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Journal de Théorie des Nombres
de Bordeaux 22 (2010), 339-352

(Non)Automaticity of number theoretic functions

par Michael COONS

Résumé. Soit λ(n) la fonction de Liouville indiquant la parité
du nombre de facteurs dans la décomposition de n en facteurs
premiers. En combinant un théorème d’Allouche, Mendès France,
et Peyrière avec quelques résultats classiques de la théorie de la
distribution des nombres premiers, nous démontrons que la fonc-
tion λ(n) n’est pas k–automatique pour k > 2. Cela entraine que∑∞
n=1 λ(n)Xn ∈ Fp[[X]] est transcendant sur Fp(X) pour tous les

nombres premiers p > 2. Nous montrons (ou redémontrons) des
résultats semblables pour les fonctions numériques ϕ, µ, Ω, ω, ρ,
et autres fonctions.

Abstract. Denote by λ(n) Liouville’s function concerning the
parity of the number of prime divisors of n. Using a theorem of
Allouche, Mendès France, and Peyrière and many classical results
from the theory of the distribution of prime numbers, we prove
that λ(n) is not k–automatic for any k > 2. This yields that∑∞
n=1 λ(n)Xn ∈ Fp[[X]] is transcendental over Fp(X) for any

prime p > 2. Similar results are proven (or reproven) for many
common number–theoretic functions, including ϕ, µ, Ω, ω, ρ, and
others.

1. Introduction
In [7] it is shown that the series

(1.1)
∑
n≥1
f(n)Xn ∈ Z[[X]]

is not a rational function with coefficients in Z when f is taken to be any
of the number–theoretic functions

(1.2) ϕ, τ, σ, λ, µ, ω,Ω, p, or ρ.

Here ϕ(n), the Euler totient function, is the number of positive integers
m ≤ n with gcd(m,n) = 1, τ(n) is the number of positive integer divisors
of n, σ(n) is the sum of those divisors, ω(n) is the number of distinct
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prime divisors of n, Ω(n) is the number of total prime divisors of n, λ(n) =
(−1)Ω(n) is Liouville’s function, µ(n) is the Möbius function defined by

µ(n) =


1 if n = 1,
0 if k2|n for some k ≥ 2,
(−1)ω(n) if k2 - n for all k ≥ 2,

p(n) is the n–th prime number, and ρ(n) = 2ω(n) counts the number of
square–free positive divisors of n.

In the course of this investigation we will give (or give reference to)
results showing that the series

∑
n≥1 f(n)Xn ∈ Z[[X]] is transcendental

over Z(X), for all of the functions f in (1.2). In most cases, the stronger
result of transcendence of the series in Fp[[X]] over Fp(X) is shown. To get
at these stronger results we rely upon the idea of automaticity.

Let T = (t(n))n≥1 be a sequence with values from a finite set. Define the
k–kernel of T as the set

T(k) = {(t(kln+ r))n≥0 : l ≥ 0 and 0 ≤ r < kl}.
Given k ≥ 2, we say a sequence T is k–automatic if and only if the k–
kernel of T is finite. Connecting automaticity to transcendence, we have
the following theorem of Christol.

Theorem 1.1 (Christol [10]). Let Fp be a finite field and (un)n≥0 a se-
quence with values in Fp. Then, the sequence (un)n≥0 is p–automatic if and
only if the formal power series

∑
n≥0 unX

n is algebraic over Fp(X).

Since any algebraic relation in Fp(X) is an algebraic relation in Z(X),
we have

Lemma 1.1. Let p be a prime. If a series F (X) ∈ Fp[[X]] is transcendental
over Fp(X) then F (X) ∈ Z[[X]] is transcendental over Z(X).

Between Allouche [3] and Yazdani [26] we have that for any prime p, the
series (1.1) is transcendental over Fp(X) (and so over Z(X) by the lemma)
for f = ϕ, τk, σk, and µ. Recall that
τk(n) := #{(a1, a2, . . . , ak) : a1a2 · · · ak = n, ai ∈ N for i = 1, . . . , k}

and σk(n) is the sum of the kth powers of the divisors of n (note that
τ2(n) = τ(n) and σ1(n) = σ(n)). Borwein and Coons [8] have recently
shown that the series (1.1) is transcendental over Z(X) for any completely
multiplicative function f : N → {−1, 1} that is not identically 1; this in-
cludes f = λ. We summarize in the following two theorems.

