+1).

Theorems 6 and 7 are almost immediate consequences of the proof of the
Main Theorem, so we give their proofs at the end of §3.

In the other direction, Proposition 4 shows that Ci is not almost WC(i-1).

1.4. Property (almost) weakly (pp) WC(i).
The situation is much different for fields of mixed characteristic.

Proposition 8. Let K/Qp be an algebraic extension such that K has finite
degree over its maximal unramified subextension. Then K is not WC(g) for
any g ∈ N.

Proof. Let g ∈ N. In [WCII, §3.2] we construct a finite field extension
Kg/K, an elliptic curve E/Kg and a torsor η ∈ H1(Kg, Eg) with P (η) = p,
I(η) = pg+1. Thus the field Kg is not WC(g). The conclusion follows by
applying Remark 1.2.1. �

Nevertheless there are certainly nontrivial results on the period-index
problem in WC-groups over p-adic fields, beginning with the celebrated
theorem of Lichtenbaum that period equals index for genus one curves over
a p-adic field. One of the main results of [WCII] is the following general-
ization:

Theorem 9. Let A/K be a principally polarized abelian variety over a p-
adic field. For n ∈ Z+, let η ∈ H1(K,A)[n]. Assume that at least one of
the following holds:
(i) dimA = 1.
(ii) n is odd.
(iii) There is a gK-module isomorphism A[n] ∼= H ⊕H∗, where H,H∗ are
Cartier dual gK-modules, each isotropic for the Weil pairing.
Then I(η) ≤ (g!) P (η)g.

Proof. This is [WCII, Thm. 2]. �

If K is a sufficiently large p-adic field, then the proof of Proposition 8
constructs torsors η under abelian varieties A/K of dimension g, period p
and index pg. Thus the bound of Theorem 9 is sharp up to a multiplicative
constant.

This motivates the following definitions:
We say that K is weakly WC(i) (resp. weakly pp WC(i)) if: for all

finite extensions L/K, all nontrivial abelian varieties A/L (resp. all nontriv-
ial principally polarized abelian varieties A/L) and all classes η ∈ H1(L,A),
we have

I(η) ≤ P (η)dimA+i−1.
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In particular, in any weakly pp WC(1) field k, the analogue of Lichten-
baum’s theorem holds: period equals index for all genus one curves over all
finite extensions of k.

Finally, we say that k is almost weakly WC(i) (resp. almost weakly
pp WC(i)) if there exists a function C(g) such that for all finite exten-
sions l/k, all nontrivial abelian varieties A/L (resp. all nontrivial pp abelian
varieties A/L) and all classes η ∈ H1(L,A) we have

I(η) ≤ C(g)P dimA+i−1.

With this terminology, Theorem 9 nearly asserts that a p-adic field is almost
weakly pp WC(1), the drawback being the requirement of at least one of
the additional hypotheses (i) through (iii). This drawback is removed by
our Main Theorem.

1.5. Restatement of the Main Theorem.
Let us now restate our main result using the language of the previous

sections.

Main Theorem. Let K be a CDVF with almost weakly WC(i) residue
field k.
a) If k is moreover almost WC(i), then K is almost weakly pp WC(i+1).
b) If char(k) = 0, then K is almost weakly pp WC(i+1).

1.6. Examples and remarks.
Remark 1.6.1: The hypothesis on the perfection of k is essential. Indeed, in
[LLR, Remark 9.4] the authors construct a CDVF field K whose residue
field is imperfect but separably closed (and hence WC(0) – c.f. the Appen-
dix) of characteristic p > 0 and, for all integers 0 < r ≤ n, a genus one
curve over K of period pn and index pn+r. Thus K is not almost weakly
pp WC(1).

Example 1.6.2: Since R is almost WC(0), our Main Theorem shows that
K = R((t)) is almost WC(1). Other hand, K is not WC(1): there exists a
genus one curve C/K of period 2 and index 4 [WCIII].

We saw above that a p-adic field has WC(0) residue field and is not
almost WC(i) for any i. Here is a similar example in equicharacteristic 0:

Example 1.6.3: Let k be a Hilbertian PAC field of characteristic 0 [FA, Thm.
18.10.3]. Then k is WC(0), but for all P > 1, Hom(gk,Z/PZ) is infinite.
So for every g ∈ Z+ and P > 1, there exists a Tate elliptic curve E/K and
a torsor X ∈ H1(K,Eg) with period P and index P g.

By a famous theorem of Lang, any finite field k is WC(0) [La56].3 Thus
the Main Theorem asserts that any local field – i.e., a finite extension of

3See the appendix for further discussion and a connection to an earlier result of F.K. Schmidt.



The period-index problem in WC-groups IV 591

Qp or of Fp((t)) – is weakly almost pp WC(1). As mentioned above, this
should be compared with Theorem 9: in this case the Main Theorem applies
to all torsors under abelian varieties at the cost of a larger function C(g).

