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On the maximal unramified pro-2-extension over
the cyclotomic Z2-extension of an imaginary

quadratic field

par Yasushi MIZUSAWA

Résumé. Pour k quadratique imaginaire, nous étudions le groupe
de Galois G(k∞) de la pro-2-extension non ramifiée maximale au-
dessus de la Z2-extension cyclotomique k∞ de k.Nous déterminons
des familles de tels corps imaginaires k pour lesquels G(k∞) est un
pro-2-groupe métabélien et en donnons une présentation explicite ;
nous précisons de même des familles pour lesquelles G(k∞) est un
pro-2-groupe métacyclique non abélien. Nous calculons enfin en
termes de Théorie d’Iwasawa les groupes de Galois de 2-tours de
corps de classes de certaines 2-extensions cyclotomiques.

Abstract. For the cyclotomic Z2-extension k∞ of an imaginary
quadratic field k, we consider the Galois group G(k∞) of the max-
imal unramified pro-2-extension over k∞. In this paper, we give
some families of k for which G(k∞) is a metabelian pro-2-group
with the explicit presentation, and determine the case that G(k∞)
becomes a nonabelian metacyclic pro-2-group. We also calculate
Iwasawa theoretically the Galois groups of 2-class field towers of
certain cyclotomic 2-extensions.

1. Introduction
Let p be a fixed prime number. For an algebraic number field k, we denote

by G(k) the Galois group of the maximal unramified pro-p-extension L∞(k)
over k. The sequence of the fixed fields corresponding to the commutator
series of G(k) is a classic object called p-class field tower when k is a finite
extension of the field Q of rational numbers. In this case, the group G(k)
can be infinite by the criteria originated from Golod-Shafarevich [13], while
various finite p-groups also appear as G(k), especially when p = 2 and k is
an imaginary quadratic field ([3] [4] [6] etc.).

The main object of this paper is the Galois group G(k∞) for the cyclo-
tomic Zp-extension k∞ of a finite extension k of Q, where Zp denotes (the
additive group of) the ring of p-adic integers. From the nonabelian Iwasawa
theoretical view seen in Ozaki [30], Sharifi [33], Wingberg [36] and [10] [11]
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[12] etc., it is expected that the Galois group G(k∞) would give good in-
formation on the structure of G(k•) (e.g., either finite or not) for finite
extensions k• of k contained in k∞. However, it is still rather difficult to
obtain the explicit presentation of nonabelian G(k∞) in general, while the
imaginary quadratic fields k with abelian G(k∞) are classified (cf. [27] [28]).

Here, we note that G(k∞) is allowed to have infinite p-adic analytic
quotient while it is conjectured that G(k) has no such quotient for finite
extensions k of Q as a part of Fontaine-Mazur conjecture (cf. [5] [36] etc.).
Then a question arises: When does the Galois group G(k∞) itself become a
p-adic analytic pro-p-group, and what kind of such groups appear? In this
paper, we treat the case that p = 2, and give some families of imaginary
quadratic fields k for which G(k∞) becomes a metabelian 2-adic analytic
pro-2-group with the explicit presentation.

Let us recall some knowledge on the Galois groups G(k) and G(k∞),
and define some notations. For a finite extension k of Q, it is well known
that G(k) is a finitely presented pro-p-group satisfying the property called
FAb that any subgroup of finite index has finite abelianization (cf. [5] etc.).
The abelianization of G(k), which is regarded as the Galois group of the
maximal unramified abelian p-extension L(k) (called Hilbert p-class field)
over k, is isomorphic to the p-Sylow subgroup A(k) of the ideal class group
of k via Artin map.

For the cyclotomic Zp-extension k∞ of k, the abelianization of G(k∞)
is also identified with the Galois group X(k∞) of the maximal unramified
abelian pro-p-extension L(k∞) over k∞, which we call Iwasawa module of
k∞. The Iwasawa module X(k∞) is isomorphic via Artin map to the pro-
jective limit lim←−A(k•) with respect to the norm mappings. It is conjectured
that G(k∞) is finitely generated as a pro-p-group, and it is true when k is
an abelian extension of Q by the theorem of Ferrero-Washington [9]. Fur-
ther, as a consequence of Greenberg’s conjecture [14], it is conjectured that
G(k∞) is a FAb pro-p-group if k is a totally real number field (cf., e.g., [26]).

Notations. Throughout the following sections, always p = 2, and the
above notations are used. For each integer n ≥ 0, we define algebraic inte-
gers πn+1 = 2 +√πn with π0 = 2, inductively. For any finite extension k of
Q, we write kn = k(πn). The cyclotomic Z2-extension k∞ of k is obtained
by adding all πn to the field k. Let D(k) be the subgroup of A(k) generated
by ideal classes represented by some odd power of prime ideals of k lying
above 2, and E(k) the unit group of the ring of algebraic integers in k.

For closed subgroups G, H of a pro-2-group, we denote by [G,H] the
closed subgroup generated by the commutators [g, h] = g−1h−1gh of g ∈
G and h ∈ H, and G2 denotes the closed subgroup generated by square
elements g2 of g ∈ G. The lower central series of G is defined by G1 = G
and Gi = [Gi−1, G] for i ≥ 2 inductively, and the order of G is denoted by
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|G|. For a G-module A, we denote by AG the submodule generated by all
G-invariant elements.

2. Main results
Let k = Q(

√
−m) be an imaginary quadratic field with a positive square-

free integer m, and Γ the Galois group of the cyclotomic Z2-extension k∞
of k. Note that πn = 2 + 2 cos(2π/2n+2) generates the principal prime ideal
(πn) of Qn = Q(πn) above 2. Then the field kn = k(cos(2π/2n+2)) is a cyclic
extension of degree 2n over k, which is contained in k∞. Since k1 = k(

√
2),

we may assume that m is odd in our purpose.
Let γ be the topological generator of Γ which sends cos(2π/2n+2) to

cos(5·2π/2n+2) for all n ≥ 0, and take an extension γ̃ ∈ Gal(L∞(k∞)/L(k))
of γ, which is a generator of the inertia subgroup of some place above 2
in Gal(L∞(k∞)/k). By using this, we define the action of Γ on G(k∞) =
Gal(L∞(k∞)/k∞) by the left conjugation γg = γ̃gγ̃−1 for g ∈ G(k∞). Then
the Galois group G(k∞) becomes a pro-2-Γ operator group. The action of
Γ on the Iwasawa module X(k∞) is induced from this action.

The complete group ring Z2[[Γ ]] can be identified with the ring Λ =
Z2[[T ]] of formal power series via γ ↔ 1 + T . Then the Iwasawa mod-
ule X(k∞) becomes a finitely generated torsion Λ-module isomorphic to
lim←−A(kn) as Λ-modules. The characteristic polynomial

P (T ) = det
(

(1 + t)id− γ
∣∣X(k∞)⊗Z2 Q2

)∣∣
t=T

which we call Iwasawa polynomial associated to X(k∞), is defined as a
distinguished polynomial in Λ, where Q2 is the algebraic closure of the field
of 2-adic numbers. The degree λ(k∞/k) of P (T ), which is the Z2-rank of
X(k∞), coincides with the λ-invariant which appears in Iwasawa’s formula
for |A(kn)|. In the present case, the structure of X(k∞) as a Z2-module,
including λ(k∞/k), can be completely calculated from m by the results of
Ferrero [8] and Kida [19].