Theorem 1.2 (Allouche [3], Yazdani [26]). The series (1.1) is transcen-
dental over Fp(X) for f = (g mod v) with g = ϕ, τm, σm, and µ where
m ≥ 1 and v ≥ 2.
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Theorem 1.3 (Borwein and Coons [8]). The series (1.1) is transcenden-
tal over Z(X) for any nontrivial completely multiplicative function taking
values in {−1, 1} (this includes f = λ).

In Section 2, answering a question of Yazdani [26], we give the main
result of this paper, the following improvement of Theorem 1.3, along with
many related results.

Theorem 1.4. Liouville’s function, λ, is not k–automatic for any k ≥ 2,
and hence

∑∞
n=1 λ(n)Xn ∈ Fp[[X]] is transcendental over Fp(X) for all

p > 2.

We can use Theorem 1.4 to prove the similar result for Ω(n). We also
use the following direct consequence of the definition of automaticity.

Remark 1.1. Let t : N → Y and Φ : Y → Z be mappings. If (t(n))n≥1 is
k–automatic for some k ≥ 2, then (Φ(t(n)))n≥1 is also k–automatic.

Note that the values of Ω(n) viewed modulo 2 satisfy

(Ω(n) mod 2) = 1− λ(n)
2
.

Using this relationship, Remark 1.1 and Theorem 1.4 give the following
corollary.

Corollary 1.1. The function (Ω(n) mod 2) is not 2–automatic; further-
more, the series

∑
n≥1 Ω(n)Xn is transcendental over both F2(X), and

Z(X).

Ritchie [21] showed that the characteristic function of the squares is not
2–automatic. Combining this result with Remark 1.1 gives a nice corollary
regarding τ(n).

Corollary 1.2. The sequence (τ(n) mod 2) is not 2–automatic; hence the
series

∑
n≥1 τ(n)Xn is transcendental over both F2(X) and Z(X).

Proof. The function τ(n) taken modulo 2 is the characteristic function of
the squares. �

One of the nicest results in this area is that of Hartmanis and Shank on
the non–automaticity of the characteristic function of the primes.

Theorem 1.5 (Hartmanis and Shank [16]). The characteristic function of
the primes, χP , is not k–automatic for any k ≥ 2.

In Section 2, we give different (short and analytic–based) proofs of The-
orem 1.5, as well as its extension to all prime powers, and Corollary 1.1.
Many other functions are also considered in this section, such as ρ. As an-
other point of interest, in Section 3, we address multiplicative functions
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which are unbounded using the generalization of k–automatic sequences to
k–regular sequences.

The differences in transcendence over Z(X) and Fp(X) are quite pro-
nounced. Theorem 1.3 gives transcendence over Z(X) to a very large class
of functions, many of which are k–automatic for some k ≥ 2 and hence
algebraic over rational functions over some finite field. For those (f(n))n≥0
that are automatic, using the theory of Mahler [18, 20] one can give tran-
scendence results regarding the values of the series

∑∞
n=1 f(n)Xn ∈ Z[[X]].

For non–automatic sequences almost no progress has been made. Indeed,
it is widely believed that the number

∑∞
n=1 λ(n)2−n is transcendental over

Q, and more generally we believe the following conjecture to hold, though
any hope of progress is well disguised.

Conjecture 1.1. Let f : N→ {−1, 1} be a completely multiplicative func-
tion for which f(p) = −1 for at least one prime p. Then the number∑∞
n=1 f(n)2−n is transcendental over Q.

Remark 1.2. As some support for this conjecture, we may focus on those
sequences here which are automatic. Since all of the numbers described in
Conjecture 1.1 are irrational (see [8]), by a very deep theorem of Adam-
czewski and Bugeaud [1], if for f as in Conjecture 1.1, (f(n))n≥1 is k–
automatic for some k ≥ 2, then the number

∑∞
n=1 f(n)2−n is transcendental

over Q.