Especially, let us take g = 1 and compare with the theorems of Lichten-
baum and Milne. Our proof yields I | 192P for genus one curves over a field
K with perfect WC(0)-residue field. In particular (6, P ) = 1 =⇒ P = I.
Working a little more carefully and adding the hypothesis that gk is pro-
cyclic, one finds easily that I ≤ 16P and I | 48P . This leaves open the
question of whether the full Lichtenbaum theorem extends to our setting
or whether the use of Tate duality is essential. We hope to return to this
point in a future work.

Another noteworthy feature of our Main Theorem is that, in contrast to
the work of [Li68], [WCII], [WCII], torsors of period divisible by char(K) are
not ruled out. However, Milne proved that period equals index for genus one
curves over Fq((t)) by establishing an analogue of Tate local duality in flat
cohomology. Again, we recover Milne’s theorem up to a constant in a general
setting to which Tate duality seems inapplicable. Our new technique is to
generalize the period-index obstruction map ∆ : H1(K,A[P ]) → Br(K)
to the setting of flat cohomology on SpecK. Fortunately for us, we need
only quite formal properties of ∆ whose proofs are direct analogues of the
corresponding ones in the étale case. In fact we also have work in progress
on the explicit computation of ∆ in terms of symbol algebras as is done
in [WCI], [WCII] when A[P ] is an étale group scheme whose corresponding
Galois representation has sufficiently small image: [WCV].

2. The period-index obstruction map in flat cohomology
Let K be an arbitrary field, A/K an abelian variety of dimension g and
P ∈ Z+. Then the morphism [P ] : A → A is an isogeny: in particular, on
K-points we have a short exact sequence

(2.1) 0→ A[P ](K)→ A(K) [P ]→ A(K)→ 0.
We recall the following basic fact [Mum, §18]:
Proposition 10. The following are equivalent:
(i) The isogeny [P ] : A→ A is separable.
(ii) The finite K-group scheme A[P ] is étale.
(iii) The characteristic of k does not divide P .

When the equivalent conditions of Proposition 10 hold, [P ] : A → A is
an étale covering, so the fiber over any point Q ∈ A(Ksep) is a finite étale
algebra. It follows that the sequence

(2.2) 0→ A[P ](Ksep)→ A(Ksep) [P ]→ A(Ksep)→ 0
is exact.
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2.1. Perfect fields of positive characteristic.
Suppose that K is a perfect field of characteristic p > 0, and let P = pk,
k ∈ Z+. In this case (2.1) and (2.2) are one and the same, so that (2.2) is
exact. Letting A[P ]◦ denote the maximal étale quotient of A[P ], we may
reinterpret (2.2) as a short exact sequence of abelian sheaves on the small
étale site of SpecK

0→ A[P ]◦ → A [P ]→ A→ 0,
and taking étale = Galois cohomology we get

0→ A(K)/PA(K)→ H1(K,A[P ]◦)→ H1(K,A)[P ]→ 0.

Example 2.1.1: Let E/K be a supersingular elliptic curve. Then E[P ]◦ = 0,
so that every torsor under E has a K-rational point.

Returning to the general case, let η ∈ H1(K,A)[P ] be any torsor under
A, and choose any lift of η to ξ ∈ H1(K,A[P ]◦). By [WCII, Prop. 12], ξ can
be split by an extension of degree at most #A[P ]◦ and has index dividing
#A[P ]◦. But #A[P ]◦ | P g, with equality iff A is ordinary. Since ξ splits
=⇒ η splits, we have the following result.

Proposition 11. Let K be a perfect field of positive characteristic p, let P
be a power of p and let η ∈ H1(K,A)[P ]. Then I(η) | P (η)g.

Remark 2.1.2: A similar argument applies to the “usual” Kummer sequence

1→ µp(K)→ Gm(K) [p]→ Gm(K)→ 1,

to give that

Br(K)[p] = H2(K, (µp)◦) = H2(K, 0) = 0.

2.2. The Kummer sequence in flat cohomology.
We return to the case of general K and P . In this case we have a short

exact sequence of commutative algebraic K-group schemes

0→ A[P ]→ A [P ]→ A→ 0.

Viewing this as a short exact sequence of abelian sheaves on the flat site of
K and taking flat cohomology we get

0→ A(K)/PA(K)→ H1(K,A[P ])→ H1(K,A)[P ]→ 0.

As an application of this formalism, we shall prove:

Theorem 12. Let K be a field, A/K a g-dimensional abelian variety, and
η ∈ H1(K,A) a torsor. Then I(η) | P (η)2g.

Remark 2.2.1: Special cases of this result are due to Lang-Tate [LaTa,
p. 678], Lichtenbaum [Li70, Thm. 8] and Harase [Ha, Thm. 4].
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Proof. We will show that any class ξ ∈ H1(K,A[P ]) splits over a field of
degree at most P 2g. By the surjectivity of H1(K,A[P ]) → H1(K,A)[P ],
this implies that any η ∈ H1(K,A)[P ] has a splitting field of degree at most
P 2g. By an easy primary decomposition argument as in [WCII, Prop. 12],
we conclude that I(η) | P 2g.