Studying the Galois group G(k∞) with the action of Γ is equivalent to
consider the special quotient Gal(L∞(k∞)/k) of the Galois group GS(k) of
the maximal pro-2-extension of k unramified outside 2. The Galois group
GS(k) has been well studied, while the quotient Gal(L∞(k∞)/k) and the
subquotientG(k∞) are still rather uncertain. The main results of this paper,
which determine the structure of G(k∞) in some special cases, are the
following two theorems.

The first one treats the case that G(k∞) becomes a metacyclic pro-2-
group.
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Theorem 2.1. Let k∞ be the cyclotomic Z2-extension of an imaginary
quadratic field k = Q(

√
−m) with a positive squarefree odd integer m. If

m ≡ 1 (mod 4) and the Iwasawa λ-invariant λ(k∞/k) = 1, the Galois group
G(k∞) of the maximal unramified pro-2-extension of k∞ has a presentation

G(k∞) =
〈
a, b
∣∣ [a, b] = a−2, a2|X(Q∞(

√
m))| = 1

〉pro-2

as a pro-2-group, where X(Q∞(
√
m)) is the Iwasawa module of the cy-

clotomic Z2-extension of the real quadratic field Q(
√
m), which is a finite

cyclic 2-group.

Remark. The Galois group G(k∞) of Theorem 2.1 has an infinite open
normal cyclic subgroup which is generated by b2. Then G(k∞) is a 2-adic
analytic pro-2-group of dimension 1 (cf. [7] Corollary 8.34 etc.). The finite-
ness of X(Q∞(

√
m)) is known as a result of Ozaki-Taya [31], and the presen-

tation of G(k) is described by Lemmermeyer [23]. Further, the generators
a and b can be chosen such that γa = a and γb = a2•b1−P (0), where 2• is
an uncertain power of 2 which can be determined in a certain special case.
In §3, we will prove Theorem 2.1, and determine all m for which G(k∞) is
nonabelian metacyclic.

The second result gives the case that G(k∞) becomes a certain nonmeta-
cyclic metabelian pro-2-group.

Theorem 2.2. Let k = Q(
√
−q1q2) be an imaginary quadratic field with

prime numbers q1 ≡ 3 (mod 8) and q2 ≡ 7 (mod 16), and k∞ be the cyclo-
tomic Z2-extension of k with the Galois group Γ . Then the Galois group
G(k∞) of the maximal unramified pro-2-extension of k∞ has a presentation

G(k∞) =
〈
a, b, c

∣∣ [a, b] = a−2, [b, c] = a2, [a, c] = 1
〉pro-2

with the action of the topological generator γ of Γ (defined above):
γa = a , γb = bc , γc = aC1b−C0c1−C1 ,

where the 2-adic integers C1 and C0 are the coefficients of the Iwasawa
polynomial

P (T ) = T 2 + C1T + C0

associated to the Iwasawa module of k∞.

Remark. The Galois group G(k∞) of Theorem 2.2 has an abelian maximal
subgroup generated by a, b2, c, which is a free Z2-module of rank 3. Then
G(k∞) is a 2-adic analytic pro-2-group of dimension 3 (cf. [7] Corollary 8.34
etc.). Especially, G(k∞) is a Poincaré pro-2-group which has cohomolog-
ical dimension cd2(G(k∞)) = 3 and Euler characteristic χ(G(k∞)) = 0
(cf. [22] [32]). It is known that G(k) is an abelian 2-group of type (2, 2•)
by [23]. We will prove Theorem 2.2 in §4, and consider the Galois groups
G(kn) of the 2-class field towers of kn.
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By Iwasawa Main Conjecture (Theorem of Mazur-Wiles [25], Wiles [35])
and Iwasawa’s construction of p-adic L-functions (cf., e.g., [34] § 7.2), there
exists a power series Φ(T ) ∈ Λ constructed from Stickelberger elements,
such that Φ(T ) and P (T ) generate the same principal ideal of Λ and
L2(s, ψ) = 2Φ(5s − 1) is the 2-adic L-function for the even Dirichlet char-
acter ψ associated to the real quadratic field Q(

√
m) (m = q1q2 in Theorem

2.2). Then the coefficients of Iwasawa polynomial P (T ) are approximately
computable in our cases. For the method of computation, we refer to [16]
etc.

3. On metacyclic cases
3.1. Preliminaries. Let k = Q(

√
−m) be an imaginary quadratic field

with a positive squarefree odd integer m. By Theorem 1 of [19], the
Z2-torsion submodule TorZ2X(k∞) of the Iwasawa module X(k∞) is non-
trivial if and only if 1 6= m ≡ 1 (mod 4). In this case, Theorem 5 of [8] says
that

TorZ2X(k∞) ' lim←−D(kn) ' Z/2Z

via Artin map, and TorZ2X(k∞) coincides with the decomposition subgroup
of any place above 2 in X(k∞). The Z2-rank λ(k∞/k) can be also calculated
by [8] and [19] from the prime factors of m.

Especially, the following three conditions • are equivalent:
• m ≡ 1 (mod 4) and λ(k∞/k) = 1.
• X(k∞) ' (Z/2Z)⊕ Z2 as Z2-modules.
• m satisfies one of the following:

◦ m = ` with a prime number ` ≡ 9 (mod 16)
◦ m = p1p2 with two distinct prime numbers; p1≡ p2 ≡ 5 (mod 8)
◦ m = q1q2 with two distinct prime numbers; q1 ≡ q2 ≡ 3 (mod 8)

If one of them is satisfied, A(kn) is an abelian group of type (2, 2•) for
each sufficiently large n, and Theorem 2.1 says that G(kn) is a meta-
cyclic 2-group. On the other hand, various types of pro-2-groups appear as
G(k) for imaginary quadratic fields k with A(k) ' (2, 2•) (e.g., infinite [15],
metabelian [1] [3] [23], of derived length 3 [6], etc.).

In order to prove Theorem 2.1, we need the following which is essentially
the same as Proposition 7 of [2].

Lemma 3.1. Let G a pro-2-group of rank 2, and H a maximal subgroup
of G. Then G is abelian if and only if G2 = H2.

Proof. We can choose the generators a, b of G such that H is generated by
a, b2 and G2. Since

[a, b2] = [a, b]2[[a, b], b] ≡ 1 mod (G2)2G3 ,
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H/(G2)2G3 is an abelian group. If G is not abelian, G2/G3 is a nontriv-
ial cyclic 2-group generated by [a, b]G3, especially, G2/(G2)2G3 has order
2. Then G2 6= (G2)2G3 ⊃ H2. Since the “only if” part is obvious, this
completes the proof. �

3.2. Proof of Theorem 2.1. By the assumption, the shape of m is one
of the above “ ◦ ”. In each case, the field K = k(

√
−1) is an unramified

quadratic extension of k in which the prime ideal of k above 2 splits. The
maximal real subfield of the CM -field K is the real quadratic field K+ =
Q(
√
m). Note that K∞ is also unramified quadratic extension of k∞.