2. Dirichlet series and (non)automaticity
We rely heavily a theorem of Allouche, Mendès France, and Peyière [5],

and also on the details of its proof. Before proceeding to this theorem,
we need some additional properties of k–automatic sequences (see [5] for
details).

Let k ≥ 2 and (u(n))n≥1 be a k–automatic sequence with values in C.
Then there exist an integer t ≥ 1 and a sequence (Un)n≥1 with values
in Ct (which we denote as a column vector) as well as k t × t matrices
A1, A2, . . . , Ak, with the property that each row of each Ai has exactly one
entry equal to 1 and the rest equal to 0 (The fact that these are 1s and
0s comes from the finiteness of the k–kernel of (u(n))n≥1), such that the
first component of the vector (Un)n≥1 is the sequence (un)n≥1 and for each
i = 1, 2, . . . , k, and for all n ≥ 1, we have

Ukn+i = AiUn.

Theorem 2.1 (Allouche, Mendès France, and Peyière, [5]). Let k ≥ 2 be
an integer and let (un)n≥0 be a k–automatic sequence with values in C.
Then the Dirichlet series

∑
n≥1 unn

−s is the first component of a Dirichlet
vector (i.e., a vector of Dirichlet series) G(s), where G has an analytic
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continuation to a meromorphic function on the whole complex plane, whose
poles (if any) are located on a finite number of left semi–lattices.

Proof. We will follow the proof in [5], but with some slight modifications.
Define a Dirichlet vector G(s) for <s > 1 by

G(s) =
∞∑
n=1

Un
ns
.

Since Ukn+j = AjUn, we have

G(s) =
k−1∑
j=1

∞∑
n=1

AjUn
(kn+ j)s

+
∞∑
n=1

AkUn
(kn)s

.

Writing I as the t× t identity matrix, we have

(I − k−sAk)G(s) =
k−1∑
j=1

∞∑
n=1

AjUn
(kn+ j)s

=
k∑
j=1
Aj

∞∑
n=1
k−sn−sUn

(
1 + j
kn

)−s

=
k∑
j=1
Aj

∞∑
m=0

(
s+m− 1
m

)
(−j)mG(s+m)

ks+m
,

and so

(I − k−s(A0 +A1 + · · ·+Ak))G(s)

=
k∑
j=1
Aj

∞∑
m=1

(
s+m− 1
m

)
(−j)mG(s+m)

ds+m
.

Denote A := k−1∑k
j=1Aj and byM(X) the transpose of the comatrix of

(A−XI). Multiplying the preceding equality byM(ks−1), we have

(2.1) det(A− ks−1I)G(s)

= −M(ks−1)
k∑
j=1
Aj

∞∑
m=1

(
s+m− 1
m

)
(−j)mG(s+m)

ks+m
.

For a given s ∈ C, G(s + m) is bounded for m large enough, so that
the right–hand side of (2.1) converges for <s > 0, and thus this gives a
meromorphic continuation to <s ∈ (0, 1] with possible poles at points s
for which ks−1 is an eigenvalue of A. If <s ∈ (−1, 0], the right-hand side
of (2.1) converges with the possible exception of those s for which ks is
an eigenvalue of A, and so gives a meromorphic continuation of G to this
region with possible poles at points s for which either ks−1 or ks is an
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eigenvalue of A. Continuing this process gives an analytic continuation of
G to a meromorphic function on all of C with possible poles at points

s = logα
log k

+ 2πi
log k
m− l + 1,

where α is an eigenvalue of A, m ∈ Z, l ∈ N and log is a branch of the
complex logarithm. �

Remark 2.1. A one–dimensional version of Theorem 2.1 for the Thue–
Morse Dirichlet series was given by Allouche and Cohen [4]. It is also worth
noting that such an infinite functional equation is classical for ζ(s), the Rie-
mann zeta function, though it is much less deep than the usual functional
equation for ζ(s).

The beauty of the above proof is in the details, which is why we have
chosen to reproduce it here. Note that the possible poles are explicitly
given, as is the analytic continuation. This leads to a few nice classifications
regarding Dirichlet series.

Proposition 2.1. If the Dirichlet series
∑
n≥1 f(n)n−s is not meromor-

phically continuable to the whole complex plane then (f(n))n≥1 is not k–
automatic for any k ≥ 2.