To establish this, consider the K-group scheme A[P ]: it is the group
scheme of all automorphisms ϕ of A such that [P ] = [P ] ◦ϕ. Therefore, by
the principle of descent, the flat cohomology group H1(K,A[P ]) classifies
(K/K)-twisted forms of [P ] : A → A, i.e., morphisms q : X → A fitting
into a diagram

X/K
∼−−−−→ A/K

q
y [P ]

y
A/K

1−−−−→ A/K
In particular, X/K is a torsor under A and the map q : X → A has degree
equal to the degree of [P ] : A→ A, namely P 2g. Thus q∗([O]) is an effective
K-rational zero-cycle on X of degree P 2g, so yields a closed point Q on X
such that [K(Q) : K] ≤ P 2g. Over the field extension K(Q), the morphism
q : (X,Q) → (A,O) and is therefore isomorphic to [n]/K(Q) : A → A. It
follows that K(Q) is a splitting field for ξ, completing the proof. �

Remark 2.2.2: In the earlier literature on the subject, together with the
index one finds the separable index, the least positive degree of a K-
rational divisor with support in Ksep. Our proof of Theorem 12 does not
give an upper bound for the separable index. However, the recent preprint
[LiuGa] shows that the index is equal to the separable index for smooth
varieties over any field. In particular this applies to torsors under abelian
varieties and gives that the separable index divides the (2g)th power of the
period.

Corollary 13. Let (A, λ)/K be a principally polarized abelian variety. Then
there exists a field extension L/K of degree at most 22 dimA such that
(A, λ)/L is strongly principally polarized.

Proof. As recalled in §0.1, the obstruction to λ being strong is an element
ΦPS(λ) ∈ H1(K,A)[2]. Now apply Theorem 12. �

2.3. The period-index obstruction in flat cohomology.
Let (A, λ)/K be a strongly principally polarized abelian variety over an

arbitrary field, and let P ≥ 2 be an integer. Let L be the P th multiple of
the principal polarization. Then D. Mumford has defined a theta group
(2.3) 0→ Gm → GL → A[P ]→ 0,
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in which Gm is the exact center [Mum, § 23]. When char(k) - P , (2.3)
can be viewed as a sequence of sheaves of groups on the étale site of K.
Because Gm is central in GL, there is a connecting map in nonabelian Galois
cohomology

∆ : H1(K,A[P ])→ H2(K,Gm).
The map ∆ was first studied by C.H. O’Neil in the case of dimA = 1
[O’N]. She had the fundamental insight that ∆ is intimately related to the
period-index problem, and accordingly she named ∆ the period-index
obstruction map.

Now we define the period-index obstruction map in arbitrary characteris-
tic. To do this, it suffices to identify (2.3) as a central, short exact sequence
of sheaves of groups on the flat site of SpecK. We then get a connecting
homomorphism

∆ : H1(K,A[P ])→ H2(K,Gm) = H2(K,Gm) = Br(K).
We recall our conventions: whenever we write H i(K,G), it is under-

stood that this is cohomology on the flat site of SpecK. If G/K is smooth,
this reduces to Galois cohomology. Since A[P ] is not smooth if char(k)
divides P , H1(K,A[P ]) cannot be identified with a Galois cohomology
group, and in particular is a richer object than the Galois cohomology
group H1(K,A[P ]◦) of §2.1.

The relation between ∆ and the period-index problem is as follows. Let
η ∈ H1(K,A)[P ], and let ξ be any lift of η to H1(K,A[P ]). We again apply
the principle of descent to characterize H1(K,A[P ]) as parameterizing a
set of twisted forms of A endowed with extra structure. This time our
fundamental object is the morphism into projective space determined by
the ample, basepoint free line bundle L: ϕ : A → PN . It follows from the
definition of the theta group scheme that A[P ] is precisely the group of
translations τx of A which extend via ϕ to linear automorphisms γ(τx) of
PN , i.e., which render the following diagram commutative:

A
τx−−−−→ A

ϕ
y yϕ

PN γ(τx)−−−−→ PN
The twisted forms of ϕ are morphisms X → V , where X is a torsor

under A and V is a Severi-Brauer variety. There is therefore a correspond-
ing class [V ] in the Brauer group of K. In [WCII, §5] it is shown that
∆(X → V ) = [V ]. The key step is that ∆ : H1(K,A[P ]) → H2(K,Gm)
factors through H1

fl(K,PGLN ) = H1
et(K,PGLN ) (smoothness again). The

map H1(K,PGLN ) → H2(K,Gm) can be computed explicitly in terms of
cocycles as in §5 of loc. cit.