Let G = Gal(L2(k∞)/k∞) be the Galois group of the maximal unramified
metabelian pro-2-extension L2(k∞) over k∞, and H = Gal(L2(k∞)/K∞)
be the maximal subgroup of G associated to K∞. The pro-2-group G is
generated by two elements a, b such that a2 ∈ G2. Let N be the normal
closed subgroup of G generated by a and G2 with the fixed field L′(k∞).
Then G/N ' Z2 is generated by bN , and N/G2 ' lim←−D(kn). Since any
place of k∞ above 2 splits in K∞, i.e. K∞ ⊂ L′(k∞), the maximal subgroup
H/G2 of X(k∞) contains N/G2. Then H is generated by a, b2 and G2.

Lemma 3.2. H is a pro-2-group of rank 2.

Proof. Let ∆ = Gal(K∞/Q∞(
√
−1)), and put

En = E(Qn(
√
−1))/(E(Qn(

√
−1)) ∩N∆K×n )

for each n ≥ 0, where N∆ is the norm mapping from Kn to Qn(
√
−1). Note

that the number of prime ideals of Qn(
√
−1) which divide m is at most 4,

and that Kn is a quadratic extension of Qn(
√
−1) unramified outside m.

Since A(Qn(
√
−1)) is trivial, and the norm mappings En → E1 for each

n ≥ 1 and E1 → E0 are surjective, the genus formula (e.g. [8] Lemma 1) for
Kn over Qn(

√
−1) implies that

|A(Kn)/2A(Kn)| = |A(Kn)∆| ≤
23

|En|
≤ 23

|E1|
≤ 23

|E0|
.

Assume that m = `, and |E1| = 1. Then there exist some x, y ∈ Q1(
√
−1)×

such that 4√−1 = x2 − y2`. Since ` splits in Q1(
√
−1) completely, we may

regard x and y as `-adic numbers. By considering the `-adic values, we
know that x ∈ Z×` and y ∈ Z`. This implies that −1 ≡ x8 (mod `), i.e.
` ≡ 1 (mod 16), which is a contradiction. Therefore |E1| ≥ 2 if m = `.

In the case that m = p1p2, if we assume that |E0| = 1, then
√
−1 ≡

x2 (mod p1) with some p1-adic unit x ∈ Q(
√
−1)×, i.e. p1 ≡ 1 (mod 8),

similarly. This contradiction implies that |E0| ≥ 2 if m = p1p2.
Assume that |E1| = 1 in the remained case that m = q1q2, then 1+

√
2 ∈

N∆K
×
1 . By taking the norm from K×1 to Q(

√
−2,√q1q2)×, we obtain some

x, y ∈ Q(
√
−2)× satisfying −1 = x2 − y2q1q2. Since q1 splits in Q(

√
−2),
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those can be regarded as x ∈ Z×q1 and y ∈ Zq1 , then −1 ≡ x2 (mod q1). This
implies a contradiction q1 ≡ 1 (mod 4). Therefore |E1| ≥ 2 when m = q1q2.

By the above, it is known that A(Kn) has rank at most 2 for all n in
any cases. Since H/H2 ' lim←−A(Kn) and H/G2 ' (Z/2Z)⊕Z2, the rank of
H/H2 must be 2, i.e. H is a pro-2-group of rank 2. �

Note that the bracket operation [ , ] : Gi/Gi+1×G/G2 → Gi+1/Gi+2 is a
bilinear surjective morphism over Z2. Since G2/G3 is generated by [a, b]G3,
and

[a, b2] = [a, b]2[[a, b], b] ≡ [a, b]2 ≡ [a, b]2[[a, b], a] = [a2, b] ≡ 1 modG3 ,

H/G3 is an abelian group generated by aG3, b2G3 and [a, b]G3. By Lemma
3.2, the torsion subgroup of H/G3 which is generated by aG3 and [a, b]G3
must be cyclic, so that

a2 ≡ [a, b] modG3 .

Then
[[a, b], a] ≡ [a2, a] = 1 modG4 ,
[[a, b], b] ≡ [a2, b] = [a, b]2[[a, b], a] ≡ [a, b]2 modG4 .

This implies that G3 ⊂ G4(G2)2.
Let G = G/(G2)2, which is also a finitely generated pro-2-group. Then

the lower central series Gi = Gi(G2)2/(G2)2 makes a fundamental system of
closed neighborhoods of 1 ∈ G. Since G3 = G4, it becomes that G3 = {1},
i.e. G3 ⊂ (G2)2. By the induced surjective morphism G2/G3 → G2/(G2)2,
we know that the abelian group G2 is a cyclic pro-2-group generated by
[a, b].

Further, we know that G3 = (G2)2 and a2 = [a, b]u with some u ∈ Z×2 , so
that G2 is a cyclic pro-2-group generated by a2. Since N/G2 is generated
by aG2 and is the decomposition subgroup of G/G2 for any place lying
above 2, then N becomes a cyclic pro-2-group generated by a which is the
decomposition subgroup of G for any place of L2(k∞) lying above 2. From
the exact sequence

1→ N → G→ G/N → 1
which has the cyclic terms N (generated by a) and G/N ' Z2 (generated
by bN), we know that G ' N o (G/N) is a metacyclic pro-2-group.

Lemma 3.3. For each n ≥ 0, A(K+
n ) = D(K+

n ) is a cyclic 2-group.

Proof. Note that the number of prime ideals of Qn which ramify in K+
n

is at most 2. By the genus formula for the quadratic extension K+
n over

Qn, we know that A(K+
n ) is a cyclic 2-group. If A(K+

n ) is trivial, there is
nothing we have to show. Assume that A(K+

n ) is nontrivial.
Let F+ = F+

n be the unique unramified quadratic extension of K+
n ,

which is a (2, 2)-extension of Qn, and put F = F+(
√
−1). Note that any

prime ideal of K+
n above 2 is totally ramified in K∞. The field F∞ is an
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unramified (2, 2)-extension of k∞, i.e. the fixed field of G2G2. Since G2G2
does not contain N , any prime ideal of K∞ above 2 does not split in F∞.
Then any prime ideal of K+

n above 2 does not split in F+
n , i.e. in L(K+

n ).
This implies that A(K+

n ) = D(K+
n ). �

The Galois group Γ = Gal(k∞/k) can be identified with Gal(K∞/K)
and Gal(K+

∞/K
+). By Proposition 1 of [14] and Lemma 3.3, we know that

X(K+
∞) ' A(K+

n ) for all sufficiently large n.
For each n ≥ 0, the principal prime ideal (πn) of Qn does not ramify

in K+
n , so that the map ιn : A(K+

n ) → A(Kn) induced from the lifting of
ideals is injective by Theorem 1 of [24]. Note that lim←−D(Kn) ' N/H2 via
Artin map. Then D(Kn) is a cyclic 2-group for all n ≥ 0. Since the prime
ideals of K+

n above 2 ramify in Kn, the image of ιn is a subgroup of D(Kn)
of index 2. By taking the projective limit, the sequence