Our first application of this is a new proof of the well–known result
of Hartmanis and Shank about the non–automaticity of the characteristic
function of the primes.

Proof of Theorem 1.5. In 1920, Landau and Walfisz [17] proved that the
Dirichlet series P (s) :=

∑
p p
−s is not continuable past the line <s = 0.

This is a consequence of the identity

P (s) =
∑
n≥1

µ(n)
n

log ζ(ns).

Since ζ(s) has a pole at s = 1, this relationship shows that s = 1/n is a
singular point for all square–free positive integers n. This sequence limits
to s = 0. Indeed, all points on the line <s = 0 are limit points of the poles
of P (s) (see [24, pages 215–216] for details) so that the line <s = 0 is a
natural boundary for P (s). �

Minsky and Papert [19] were the first to address this question, showing
that the characteristic function of the primes was not 2–automatic. Hart-
manis and Shank [16] gave the complete result. Similar to our proof of
Theorem 1.5, denoting by

χΠ(n) :=
{

1 if n is a prime power
0 otherwise,
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and using the relationship

Π(s) :=
∑
n≥1

χΠ(n)
ns

=
∑
k≥1

∑
n≥1

µ(n)
n

log ζ(kns),

we have the corresponding result for prime powers.

Proposition 2.2. The sequence (χΠ(n))n≥1 is not k–automatic for any
k ≥ 2.

Using Remark 1.1 we have a result regarding ρ.

Proposition 2.3. Define the function r(n) by 2 · r(n) = ρ(n). The se-
quence (r(n) mod 2) is not 2–automatic; hence

∑
n≥1 ρ(n)Xn is transcen-

dental over Z(X).

Proof. This follows from the the fact that (r(n) mod 2) = χΠ(n) and an
application of Proposition 2.2. �

As alluded to, the proof of Theorem 2.1 reveals much in the way of
details. Indeed, due to the explicit determination of the poles, we can can
provide a very useful classification, but first, a definition.

Definition 2.1. Denote by R(a, b;T ) the rectangular subset of C defined
by <s ∈ [a, b] and =s ∈ [0, T ], by N∞(F (s), R(a, b;T )) the number of poles
of F (s) in R(a, b;T ), and by N0(F (s), R(a, b;T )) the number of zeros of
F (s) in R(a, b;T ).

Proposition 2.4. Let k ≥ 2, (f(n))n≥1 be a k–automatic sequence and let
F (s) denote the Dirichlet series with coefficients (f(n))n≥1. If a, b ∈ R with
a < b, then N∞(F (s), R(a, b;T )) = O(T ).

Hence, if G(s) =
∑
n≥1 g(n)n−s (<s > α for some α ∈ R) is meromor-

phically continuable to a region containing a rectangle R(a, b, T ) for which

lim
T→∞

1
T
N∞(F (s), R(a, b, T )) =∞,

then (g(n))n≥1 is not k–automatic for any k ≥ 2.

Proof. This is a direct consequence of the poles of F being located on a
finite number of left semi–lattices. �

From here on, we make systematic use of a classical result by von Man-
goldt.

Theorem 2.2 (von Mangoldt [25]). The number of zeros of ζ(s) in
R(0, 1;T ) is N0(ζ(s), R(0, 1;T )) � T log T .

As a consequence of von Mangoldt’s theorem, we have a new proof of
the following theorem of Allouche [2] (see also [3]).
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Theorem 2.3 (Allouche [2]). The sequence (µ(n))n≥1 is not k–automatic
for any k ≥ 2; and hence the series

∑
n≥1 µ(n)Xn is transcendental over

both Fp(X), for all primes p, and Z(X).

Proof. From the relationship∑
n≥1

µ(n)
ns

= 1
ζ(s)

(<s > 1),

for the result, we need only show that

lim
T→∞

1
T
N∞

( 1
ζ(s)
, R(0, 1 : T )

)
=∞.

This is given by Theorem 2.2. Application of Proposition 2.4 proves the
theorem. �

It is note–worthy that our proof for µ(n) (and the proof for |µ(n)| below)
does not use Cobham’s theorem (see [11]) on rational densities: if a sequence
is k–automatic for some k ≥ 2, then the density (provided it exists) of the
occurrence of any value of that sequence is rational.