This has the following consequence: suppose that η ∈ H1(K,A) is a class
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for which there exists at least one Kummer lift of η to ξ ∈ H1(K,A[P ]) such
that ∆(ξ) = 0. Then ξ corresponds to a morphism f : X → PN of degree
equal to the degree of ϕL, namely (g!)P g. Intersecting the image of f with a
suitable linear subvariety of PN and pulling back via f , we get a K-rational
zero cycle on X of degree g!P g. We conclude that I(η) ≤ (g!) P g.
Theorem 14. The period-index obstruction map is a quadratic map on
abelian groups: the associated map
B : H1(K,A[P ])×H1(K,A[P ])→ Br(K), (x, y) 7→ ∆(x+y)−∆(x)−∆(y)
is bilinear.
Proof. Again, the key is that ∆ : H1(K,A[P ]) → H2(K,Gm) factors
throughH1(K,PGLN ), so ∆ satisfies the same formal properties as the con-
necting homomorphism ∆′ for the central short exact sequence of smooth
group schemes

1→ Gm → GLN → PGLN → 1.
Finally, it follows from a theorem of Zarhin that ∆′ is a quadratic map
[Za]. �

Corollary 15. Define P ∗ to be P if P is odd and 2P if P is even. Then
∆(H1(K,A[P ])) ⊂ Br(K)[P ∗].

Proof. This holds for any quadratic map between abelian groups: [WCII,
§6.6]. �

This has as a consequence the following relation between Brauer groups
and WC-groups, a characteristic-unrestricted version of [WCII, Thm. 6].
Theorem 16. Suppose that a field K is Br(d) for some d ∈ N. Then K is
almost weakly pp WC(d+1).
Proof. Let L/K be a finite extension, and let (A, λ)/L be a principally
polarized abelian variety of dimension g. By Corollary 13, up to replacing
L by an extension field of degree at most 22g, we may assume that the
polarization is strong.4 Let η ∈ H1(L,A) be any class, and choose any lift
of η to ξ ∈ H1(L,A[P ]). By Corollary 15, ∆(ξ) ∈ Br(L)[2P ], so by our
Br(d) assumption, there exists a splitting field M/L for ∆(ξ) of degree at
most 2dP d. Since ∆(ξ|M ) = (∆ξ)|M = 0, it follows that there exists an
M -rational zero-cycle on the corresponding torsor X of degree (g!)P g, so
altogether η has a splitting field of degree at most

22g2dP d · (g!P g) = (22g+dg!)P dimA+(d+1)−1.

�

4We will need to use this observation several times in the sequel. We will not further belabor
the point but just include a correction factor of 22 dimA whenever we make use of the period-index
obstruction map.
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In the sequel, we will use the following special case: if Br(K) = 0, then
for any principally polarized abelian variety A/K and η ∈ H1(K,A), I(η) ≤
22g(g!) P (η)dimA.

3. Proof of the Main Theorem
3.1. Work of Gabber-Liu-Lorenzini, Liu-Lorenzini-Raynaud.

Theorem 17. ([LLR, Prop. 8.1]) Let K be a discretely valued field with
valuation ring R and perfect residue field k. Let A/K be an abelian variety
with good reduction. Then any torsor V under A admits a proper regular
model X/R endowed with an action A×RX → X extending the structure of
a torsor under A/K on the generic fiber and such that the map A×R X →
X×RX given by (a, x) 7→ (ax, x) is surjective. Then the reduced subscheme
Xred
/k of the special fiber is a torsor under an abelian variety isogenous to
A/k.

We will call a model X/R as in the statement of Theorem 17 an LLR
model.

Theorem 18. (Index Specialization Theorem [GLL]) Let K be a Henselian
discretely valued field with valuation ring R and residue field k. Let X be
regular scheme equipped with a proper flat morphism X → SpecR. Denote
by X/K (resp. X/k) the generic (resp. special) fiber of X → SpecR. Write
Xk as

∑n
i=1 riΓi, where each Γi is irreducible and of multiplicity ri in X/k.

Then
I(X/K) = gcd

i
riI(Γreg

i ).

3.2. Beginning of the proof.
Suppose K is complete, discretely valued field with perfect residue field
k. If char(k) = 0, we are assuming the existence of i ∈ N and a function
c : Z+ → Z+ such that: for all finite extensions l/k, all nontrivial abelian
varieties A/l and all torsors η ∈ H1(l, A), we have

I(η) ≤ c(dimA)P (η)dimA+i−1.

If char(k) > 0, we assume that there exists i ∈ N and a function c : Z+ →
Z+ such that for all abelian varieties A/k and all torsors η ∈ H1(k,A),

I(η) ≤ c(dimA)P (η)i.

In either case we wish to show that there exists a function C : Z+ → Z+

such that for all finite extensions L/K, all principally polarizable abelian
varieties A/L and all torsors η ∈ H1(L,A),

I(η) ≤ C(dimA)P (η)dimA+i.
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Both the hypothesis and the conclusion are stable under finite base exten-
sions, so it is no loss of generality to assume L = K. Thus, let A/K be a
principally polarizable abelian variety and η ∈ H1(K,A). Let (Xmu) be
the corresponding torsor under A. By (common) abuse of notation we will
omit the action µ in what follows.

3.3. Good reduction.
Suppose A/K has good reduction.
In the case when k is WC(0) we can prove somewhat sharper results, so

we begin there and then discuss modifications necessary to establish the
general case.