0→ X(K+
∞) ι∞→ lim←−D(Kn)→ Z/2Z→ 0

is exact, where ι∞ = lim←− ιn.
Assume that X(K+

∞) is trivial. In this case, since |N/G2| = 2, the natural
map N/H2 → N/G2 is an isomorphism, i.e. G2 = H2. By Lemma 3.1, we
know that G is abelian. This implies the claim of Theorem 2.1 in the case
that |X(K+

∞)| = 1.
On the other hand, we assume that X(K+

∞) is nontrivial. Then there ex-
ists a totally real number field F+ such that F+

n is an unramified quadratic
extension of K+

n for all sufficiently large n. (In fact, F+ = F+
n for some n.)

By Lemma 3.3, it becomes that A(F+
n ) = D(F+

n ) and |A(K+
n )| = 2|A(F+

n )|.
For the CM -field F = F+(

√
−1), the field F∞ is an unramified qua-

dratic extension of K∞, which is the fixed field of G2G2. One can see that
lim←−D(Fn) ' N2/(G2G2)2 via Artin map, then D(Fn) is a cyclic 2-group
for all n� 0. Assume that n is sufficiently large. Since (πn) is not a square
of an ideal in F+

n and the prime ideals of F+
n above 2 ramify in Fn, the in-

jective morphism A(F+
n )→ D(Fn) with cokernel of order 2 is induced from

the lifting of ideals by Theorem 1 of [24] similarly. By taking the projective
limit, we have the exact sequence:

0→ X(F+
∞)→ lim←−D(Fn)→ Z/2Z→ 0.

Here, we note that |X(K+
∞)| = 2|X(F+

∞)| is finite. By the above,

|N/(G2G2)2| = 2|N2/(G2G2)2| = 4|X(F+
∞)| = 2|X(K+

∞)| = |N/H2|.
Then the natural isomorphism N/(G2G2)2 → N/H2 induces that H2 =
(G2G2)2. By Lemma 3.1 and 3.2, H is abelian, i.e. L2(k∞) = L(K∞).

Whether |X(K+
∞)| = 1 or not, N ' lim←−D(Kn) via Artin map and which

is a finite cyclic 2-group of order 2|X(K+
∞)| generated by a. Therefore G

has a relation a2|X(K+
∞)| = 1, and Γ acts on a trivially.
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For each n ≥ 0, choose a prime ideal Pn of Kn which is lying above 2.
Then the unique prime ideal of kn lying above 2 splits into Pn and Pbn in
Kn. On the other hand, a prime ideal of Qn(

√
−1) lying above 2 is also

unique and principal, and also splits into Pn and Pbn in Kn. Therefore
PnP

b
n is a principal ideal of Kn for all n ≥ 0. This implies that b acts on

N ' lim←−D(Kn) as inverse, i.e. b−1ab = a−1. Then G has another relation
[a, b] = a−2.

Let F be a free pro-2-group generated by two letters a, b, and R the
closed normal subgroup generated by the conjugates of a2|X(K+

∞)|, a2[a, b].
By the above, the natural morphism F → G : a 7→ a, b 7→ b induces a
surjective morphism F/R→ G. Since the isomorphisms (F/R)2 = F2R/R '
G2 and F/F2R ' G/G2 are induced, we know that F/R ' G which gives a
presentation of G.

Since G2 ' G(k∞)2/(G(k∞)2)2 is a cyclic 2-group, the pro-2-group
G(k∞)2 is also cyclic. Then L2(k∞) = L∞(k∞), i.e. G = G(k∞). This
completes the proof of Theorem 2.1.

3.3. Remark on Γ -actions. Now, we shall see the action of Γ on G =
G(k∞). Since G/N ' X(k∞)/TorZ2X(k∞) ' Λ/(P (T )) and is generated
by bN , we have

1 ≡ P (T )b ≡ γb · b−1+P (0) modN .

Then there exist some 2•u ∈ Z2 with 1 ≤ 2• ∈ 2Z and u ∈ Z×2 such
that γb = (au)2•b1−P (0). By replacing a with au, we may assume that the
generators a, b in the presentation of G(k∞) of Theorem 2.1 are given with
the Γ -action:

γa = a , γb = a2•b1−P (0) .

Let Γ be identified with the cyclic closed subgroup of Gal(L∞(k∞)/k)
generated by γ̃. Then G/[Γ,G]G2 ' (G/G2)/T (G/G2) ' A(k) and

a2• ≡ bP (0) mod [Γ,G]G2 .

On the other hand, G/[Γ,G]N ' (G/N)/T (G/N) ' A(k)/D(k) '
Z2/P (0)Z2 and [Γ,G]N/[Γ,G]G2 ' D(k) ' Z/2Z. Therefore the above
congruence implies that 2• = 1 if A(k) is a cyclic 2-group, especially if
m = `. In the other cases, we know that 2• ≡ 0 (mod 2). However, in the
case that m = p1p2, the value 2• seems to depend on the structure of G(k)
and X(K+

∞) ' lim←−A(K+
n ) concerning with Theorem 4, 5 and 6 of [23].

3.4. Determination of nonabelian metacyclic cases. As a corollary
of Theorem 2.1, all imaginary quadratic fields k with nonabelian metacyclic
G(k∞) can be determined. Here, we remark that all imaginary quadratic
fields k with abelian G(k∞) are classified in [27].
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Corollary 3.4. For an imaginary quadratic field k = Q(
√
−m) with a pos-

itive squarefree odd integer m, the Galois group G(k∞) becomes nonabelian
metacyclic if and only if m is one of the following:

◦ m = ` with a prime number ` ≡ 9 (mod 16) such that 2 (`−1)/4 ≡
−1 (mod `)
◦ m = p1p2 with distinct two prime numbers; p1 ≡ p2 ≡ 5 (mod 8)

Proof. Assume that G = G(k∞) is nonabelian metacyclic. In particular,
G/G2 is not cyclic. Then there exists some cyclic closed normal subgroup
N of G such that G/N is also a cyclic pro-2-group. Since {1} 6= G2 ( N ,
N/G2 is a nontrivial finite cyclic 2-group. By the exact sequence

1→ N/G2 → G/G2 → G/N → 1,

the rank of X(k∞) ' G/G2 must be 2, and X(k∞) has Z2-rank λ(k∞/k) ≤
1 with nontrivial TorZ2X(k∞). Therefore, as seen in § 3.1, X(k∞) '
(Z/2Z) ⊕ Z2, i.e. m is one of “ ◦ ” in § 3.1. Further, m satisfies that
|X(Q∞(

√
m))| 6= 1 by the present assumption and Theorem 2.1. By The-

orem (1) (2) of [31], |X(Q∞(
√
m))| = 1 for the cases that m = ` with

2 (`−1)/4 6≡ −1 (mod `) or m = q1q2. This completes the “only if” part.
Assume that m = ` with 2 (`−1)/4 ≡ −1 (mod `) or m = p1p2, conversely.