In a similar fashion to the above results, using the extention to Dirich-
let L–functions of von Mangoldt’s theorem, we may generalize this result
further.

Lemma 2.1. We have N0(L(s, χ), R(0, 1;T )) � T log T .

Corollary 2.1. Let χ be a Dirichlet character. Then (µ(n)χ(n))n≥1 is not
k–automatic for any k ≥ 2.

Proof. This follows directly from the fact that the sequence (µ(n)χ(n))n≥1
is the sequence of coefficients of the series 1

L(s,χ) . Application of Lemma 2.1
and Proposition 2.4 gives the desired result. �

The proof of Theorem 1.4 rests on substantially more than the previous
results of this investigation; it requires both the Prime Number Theorem
(in the form below) as well as a very deep result of Selberg.

Theorem 2.4 (Hadamard [15], de la Vallée Poussin [13]). The Riemann
zeta function has no zeros on the line <s = 1.

Theorem 2.5 (Selberg [22]). A positive proportion of the zeros of the
Riemann zeta function lie on the line <s = 1

2 .

Proof of Theorem 1.4. We use the identity

L(s) :=
∑
n≥1

λ(n)
ns

= ζ(2s)
ζ(s)

(<s > 1).

Using this identity, the poles of L(s) are precisely the zeros of ζ(s) that are
not cancelled by the zeros of ζ(2s) as well as the pole of ζ(2s) at s = 1

2 .
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Selberg’s theorem gives a positive proportion of zeros of ζ(s) on the critical
line and the Prime Number Theorem tells us that there are no zeros on the
line <s = 1; thus by Theorem 2.2,

N∞

(
ζ(2s)
ζ(s)
, R

(1
2
,
1
2

;T
))
� T log T.

Application of Proposition 2.4 gives the result. �

Invoking a stronger form of Selberg’s theorem, we may include many
more number–theoretic functions in our investigation.
Theorem 2.6 (Conrey [12]). More than two–fifths of the zeros of the Rie-
mann zeta function lie on the critical line.

Conrey’s theorem gives the following corollary.
Corollary 2.2. Less than three–tenths of the zeros of the Riemann zeta
function lie on any line <s 6= 1

2 .
Proof. Recall that if ζ(s) = 0, then by the functional equation ζ(1−s) = 0.
The corollary then follows from the elementary observation that 2 · 3

10 + 2
5 =

1. �

Recall that for m ≥ 2

qm(n) =
{

0 if pm|n for any prime p
1 otherwise.

Hence q2(n) = |µ(n)|.
Theorem 2.7. For k ≥ 2, the functions qm(n) (m ≥ 2) are not k–
automatic; and hence

∑
n≥1 qm(n)Xn for each m ≥ 2 is transcendental

over both Fp(X), for all primes p, and Z(X).
Proof. Note the identities for <s > 1:∑

n≥1

qm(n)
ns

= ζ(s)
ζ(ms)

(m ≥ 2).

Our result relies on ζ(s)/ζ(ms) (for each m ≥ 2) having more than O(T )
poles in some rectangle. Corollary 2.2 gives

N∞

(
ζ(s)
ζ(ms)

, R

( 1
2m
,

1
2m

;T
))
� T log T.

Application of Proposition 2.4 finishes the proof. �

Note that the result for |µ(n)| is already given by that of µ(n) by simply
defining Φ to be the absolute value function and applying Remark 1.1.
Remark 2.2. All zeta quotient identities as well as the properties of the
Riemann zeta function that were used in this paper can be found in Titch-
marsh’s monograph [24].
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3. Dirichlet series and (non)regularity
Taking the definition from [6], we say that a sequence S := (s(n))n≥0

taking values in a Z–module R is a k–regular sequence (or just k–regular)
provided there exist a finite number of sequences over R, {(s1(n))n≥0, . . . ,
(ss(n))n≥0}, with the property that every sequence in the k–kernel of S
is a Z–linear combination of the si; that is, S is k–regular provided the
k–kernel of S is finitely generated (as opposed to being finite in the case of
k–automatic).