Let Punr (resp. Iunr) denote the period (resp. the index) of the torsor X
extended to the field Kunr. As for every field extension, we have Punr | P
and Iunr | I. By Lang’s theorem Br(Kunr) = 0, so by Theorem 16, Iunr ≤
22g(g!) P gunr.

Therefore the following result implies the Main Theorem in this case.

Proposition 19. Suppose that A has good reduction and k is WC(0). Then

P = Punr, I = Iunr.

Proof. Step 1: We claim that V does not split in Kunr. (In other words,
since V is arbitrary, we claim that the relative WC-group H1(Kunr/K,A)
is trivial in the case of good reduction.) Indeed, suppose to the contrary
that X admits a Kunr-rational point. Let A/R be the Néron model of A
and X/R an LLR model. It follows that the special fiber of X is smooth.
Now we use our WC(0): X(k) 6= ∅. By Hensel’s Lemma, V (K) 6= ∅.

Step 2: Now consider the class η′ = Punrη in H1(K,A). We have

η′|Kunr = Punrη|Kunr = Punr(ηKunr) = 0,

so by Step 1 η′ = 0. It follows that P | Punr, so P = Punr.
Step 3: We appeal to the LLR-model X/R of Theorem 17. The condition

WC(0) implies thatXred
/k has a k-rational point. By the Index Specialization

Theorem, the index of X is equal to the multiplicity of the special fiber.
This quantity does not change upon unramified base extension, so I = Iunr.
This completes the proof of Proposition 19, and with it the good reduction
case of Theorem 1.5a). �

Virtually the same argument works if k almost WC(0): i.e., if there exists
a constant c(g) such that for all principally polarized A/k and η ∈ H1(k,A),
I(η) ≤ c(g). LetX be the torsor corresponding to η andX/R its LLR-model.
By assumption, after making a field extension of degree at most c(g), the
reduced special fiber has a rational point. Again by index specialization, it
follows that we can further trivialize the class by making a totally ramified
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extension of degree Iunr ≤ 22gg!P gunr ≤ 22gg!P g. Thus overall V can be split
by an extension of degree at most 22g(g!) c(g) P g.

Next we recall the following closely related result, which is essentially
due to Lang and Tate (c.f. [LaTa, Cor. 1]).

Corollary 20. Let K be a CDVF with perfect WC(0)-residue field k. Let
A/K an abelian variety and η ∈ H1(K,A). If char(k) does not divide P (η),
then a finite field extension L/K splits X if and only if e(L/K) | P (η).

Proof. Let L/K be a finite extension splitting V . As for any finite extension
of a local field, we can decompose it into a tower L/M/K, where M/K is
unramified and L/M is totally ramified. By our previous results, we know
that the unramified extension M/K is index-nonreducing: I(V/L) = I =
P . So certainly P divides [L : M ] = e(L/K). Conversely, suppose L/K
is a finite extension with P | e(L/K); we wish to show that L splits V .
Decomposing L/K into L/M/K as above, it is enough to show that L splits
V/M , i.e., we reduce to the case in which L/K is totally tamely ramified
(ttr). By the structure of ttr extensions, there exists a unique degree P
subextension, so we may further assume that [L : K] = P . But we know
that there is at least one degree P ttr splitting field, and although there are
in general several ttr extensions of degree P , the compositum of any two
of them with Kunr coincide. It follows that each such L/K is a splitting
field. �

Remark 3.3.1: In the case in which k = k, we can say even more: by the
criterion of Néron-Ogg-Shafarevich, we have A[P ] = A[P ](K), and A(K)
is P -divisible, so the Kummer sequence trivializes to give isomorphisms

H1(K,A)[P ] = Hom(gK , A[P ]) ∼= Hom(gk,Z/PZ)2g

which are functorial with respect to restriction to finite extensions. Since
tame ramification groups are cyclic, we get Hom(gK ,Z/pZ) ∼= Z/PZ, i.e.,
every element of H1(K,A)[P ] is split by k((t

1
P )), the unique degree P

extension of K.
Next, suppose that k is almost WC(i). Arguing as above, the Index Spe-

cialization Theorem gives us

(3.1) I(η) = Iunr(η)I(Xred
/k ).

Combining the estimate Iunr(η) ≤ 22g(g!) P (η)unr of Theorem 16 and

I(Xred
/k ) ≤ c(g)P (Xred

/k ))i ≤ c(g)P (η)i,

we conclude
I(η) ≤ 22g(g!) c(g) P (η)g+i,

establishing the Main Theorem in this case.
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Finally, suppose that char(k) = 0. Then by Corollary 20,

Iunr(η) = Punr(η) | P (η).

Substituting this into (3.1) and using our hypothesis that I(Xred
/k ) ≤

c(g)P (η)g+i−1, we conclude that

I(η) ≤ c(g)P (η)g+i.