Note that Q1(
√
`) is an unramified quadratic extension of Q(

√
2`). Then

|A(Q1(
√
`))| = 2 by the known facts that |A(Q(

√
2`))| = 4 (cf., e.g. [37]

Theorem 3.4 (c)). Since there is a surjective morphism X(Q∞(
√
`)) →

A(Q1(
√
`)), the left hand side is also nontrivial. On the other hand,

X(Q∞(√p1p2)) is finite but nontrivial by Theorem (5) of [31]. As a result,
|X(Q∞(

√
m))| 6= 1 for each m above. Therefore G becomes nonabelian

metacyclic by Theorem 2.1. �

4. On nonmetacyclic metabelian case
4.1. Preliminaries. For a CM -field k with the maximal real subfield k+,
we denote by Q(k) = |E(k)/W (k)E(k+)| ≤ 2 Hasse’s unit index, where
W (k) is the group of the roots of unity contained in k. Let δ(k) = 1 if√
−1 ∈ k, and 0 otherwise.
For the cyclotomic Z2-extension k∞ of a CM -field k, we denote by

Π(k∞) the number of places of k∞ above 2 which ramify over k+
∞. For

each sufficiently large n, there exists a CM -field k∨n such that (k∨n )+ = k+
n

and kn 6= k∨n ⊂ kn+1. If kn = k+
n (
√
α) with some α ∈ k+

n , the field
k∨n = k+

n (√απn).
According to the method of Ferrero [8], we obtain the following criterion

for the freeness of the Iwasawa module X(k∞) as a Z2-module.
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Proposition 4.1. For a CM-field k with the maximal real subfield k+,
the Iwasawa module X(k∞) of the cyclotomic Z2-extension k∞ is a free
Z2-module if X(k+

∞) is trivial and

Q(k∨n ) ≤ 1 + δ(k)−Π(k∞)

for all sufficiently large n.

Proof. Assume that n is sufficiently large, and note that k∞ (resp. k+
∞)

is unramified outside 2 and totally ramified at all places above 2 over kn
(resp. k+

n ). Then the extension kn+1 over k∨n is unramified outside 2 in which
Π(k∞) prime ideals ramify. For all n� 0, we have

|W (kn+1)| = 2δ(k)−1|W (k∨n )||W (kn)| = 2δ(k)|W (kn)|.

Further, Q(kn) ≥ Q(kn+1) if δ(k) = 1, and Q(kn) ≤ Q(kn+1) otherwise by
[24] Proposition 1 (d) (e). Therefore Q(kn) = Q(kn+1) for all n� 0.

Let γn be the generator of Gal(kn+1/kn), and J a complex conjugation
identified with the generator of Gal(kn+1/k

+
n+1). Then σn = Jγn is a gener-

ator of ∆n = Gal(kn+1/k
∨
n ). Since |A(k+

n+1)| = 1 by our assumption, 1 + J
annihilates A(kn+1), i.e. J acts on A(kn+1) as −1. Therefore 1−σn acts on
A(kn+1) as 1 + γn. Then we have the exact sequence:

0→ A(kn+1)∆n → A(kn+1) 1−σn−→ (1 + γn)A(kn+1)→ 0.

The genus formula for kn+1 over k∨n yields that
|A(kn+1)|

|(1 + γn)A(kn+1)|
= |A(kn+1)∆n | ≤ 2Π(k∞)−1|A(k∨n )|.

On the other hand, by Proposition 2 of [24] and our assumption,

|A(kn+1)| = Q(kn+1)
Q(k∨n )Q(kn)

|W (kn+1)|
|W (k∨n )||W (kn)|

|A(kn)||A(k∨n )|

≥ 2Π(k∞)−1|A(kn)||A(k∨n )|

where we use the fact that Q(K) = 2Q(K)−1 for any CM-field K. Since
(1+γn)A(kn+1) coincides with the image of the morphism A(kn)→ A(kn+1)
induced from lifting of ideals, we have that

|Ker(A(kn)→ A(kn+1))| = |A(kn)|
|(1 + γn)A(kn+1)|

≤ 1.

by combining the above inequalities. This implies that the morphisms
A(kn) → lim−→A(k•) induced from the lifting of ideals are injective for all
n � 0. Since the Z2-torsion submodule of X(k∞) is characterized by the
well known isomorphism:

TorZ2X(k∞) ' lim←−Ker(A(kn)→ lim−→A(k•))
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(obtained from Theorem 7 and 10 of [18]), we know the freeness of X(k∞).
�

4.2. Proof of Theorem 2.2. For an imaginary quadratic field k =
Q(
√
−q1q2) with prime numbers q1 ≡ 3 (mod 8) and q2 ≡ 7 (mod 16),

we know that λ(k∞/k) = 2 and X(k∞) ' (Z/2Z)⊕ Z⊕2
2 as Z2-modules by

[8] and [19] (recall §3.1).
The genus field K = k(√q1,

√
q2) of k is a CM -field with the maximal

real subfield K+ = Q(√q1,
√
q2), which contains three unramified quadratic

extensions k(√q1), k(√q2), k(
√
−1) of k. For the cyclotomic Z2-extensions

of these fields, the Z2-module structure of the Iwasawa modules are as
follows.

Lemma 4.2. X(K∞) and X(k∞(√q1)) are free Z2-modules of rank 3, and
X(k∞(√q2)), X(k∞(

√
−1)) are free Z2-modules of rank 2.

Proof. X(Q∞(√q1)), X(Q∞(√q2)) and X(Q∞(√q1q2)) are trivial, as men-
tioned in [31]. The genus formula for K+

n over Qn(
√
q1q2) implies that

|A(K+
n )| = 1 for all n ≥ 0, i.e. X(K+

∞) is also trivial. By Proposition 4.1,
X(K∞) is a free Z2-module since δ(K) = 1 and Π(K∞) = 0.

On the other hand, δ(k(√q1)) = 0 and Π(k∞(√q1)) = 0. The exten-
sion kn(

√
q1)∨ = Qn(

√
q1,
√
−q2πn) over Qn(

√
q1) is essentially ramified

(cf. [24] p.349) since the integral ideal (−q2πn) of Qn(
√
q1) has nontrivial

squarefree factor (q2). Then Q(kn(
√
q1)∨) = 1 for all n by [24] Theorem

1 (i)-1. This yields the freeness of X(k∞(√q1)) by Proposition 4.1. The
freeness of X(k∞(√q2)) is also obtained similarly.

For the remained case, δ(k(
√
−1)) = 1 and Π(k∞(

√
−1)) = 1. Since

the ideal (πn) remains prime in Qn(
√
q1q2), the extension kn(

√
−1)∨ =

Qn(
√
q1q2,

√
−πn) is also essentially ramified. Then Q(kn(

√
−1)∨) = 1 for

all n by [24] Theorem 1 (i)-1. By Proposition 4.1, we know the freeness of
X(k∞(

√
−1)).