Using this definition, let k ≥ 2 and (s(n))n≥1 be a k–regular sequence
with values in C. Then similar to the automatic case, there exist an integer
t ≥ 1 and a sequence (Vn)n≥1 with values in Ct (which we denote as a
column vector) as well as k t×t matrices B1, B2, . . . , Bk with integer entries
(no longer just 1s and 0s as in the automatic case), such that the first
component of the vector (Vn)n≥1 is the sequence (vn)n≥1 and for each i =
1, 2, . . . , k, and for all n ≥ 1, we have

Vkn+i = BiVn.

These properties give the analogue of Theorem 2.1 to k–regular sequences.
(This result is alluded to in Remark 4 on page 365 of [5].)

Theorem 3.1. Let k ≥ 2 be an integer and let (vn)n≥0 be a k–regular
sequence with values in C. Then the Dirichlet series

∑
n≥1 vnn

−s is the first
component of a Dirichlet vector (i.e., a vector of Dirichlet series) G(s),
where G has an analytic continuation to a meromorphic function on the
whole complex plane, whose poles (if any) are located on a finite number of
left semi–lattices.

The proof of this theorem is exactly that of Theorem 2.1 with Vi and Bi
substituted for Ui and Ai, respectively, for each i.

We now have the same useful corollaries that we had for k–automatic
sequences.

Corollary 3.1. Let k ≥ 2. The following properties hold:
(i) If the Dirichlet series

∑
n≥1 f(n)n−s is not meromorphically con-

tinuable to the whole complex plane then (f(n))n≥1 is not k–regular.
(ii) If G(s) =

∑
n≥1 g(n)n−s (<s > α for some α ∈ R) is meromorphi-

cally continuable to a region containing a rectangle R(a, b, T ) for
which

lim
T→∞

1
T
N∞(G(s), R(a, b, T )) =∞,

then (g(n))n≥1 is not k–regular.

Theorem 3.2. The function ϕ(n) is not k–regular for any k ≥ 2.
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Proof. From the relationship∑
n≥1

ϕ(n)
ns

= ζ(s− 1)
ζ(s)

(<s > 2),

and the lack of zeros of ζ(s − 1) in the region 0 ≤ <s ≤ 1 as given by the
Prime Number Theorem, we need only show that

lim
T→∞

1
T
N∞

( 1
ζ(s)
, R(0, 1 : T )

)
=∞.

This is given by Theorem 2.2. Application of the Corollary 3.1 proves the
theorem. �

Theorem 3.3. For k ≥ 2, the functions ρ(n), τ(n2) and τ2(n) are not
k–regular.

Proof. Note the identities for <s > 1:∑
n≥1

ρ(n)
ns

= ζ
2(s)
ζ(2s)

,
∑
n≥1

τ(n2)
ns

= ζ
3(s)
ζ(2s)

,
∑
n≥1

τ2(n)
ns

= ζ
4(s)
ζ(2s)

.

Our result relies on ζ(s)/ζ(2s) having more than O(T ) poles in some rec-
tangle. This follows directly from the proof of Theorem 2.7. �

Theorem 3.4. The functions ω(n) and Ω(n) are not k–regular for any
k ≥ 2.

Proof. This follows from the proof of Theorem 1.5 and the identities∑
n≥1

ω(n)
ns

= ζ(s)
∑
k≥1

µ(k)
k

log ζ(ks), and
∑
n≥1

Ω(n)
ns

= ζ(s)
∑
k≥1

ϕ(k)
k

log ζ(ks)

and the added stipulation that there are no zeros of ζ(s) on the line <s = 0;
this is provided for by the Prime Number Theorem and the symmetry of
zeros of the Riemann zeta function about the critical line as given by the
functional equation for ζ(s). �

Some of these results can be found from another direction using our
knowledge of their non–automaticity and the following theorem (see Chap-
ter 16 of [6] for details).

Theorem 3.5 (Allouche and Shallit [6]). If the integer sequence (f(n))n≥0
is k–regular, then for all integers m ≥ 1, the sequence (f(n) mod m)n≥0 is
k–automatic.