3.4. Purely toric reduction.

Proposition 21. (Gerritzen) Let K be any field. Let Ã be a gK-module
and Γ ⊆ Ã a gK-submodule which is torsionfree as a Z-module and such
that Γgk = Γ; put A := Ã/Γ. Suppose also that H1(L, Ã) = 0 for all finite
extensions L/K. Let η ∈ H1(K,A) be a class of period P . Then:
a) η has a unique minimal splitting field L = L(η).
b) The extension L/K is abelian of exponent P .
c) I(η) | P g, where g = dimQ(Γ⊗Q) is the rank of Γ.

Proof. See [Ge] or [WCII, Prop. 16]. �

Now let A/K be a g-dimensional abelian variety with split toric reduction:
the identity component of the Néron special fiber is Ggm. Then A admits
an analytic uniformization: it is isomorphic, as a rigid K-analytic group, to
Γ\Ggm, where Γ ∼= Zg is a discrete subgroup.

Corollary 22. Let K be any complete, discretely valued field, and let A/K
be a g-dimensional analytically uniformized abelian variety. For any η ∈
H1(K,A), I(η) | P (η)g.

Proof. We apply Proposition 21 with Ã = Ggm(Ksep). By Hilbert 90,
H1(L, Ã) = 0 for all finite L/K by Hilbert 90. The result follows immedi-
ately. �

Now assume A has purely toric reduction, not necessarily split. Then
there exists a function F1(g) such that the torus splits over an extension of
degree dividing F1(g). Thus, at the cost of possibly multiplying the ratio
I/P by F1(g), we can reduce to the previous case, getting I | F1(g) · P g.

3.5. General case.
We now recall a result due (in essence) to Bosch-Xarles [BoXa]. In its

precise statement we follow [ClXa, Thm. 7], wherein the reader will also
find an explanation of why it follows immediately from the work of [BoXa].

Theorem 23. (Uniformization Theorem) Let A/K be a g-dimensional
abelian variety over a complete field. Then there exists a semiabelian vari-
ety S/K of dimension g, whose abelian part has potentially good reduction,
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a gK-module M whose underlying abelian group is torsion free of rank equal
to the toric rank of S and an exact sequence of gK-modules
(3.2) 0→M → S(Ksep)→ A(Ksep)→ 0.
Moreover rankZM

gK = s, the split toric rank of the Néron special fiber of
A. For every finite extension L/K, the identity components of the Néron
special fibers of S/L and A/L are isomorphic.

Moreover, by making a base extension of degree depending only on g, we
can achieve split semistable reduction:

Lemma 24. For any positive integer g, there exists an integer F (g) such
that for any g-dimensional abelian variety A over a CDVF K, there exists
an extension L/K of degree at most F1(g) such that A/L has split semistable
reduction.

Proof. To get semistable reduction, we can trivialize the Galois action on
A[3] (if the residue characteristic is not 3) or on A[4] (if the residue char-
acteristic is not 2), and to split the toric part of the reduction we need to
trivialize the Galois action on a rank d ≤ g finite free Z-module, which can
be done over an extension of degree at most #GLd(Z/3Z) ≤ #GLg(Z/3Z).
Thus we could take

F1(g) = (max #GSp2g(Z/3Z),#GSp2g(Z/4Z)) ·#GLg(Z/3Z).
�

After making the reduction split semistable, the exact sequence (3.2)
above becomes

(3.3) 0→ Zµ → S(Ksep)→ A(Ksep)→ 0,
where S/K is a semiabelian variety of the form
(3.4) 0→ Gµm → S → B → 0,
and B is abelian with good reduction. Taking gK-cohomology of (3.3) gives

0→ H1(K,S)→ H1(K,A) δ→ H2(K,Z)µ → . . . .
Moreover, taking gK-cohomology of (3.4) and applying Hilbert 90, we get
an injection

H1(K,S) ↪→ H1(K,B).
Finally, we have

H2(K,Z)µ = Hom(K,Q/Z)µ.
So, starting with any class η ∈ H1(K,A)[P ], put ξ = δ(η) ∈ H2(K,Z).
There is an abelian extension L/K of exponent dividing P and degree
dividing Pµ which splits ξ, so that η|L ∈ H1(L, S) ↪→ H1(L,B). Since B
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is an abelian variety of dimension g − µ with good reduction, the work
of Section §3.2 applies to show that η|L can be split over an extension
M/L of degree at most C(g − µ)P g−µ+i, so overall η can be split by an
extensionM of degree at most C(g−µ)F1(g)P g+i ≤ C ′(g)F1(g)P g+i, where
C ′(g) = max1≤j≤g C(j). This completes the proof of the Main Theorem.