Note that K+
∞ has 2 (resp. 4) places above q1 (resp. q2), which are not

inert over Q∞. By using Kida’s formula [20], we know the Z2-rank of the
Iwasawa modules. �

Let G = Gal(L2(k∞)/k∞) be the Galois group of the maximal unramified
metabelian pro-2-extension L2(k∞) over k∞, and denote by N , N ′, N ′′ and
H the open normal subgroups of G with the fixed fields k∞(√q1), k∞(√q2),
k∞(
√
−1) and K∞, respectively.

Since G/G2 ' X(k∞), G/G2 has an element aG2 of order 2 with some
a ∈ G, and the Galois group G is a pro-2-group of rank 3. As seen in §3.1,
aG2 generates the decomposition subgroup of the place above 2 in X(k∞).
Then aG2 ∈ N/G2, i.e. a ∈ N since the place of k∞ above 2 splits in
k∞(√q1), and aH generates N/H. Further, we can take some b ∈ N ′ such
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that bH generates N ′/H. By taking some c ∈ H, we obtain a generator
system a, b, c of G. Then the generating sets of the subgroups of G are as
follows: (Note that a2 ∈ G2.)

G = Gal(L2(k∞)/k∞) = 〈 a, b, c 〉
N = Gal(L2(k∞)/k∞(√q1)) = 〈 a, b2, c, G2 〉
N ′ = Gal(L2(k∞)/k∞(√q2)) = 〈 b, c,G2 〉
N ′′ = Gal(L2(k∞)/k∞(

√
−1)) = 〈 ab, c,G2 〉

H = Gal(L2(k∞)/K∞) = 〈 b2, c, G2 〉
Note that G2/G3 is generated by [a, b]G3, [b, c]G3 and [a, c]G3 as a Z2-

module, and the closed subgroup [b, c]Z2G3 generated by [b, c] and G3 is a
normal subgroup of G. Then

N ′/[b, c]Z2G3 = 〈 b, c, [a, b], [a, c], G3 〉/[b, c]Z2G3

is an abelian group, in which b and c makes a free Z2-submodule of rank 2
since they are linearly independent over Z2 in G/G2. On the other hand,

[a, b]2 ≡ [a2, b] ≡ 1, [a, c]2 ≡ [a2, c] ≡ 1 modG3,

i.e. [a, b] and [a, c] makes the torsion submodule of N ′/[b, c]Z2G3. By Lemma
4.2 and the surjective morphism

X(k∞(√q2)) ' N ′/N ′2 → N ′/[b, c]Z2G3,

[a, b] and [a, c] must be contained in [b, c]Z2G3, i.e. there exist some z1,
z2 ∈ Z2 such that

[a, b] ≡ [b, c]z1 , [a, c] ≡ [b, c]z2 modG3.

Then G2/G3 is a cyclic Z2-module generated by [b, c]G3. Especially, there
exists some z ∈ Z2 such that

a2 ≡ [b, c]z modG3.

If [b, c] ∈ (G2)2G3, then G2 = G3, i.e. G is an abelian pro-2-group.
However, the natural morphism X(K∞)→ X(k∞) can not be injective by
Lemma 4.2. Therefore

[b, c] 6≡ 1 mod (G2)2G3.

Assume that z2 ∈ Z×2 . Then

[ab, c] ≡ [a, c][b, c] ≡ [a, c]1+z−1
2 ≡ 1, [b, c]2 ≡ [a, c]2z

−1
2 ≡ 1 modG3.

This yields that
N ′′/G3 = 〈 ab, c, [b, c], G3 〉/G3

is an abelian group in which [b, c]G3 is a torsion element. Since abG3 and
cG3 makes a free Z2-submodule of rank 2 and there is a surjective morphism

X(k∞(
√
−1)) ' N ′′/N ′′2 → N ′′/G3,
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it becomes that [b, c] ∈ G3 by Lemma 4.2. This contradiction yields that
z2 ∈ 2Z2.

By the above, we have that
[a, b2] ≡ [a, b]2 ≡ 1, [b2, c] ≡ [b, c]2 ≡ 1, [a, c] ≡ 1 mod (G2)2G3.

Then
N/(G2)2G3 = 〈 a, b2, c, [b, c], G3 〉/(G2)2G3

is an abelian group. Since b2G2 and cG2 are linearly independent in G/G2
and a4 ≡ [b, c]2z ≡ 1 mod (G2)2G3, the free rank of the Z2-module
N/(G2)2G3 is 2 and the torsion submodule is

TorZ2(N/(G2)2G3) = 〈 a, [b, c], G3 〉/(G2)2G3.

By Lemma 4.2 and the surjective morphism
X(k∞(√q1)) ' N/N2 → N/(G2)2G3,

we know that TorZ2(N/(G2)2G3) is a cyclic 2-group.
If z ∈ 2Z2, then a2 ≡ [b, c]2 ≡ 1 mod (G2)2G3. In this case, one of a,

[b, c], a[b, c] is contained in (G2)2G3. However, this induces a contradiction
that either a ∈ G2 or [b, c] ∈ (G2)2G3. Then we know that z ∈ Z×2 .

By the bracket operation [−,−] : G2/G3 × G/G2 → G3/G4 which is a
bilinear surjective morphism over Z2, we have that

G3/G4 = 〈 [[b, c], a], [[b, c], b], [[b, c], c], G4 〉/G4.

and that
[[b, c], a] ≡ [a2z−1

, a] = 1 modG4,

[[b, c], b] ≡ [a2z−1
, b] = [az−1

, b]2[[az−1
, b], az−1 ] ≡ [[a, b]z−1

, az
−1 ]

≡ [a2z1z−2
, az

−1 ] = 1 mod (G2)2G4,

[[b, c], c] ≡ · · · ≡ [a2z2z−2
, az

−1 ] = 1 mod (G2)2G4.

These yield that G3 ⊆ (G2)2G4.
Then G3 = G4 for the lower central series Gi = Gi(G2)2/(G2)2 of G =

G/(G2)2. Since the subgroups Gi make a fundamental system of closed
neighborhoods of 1 ∈ G, it becomes that G3 = {1}, i.e. G3 ⊆ (G2)2. By the
induced surjective morphism

G2/G3 = 〈 [b, c]G3 〉 → G2/(G2)2,

we know that G2 is a cyclic pro-2-group generated by [b, c]. Then the Galois
group G(k∞)2 = Gal(L∞(k∞)/L(k∞)) with the cyclic abelianization G2 is
also cyclic. This yields that L2(k∞) = L∞(k∞) and G = G(k∞).