Thus if there exists an m ≥ 1 for which (f(n) mod m)n≥0 is not k–
automatic, then (f(n))n≥0 is not k–regular. Hence the results of the previ-
ous sections give non–regularity results for each of ω, Ω, τ , and ρ. It is also
worth noting that a sequence is k-regular and takes on only finitely many
values if and only if it is k–automatic (again, see [6]). This provides a nice
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relationship for non–regularity results for characteristic functions like qm
(m ≥ 2), χP , and χΠ.

4. Concluding remarks
There is much to do in this area, and it seems that the available methods

and results leave many ideas ripe for development.
Concerning transcendence of power series for these functions, one need

not dig so deeply to give transcendence results over Z(X) or Q(X) using
theorems like the following.

Theorem 4.1 (Fatou [14]). If F (X) =
∑
n≥1 f(n)Xn ∈ Z[[X]] converges

inside the unit disk, then either F (X) ∈ Q(X) or F (X) is transcendental
over Q(X).

Carlson [9], proving a conjecture of Pólya, added to Fatou’s theorem.

Theorem 4.2 (Carlson [9]). A series F (X) =
∑
n≥1 f(n)Xn ∈ Z[[X]] is

either rational or it admits the unit circle as a natural boundary.

Recall that if f(n) = O(nd) for some d, the series F (X) =
∑
n≥1 f(n)Xn

∈ Z[[X]] has radius of convergence 1, so that by Carlson’s theorem, such
a series is transcendental over Q(X). This gives very quick transcendence
results for series F (X) with f(n) = ϕ(n), τ(n2), τ2(n), ω(n), and Ω(n).
Noting that by the Prime Number Theorem, p(n) ∼ n logn = O(n2), we
have the following result for the nth prime number.

Proposition 4.1. The series
∑
n≥1 p(n)Xn ∈ Z[[X]] is transcendental over

Q(X), and hence also over Z(X).

The ideas of k-regularity may be exploitable to give transcendence re-
sults using the following theorem of Allouche and Shallit from [6] and a
combination of the above theorems in this section, though it seems at this
point that a case by case analysis would be necessary, which we believe
would not make for easy reading.

Theorem 4.3 (Allouche and Shallit [6]). Let K be an algebraically closed
field (e.g., C). Let (s(n))n≥0 be a sequence with values in K. Let S(X) =∑
n≥0 s(n)Xn be a formal power series in K[[X]]. Assume that S represents

a rational function of X. Then (s(n))n≥0 is k–regular if and only if the poles
of S are roots of unity.

One may be able to form this into more rigid and inclusive theorems and
as such, this seems a worthy endeavor.

Concerning more specific functions, the non–automaticity of λ(n) (and
similarly µ(n)) is somewhat weak compared to the expected properties of
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the correlation. One expects that for any A,B, a, b ∈ N with aB 6= Ab∣∣∣∣∣∣
∑
n≤x
λ(An+B)λ(an+ b)

∣∣∣∣∣∣ = o(x),

so that not only should the k–kernel be infinite (as shown in this paper),
but no two sequences of λ–values on distinct arithmetic progressions (which
are not multiples of each other) should be equal. In this sense, the Liouville
function should be a sort of “worst case scenario” for non–automaticity
concerning multiplicative functions. To make this more formal, consider
the idea of diversity as introduced by Shallit (see Chapter 5 of [23]).

A sequence is said to be k–diverse provided every sequence in the k–
kernel is distinct. Since for a completely multiplicative function f , f(kn) =
f(k)f(n) for all k, if there is a k > 1 for which f(k) = 1, then f is identical
on the two arithmetic progressions kn and n, and hence the sequence of
values of such an f cannot be k–diverse; there is such a k for λ. This case
can be excluded. The following definition is taken from [23].

Definition 4.1. A sequence (s(i))i≥0 is weakly k–diverse if the ϕ(k) sub-
sequences {(s(ki + a))i≥0 : gcd(a, k) = 1, 1 ≤ a < k} are all distinct. A
sequence is weakly diverse if it is weakly k–diverse for all k ≥ 2.

Using this language, we finish with the following conjecture.

Conjecture 4.1. The sequence (λ(n))n≥1 is weakly diverse.
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