3.6. K = Cg.
We now give the proof of Theorems 6 and 7.
First, let K = C((t)) and let A/K be an abelian variety of dimen-

sion g. In Corollary 20 we established that if A has good reduction, any
class η ∈ H1(K,A) has period equals index. At the other extreme, if
A has split multiplicative reduction, then H1(K,A)[P ] injects into X =
Hom(gK , (Z/PZ)g). However, because gK ∼= Ẑ is procyclic, any element of
Hom(gK , (Z/PZ)g) splits over a degree P field extension, thus period equals
index in this case as well. Finally, after making an unramified field exten-
sion of bounded degree f(g) to attain split semistable reduction of A, the
dévissage argument of §3.4 shows that we can split any class η ∈ H1(K,A)
by first splitting its purely toric part and then splitting its good reduc-
tion part, getting overall a splitting field of degree at most f(g)P 2. This
completes the proof of theorem 6.

Now let K = C2 = C((t1))((t2)). This time gK ∼= Ẑ2, so that if A has
split multiplicative reduction the sharp upper bound on the index is P 2.
Once again, after making a base extension of degree f(g) to ensure split
semistable reduction, the critical case is getting an upper bound on the
index in the case of good reduction. But now something extremely fortu-
nate occurs: both the residue field k and the maximal unramified extension
Kunr are isomorphic to C1 = C((t))! So, by a now familiar argument with
the Index Specialization Theorem, we can split a class of period P by an
extension of degree at most f(2)P 2 · P = f(2)P 3. The general case follows
by an obvious inductive argument.

4. Appendix: Some Related Field Arithmetic
4.1. PAC and I1 fields.

A field k is PAC (pseudo-algebraically closed) if every geometrically
integral k-variety has a k-rational point. A field k which admits a geomet-
rically integral variety V/k of positive dimension with only finitely many
k-rational points cannot be PAC: apply the definition to the complement
of the set of rational points! In particular a finite field is not PAC.

Remark 4.1.1: Since every geometrically integral variety of positive dimen-
sion over an infinite field contains a geometrically integral curve [FA, Cor.
10.5.3], it suffices to verify the PAC condition on geometrically integral
curves.
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Example 4.1.2: All algebraically and separably closed fields are PAC. An
infinite algebraic extension of a finite field is PAC. A nonprincipal ultra-
product of finite fields is PAC. Certain large algebraic extensions of Q are
PAC. Any algebraic extension of a PAC field is PAC.

A field k has property I1 if every geometrically irreducible variety over
k has a k-rational zero-cycle of degree one. Again, it suffices to check this
for curves.

Example 4.1.3: Any PAC field is I1. A theorem of F.K. Schmidt [Sc] implies
that every geometrically integral curve over a finite field F has a zero-
cycle of degree 1. Applying the above remark about curves lying on higher
dimensional varieties to the maximal pro-p and maximal pro-q extensions
of F for primes p 6= q, one sees that F is I1.

Example 4.1.4: Geyer and Jarden define a weakly PAC field to be a field
k such that for every geometrically integral variety V such that V/k is
birational either to projective space (“Type 0”) or to an abelian variety
(“Type 1”) already has a K-rational point. Evidently weakly PAC implies
WC(0), so the following result gives many examples of WC(0) fields:

Proposition 25. (Geyer-Jarden [GeJa, Lemma 2.5]) For any countable
field k0, there exists a countable extension field k with the following prop-
erties:
(i) k is weakly PAC.
(ii) For every smooth curve C/k0 of genus at least 2, C(k) = C(k0).

4.2. Two implications.
It is well known to the experts that the property I1 implies the property

Br(0). In this section we will factor this implication through the property
WC(0).

Proposition 26. Let k be a I1 field, and let G/k be a connected commu-
tative algebraic group. Then H1(k,G) = 0. In particular, k is WC(0).

Proof. The elements of H1(k,G) correspond to torsors X under the group
G, and as in the case of WC-groups, the period of X – i.e., its order in
the torsion group H1(k,G) – divides its index, which is equal to the least
positive degree of a zero-cycle on X. The result follows immediately. �

Remark 4.2.1: It seems to be unknown whether the converse holds, nor even
whether all of the WC(0)-fields constructed by Geyer-Jarden have the I1
property.

Theorem 27. A perfect WC(0) field k has the property Br(0).

Proof. Step 0: It is enough to show that for any finite extension k′/k and
any prime number `, Br(k′)[`] = 0. However, by our hypotheses are stable
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under finite base change, so we may as well assume k′ = k. Further, let
p ≥ 0 be the characteristic of k. In case p > 0, the assumed perfection of k
implies that Br(k)[p] = 0 [CG, §II.3.1], and hence Br(k′)[p] = 0. Thus we
may assume that ` is different from the characteristic of k.

Step 1: We recall the following celebrated theorem of Merkurjev-Suslin:
Let k be a field of characteristic p ≥ 0 and n is a positive integer indivisible
by p. If k contains the nth roots of unity, then Br(k)[n] is generated by the
order n norm-residue symbols 〈a, b〉n as a, b run though k×/k×n [MeSu].