Since (G2)2 is generated by [b, c]2, we may assume that
[a, b] = [b, c]z1 , [a, c] = [b, c]z2 , [b, c]z = a2

by replacing z1 ∈ Z2, z2 ∈ 2Z2 and z ∈ Z×2 suitably. Then G2 is generated
by a2, and N is generated by a, b2, c. Since N/N2 is a free Z2-module of
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rank 3 by Lemma 4.2, a2N2 can not be a torsion element of N/N2, i.e.
G2/N2 ' Z2. This implies that

G2 = 〈 [b, c] 〉 = 〈 a2 〉 ' Z2

and N2 = {1}, i.e. N is an abelian pro-2-group. Then H is also abelian,
and L2(k∞) = L(K∞) = L(k∞(√q1)). Further,

1 = [b2, c] = [b, c]2[[b, c], b] = a4z−1 [a2z−1
, b] = a2z−1(b−1ab)2z−1

= a2z−1(a[a, b])2z−1 = a2z−1(a1+2z1z−1)2z−1 = a4(z1+z)z−2
,

1 = [a, b2] = · · · = a4z1(z1+z)z−2
,

1 = [a, c] = a2z2z−1
.

Since a is not a torsion element of G, we have that z1 = −z and z2 = 0, i.e.

[a, b] = a−2, [b, c] = a2z−1
, [a, c] = 1.

Let Γ be identified with the Galois group Gal(k∞(√q1)/k(√q1)). Since

〈 a 〉/G2 = 〈 aG2 〉 ' TorZ2X(k∞) ' lim←−D(kn)

(recall §3.1), the cyclic closed subgroup 〈 a 〉 generated by a is the decompo-
sition subgroup of G for any place lying above 2. Especially, 〈 a 〉 is a normal
subgroup of G and a Λ-submodule of N = X(k∞(√q1)) ' lim←−A(kn(

√
q1)).

Further, since any place of k∞(√q1) lying above 2 is totally ramified over
k(√q1), we have an isomorphism

〈 a 〉 ' lim←−D(kn(
√
q1)) ' Λ/TΛ

as Λ-modules, i.e. Γ acts on 〈 a 〉 trivially. Since

G/〈 a 〉 ' X(k∞)/TorZ2X(k∞)

as Λ-modules, we can take some x0, x1, x2 and y0, y1, y2 ∈ Z2 such that
γa = a, γb = ax0bx1cx2 , γc = ay0by1cy2 .

By using these 2-adic integers, the Iwasawa polynomial P (T ) associated to
X(k∞) is written as

P (T ) = det
(

(1 + T )
[

1 0
0 1

]
−
[
x1 x2
y1 y2

])
.

Especially, the coefficients are

C1 = 2− x1 − y2, C0 = (1− x1)(1− y2)− x2y1 ∈ 2Z2.
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Note that H = X(K∞) = 〈 a2, b2, c 〉 is a free Z2-module of rank 3 by
Lemma 4.2. Since H is a Λ-module, γc = ay0by1cy2 is contained in H.
Further, since Gal(K∞/k∞) ' G/H = 〈 aH, bH 〉 on which Γ acts trivially,

b−1γb = (b−1ab)x0bx1−1cx2 = a−x0bx1−1cx2

is also contained in H. These yield that

x0, y0, y1 ∈ 2Z2, x1, y2 ∈ Z×2 .

Assume that x2 ∈ 2Z2. Then b−1γb ∈ G2. Since a−1γa, c−1γc ∈ G2 and
G2 ⊂ G2 by the above,

X(k∞)/2X(k∞) ' G/G2 = 〈 aG2, bG2, cG2 〉

becomes an abelian group of type (2, 2, 2) on which Γ acts trivially, i.e.
TX(k∞) is contained in 2X(k∞). By the well known isomorphism

A(k) ' X(k∞)/TX(k∞)

(cf. [34] Lemma 13.15), we have a contradiction:

Gal(K/k) ' A(k)/2A(k) ' X(k∞)/2X(k∞) ' G/G2.

This yields that x2 ∈ Z×2 .
Now, we take the other generator system a′, b′, c′ of G as follows:

a′ = a(x2−x0z)z−1 ≡ a modG2,

b′ = b(x2−x0z)x−1
2 ≡ b modG2,

c′ = b(x1−1)(x2−x0z)x−1
2 cx2−x0z ≡ c modG2.

Throughout the following calculations, we use the facts that N = 〈 a, b2, c 〉
is an abelian group and a′, b′2, c′ ∈ N . Then

[a′, b′] = [a′, b(b2)−(x0/2)zx−1
2 ] = [a′, b] = a′−1(b−1ab)(x2−x0z)z−1 = a′−2,

[b′, c′] = [b(b2)−(x0/2)zx−1
2 , c′] = [b, c′] = [b, cx2−x0z]

= (b−1cb)−(x2−x0z)cx2−x0z = (ca−2z−1)−(x2−x0z)cx2−x0z

= a2(x2−x0z)z−1 = a′2,
[a′, c′] = 1.
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Further,

γa′ = a′,
γb′ = γb · (γb2)−(x0/2)zx−1

2

= γb · (ax0bx1+1(b−1cb)x2(b−1ab)x0bx1−1cx2)−(x0/2)zx−1
2

= γb · (ax0(b2)(x1+1)/2(ca−2z−1)x2(a−1)x0(b2)(x1−1)/2cx2)−(x0/2)zx−1
2

= γb · (a−2z−1x2b2x1c2x2)−(x0/2)zx−1
2

= ax0bx1cx2 · ax0b−2x1(x0/2)zx−1
2 c−x0z

= b(b−1ab)x0 · (b2)(x1−1)/2cx2ax0(b2)−x1(x0/2)zx−1
2 c−x0z

= ba−x0 · ax0b(x1−1)−x1x0zx
−1
2 cx2−x0z

= b1−x0zx
−1
2 · b(x1−1)(1−x0zx

−1
2 )cx2−x0z

= b′c′,
γc′ = (γb2)((x1−1)/2)(x2−x0z)x−1

2 (γc)x2−x0z

= (a−2z−1x2b2x1c2x2)((x1−1)/2)(x2−x0z)x−1
2 (ay0(b2)y1/2cy2)x2−x0z

= a(x2−x0z)z−1(−(x1−1)+zy0)b(x2−x0z)x−1
2 (x1(x1−1)+y1x2)c(x2−x0z)((x1−1)+y2)

= a′−(x1−1)+zy0(b′2)(x1(x1−1)+y1x2)/2((b′2)−(x1−1)/2c′)(x1−1)+y2

= a′−(x1−1)+zy0b′−(1−x1)(1−y2)+x2y1c′1−(2−x1−y2)

= a′−(x1−1)+zy0b′−C0c′1−C1 .

By using them and the facts that γc′ ∈ γcG2 ⊂ N and G2 = 〈 a′ 〉,

a′2 = γ(a′2) = [γb′, γc′] = [b′c′, γc′] = c′−1[b′, γc′]c′[c′, γc′] = [b′, γc′]
= b′−1(c′−1+C1b′C0a′(x1−1)−zy0)b′(a′−(x1−1)+zy0b′−C0c′1−C1)
= (b′−1c′b′)−1+C1b′C0(b′−1a′b′)(x1−1)−zy0(a′−(x1−1)+zy0b′−C0c′1−C1)
= (c′a′−2)−1+C1(b′2)C0/2a′−(x1−1)+zy0(a′−(x1−1)+zy0(b′2)−C0/2c′1−C1)
= (a′2)−(x1−1)+zy0+1−C1 .