Step 2: We recall a consequence of the theory of the period-index ob-
struction map ∆: let ` be a prime number, M a field of characteristic
not equal to `, and E/M an elliptic curve with full `-torsion rational over
M : #E(M)[`] = `2. (By the Galois-equivariance of the Weil pairing, this
implies that M contains the `th roots of unity.) Then H1(M,E[`]) ∼=
(M×/M×`)2, and for ` > 2, the map ∆ : H1(M,E[`]) → Br(M) is of
the form (a, b) 7→ 〈C1a,C2b〉` − 〈C1, C2〉` for suitable C1, C2 ∈ K×. (More
precise results are now known, but this weak version has the advantage
of treating ` = 2 and ` > 2 uniformly, so is useful for our present pur-
pose.) It follows that the image of ∆ contains every norm residue symbol,
and therefore, by Merkurjev-Suslin, the subgroup generated by the im-
age is all of Br(M)[`]. So, if for our particular elliptic curve E/M we have
H1(M,E)[`] = 0, it follows that Br(M)[`] = 0.

Step 3: If ` = 2, this strategy succeeds in a straightforward manner: over
every field k of characteristic different from 2, there exists an elliptic curve
with full 2-torsion, namely y2 = x(x − 1)(x − 2). So if every hyperelliptic
quartic curve over k has a rational point, every conic over k has a rational
point.

Step 4: If ` > 2, we need not have an elliptic curve E/k with full `-torsion,
since in particular we need not have the `th roots of unity rational over k. So
we employ a trick. Let E/k be any elliptic curve with complex multiplication
by any imaginary quadratic field. Let m = k(E[`]). Then [m : k] divides
either 2(`2−1) or 2(`−1)2, so in particular is prime to `. It follows that the
restriction map Br(k)[`]→ Br(m)[`] is injective, so it suffices to show that
Br(m)[`] = 0. By hypothesis we have H1(m,E)[`] = 0, so that applying
Step 2 we conclude that Br(m)[`] = 0 and hence Br(k)[`] = 0. �

Example 4.2.2: Br(0) does not imply WC(0). This goes back to work of Ogg
and Shafarevich: neither C(t) nor C((t)) is a WC(0) field. In fact, if A/C((t))
is a g-dimensional abelian variety with good reduction, then consideration
of the Kummer sequence

0→ A(k)/nA(k)→ H1(k,A[n])→ H1(k,A)[n]→ 0
swiftly yields H1(k,A) ∼= (Q/Z)2g.

Remark 4.2.3: By a restriction of scalars argument, the proof easily gives
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that for any ` prime to the characteristic of k, if Br(k)[`] 6= 0, then there
exists a principally polarized abelian variety A/k of dimension at most
2(`2 − 1) such that H1(k,A)[`] 6= 0.

Remark 4.2.4: It follows easily that weakly WC(0) implies Br(k)[`] = 0
for all sufficiently large primes `. Indeed, weakly WC(0) implies that there
exists a fixed prime `0 such that for all ` > `0 and all principally polarized
abelian varieties A/k we have H1(k,A)[`] = 0.

Remark 4.2.5: It seems likely that the result is true without the assump-
tion on the perfection of k. The characteristic p analogue of the Merkurjev-
Suslin theorem is the (much earlier and easier) theorem of Teichmüller: for
all r ≥ 1, Br(k)[pr] is generated by cyclic algebras [Te], [GiSz]. To make use
of this we need to know the explicit form of the period-index obstruction
map in the flat case, so we defer the issue to [WCV].

Example 4.2.6: Let F be a finite field. By elementary arguments involving
the zeta function, F.K. Schmidt showed that the index of any nice curve
over a finite field is 1. It follows from Remark 4.1.1 that finite fields are
I1. Using Proposition 26 and Theorem 27 we deduce two more famous
theorems: Lang’s theorem that a torsor under a connected, commutative
algebraic group has a rational point, and Wedderburn’s theorem that the
Brauer group of a finite field is trivial.

Next we recall the following theorem:

Theorem 28. (Steinberg, [St]) Let k be a perfect Br(0) field and G/k a
smooth, connected algebraic group. Then H1(k,G) = 0.

Corollary 29. If k is a perfect field such that H1(k,A) = 0 for all abelian
varieties A/k, then H1(k,G) = 0 for all connected algebraic groups G/k.

Proof. Recall that every connected algebraic group G over a perfect field
k admits a Chevalley decomposition [BLR, Ch. IX]: there is a (unique)
normal linear subgroup L of G such that G/L = A is an abelian variety.
The result now follows “by dévissage”, using the exact sequence of [CG, §
I.5.5, Prop. 38]. �

Finally, the proof of Theorem 27 leads naturally to the following question.

Question 1. Let k be a field. Characterize the set of all elements in the
Brauer group which arise as the obstruction associated to a k-rational divi-
sor class on some genus one curve C/k. Is it, for instance, the class of all
cyclic algebras?

Remark 4.2.7: It is also possible to ask the question on the level of central
simple algebras. The Severi-Brauer variety associated to a degree n ≥ 2
divisor class on a genus one curve C is a twisted form of Pn−1, and the
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corresponding central simple algebra has degree n − 1. The problem can
also be stated geometrically: find all Severi-Brauer varieties V/K such that
there exists a genus one curve C/K and a morphism C → V .
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