Since a′ is not a torsion element, this implies that C1 = −(x1 − 1) + zy0,
i.e. γc′ = a′C1b′−C0c′1−C1 .

Let F be a free pro-2-group generated by three letters a, b, c, and R the
closed normal subgroup generated by the conjugates of a2[a, b], a−2[b, c]
and [a, c]. Then there exists a surjective morphism F/R → G: aR 7→ a′,
bR 7→ b′, cR 7→ c′. Since this morphism induces (F/R)2 = F2R/R ' G2 and
F/F2R ' G/G2, we know that F/R ' G which gives a presentation of G.
By replacing the notations a′, b′, c′ by a, b, c, the proof of Theorem 2.2 is
completed.

4.3. On metabelian 2-class field towers. As a corollary of Theorem
2.2, we calculate the Galois groups G(kn) of the 2-class field towers of kn
under some conditions as follows.
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Proposition 4.3. In addition to the statement of Theorem 2.2, if (q1/q2)=
−1 (i.e. q1 is not a quadratic residue modulo q2), then G(k) is an abelian
group of type (2, 2), and G(k1) has a presentation

G(k1) =
〈
a, b, c

∣∣ [b, a] = [b, c] = a2 = b
2 = c2, [a, c] = a4 = 1

〉
.

Further, if C1 ≡ 0 (mod 4), G(kn) has a presentation

G(kn) =
〈
a, b, c

∣∣ [b, a] = [b, c] = a2, [a, c] = a2n+1 = b
2n+1

= c2n = 1
〉

with the order |G(kn)| = 23n+2 for each n ≥ 2.

Proof. Since (q1/q2) = −1, G(k) ' (2, 2) by [21] § 2 (ii), i.e. K = L∞(k)
and |A(K)| = 1 for the genus field K = k(√q1,

√
q2) of k. Then, by

[34] Lemma 13.15, X(K∞)/νnX(K∞) ' A(Kn) as Λ-modules for all n ≥ 0,
where

νn = νn(T ) = ((1 + T )2n − 1)/T ∈ Λ.

By applying the genus formula for K1 over K, we know that A(K1) '
X(K∞)/ν1X(K∞) is cyclic. Nakayama’s lemma yields that X(K∞) is a
cyclic Λ-module.

Recall that H = X(K∞) is an abelian subgroup of G = G(k∞) which is
generated by a2, b2, c. Since 〈 a2 〉 ' Λ/TΛ, we have an exact sequence

0→ Λ/TΛ→ X(K∞)→ X(k∞)/TorZ2X(k∞)→ Z/2Z→ 0

of Λ-modules. Then the characteristic polynomial of the Λ-module X(K∞)
is TP (T ), and H = X(K∞) ' Λ/TP (T )Λ as a Λ-module.

Lemma 4.4. C0 ≡ 2 (mod 4).

Proof. Since TorZ2X(k∞) ' D(k) ' Z/2Z (cf. [8] Lemma 10) under the
surjective morphism X(k∞) → A(k) ' (2, 2) with the kernel TX(k∞)
(cf. [34] Lemma 13.15), we know that

X(k∞)/(TX(k∞) + TorZ2X(k∞)) ' A(k)/D(k) ' Z/2Z,

and that X(k∞)/TorZ2X(k∞) ' Λ/P (T )Λ by Nakayama’s lemma. By
combining these isomorphism, we have Λ/(T, P (T )) ' Z/2Z, i.e. C0 ≡
2 (mod 4). �

Note that any polynomial in Λ acts on H by identifying T with γ − 1
(i.e. Th = γh · h−1 for any h ∈ H). Let

F (T ) = (C1/C0)P (T )− T − C1
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which is a polynomial in Λ by Lemma 4.4. Then
P (T )c = γ2

c · (γc)C1−2cC0−C1+1

= (γa)C1(γb)−C0(γc)1−C1 · (aC1b−C0c1−C1)C1−2cC0−C1+1

= aC1(b2c[c, b]c)−C0/2(aC1b−C0c1−C1)1−C1 · aC1(C1−2)b−C0(C1−2)c−(1−C1)2+C0

= aC1(a−2b2c2)−C0/2a−C1bC0cC0

= aC0 ,
F (T )c = (P (T )c)C1/C0(γc)−1c1−C1 = (aC0)C1/C0(aC1b−C0c1−C1)−1c1−C1

= bC0 .

By Lemma 4.4, we can choose an isomorphism H ' Λ/TP (T )Λ such that

a2 7→ (2/C0)P (T ) , b2 7→ (2/C0)F (T ) , c 7→ 1 .
Note that a2, b2, c make a basis of the free Z2-module H and that νn(0) =
2n, P (0) = C0 and F (0) = 0. For each n ≥ 0, there exists uniquely a pair
xn, yn ∈ Z2 such that

νn(T ) ≡ xn (2/C0)P (T ) + yn (2/C0)F (T ) + (2n − 2xn) modTP (T ).
Especially, x0 = y0 = 0. By using these 2-adic integers, we have
νn(T ) (2/C0)P (T ) ≡ 2n(2/C0)P (T ),
νn(T ) (2/C0)F (T ) ≡
(2/C0)yn(2/C0)P (T ) + (2n − 2xn − C1(2/C0)yn)(2/C0)F (T )− 2(2/C0)yn

modTP (T ).
Then the endomorphism νn : H → H is described by

νn

 a2

b2

c

 =

 2n 0 0
(2/C0)yn 2n − 2xn − C1(2/C0)yn −2(2/C0)yn

xn yn 2n − 2xn

 a2

b2

c


additively. In the following, we denote by An the 3×3 matrix in right hand
side.

Since H = G(K∞) is abelian and K∞ is totally ramified over Kn, then
G(Kn) is an abelian subgroup of G(kn) which is isomorphic to A(Kn) via
Artin map. Further, since νnH is a normal subgroup of G and H/νnH '
G(Kn) via the restriction map, we know that

G/νnH ' G(kn)

for all n ≥ 0. For each n fixed, we denote by a, b, c the images of a, b, c in
right hand side.

Now, we consider the case that n = 1. Since ν1 = T + 2, then x1 = C1/2,
y1 = −C0/2, and there exists some U1 ∈ GL3(Z2) such that

A1 =

 2 0 0
−1 2 2
C1/2 −C0/2 2− C1

 = U1

 2 0 0
−1 1 0
−1 0 2

 .
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Therefore ν1H is generated by a4, a−2b2 and a−2c2, and we obtain the
presentation of G(k1) ' G/〈 a4, a−2b2, a−2c2 〉.

Lemma 4.5. xn ≡ 2n−2C1, yn ≡ 0 (mod 2n) for all n ≥ 2.

Proof. Since νn+1(T ) = νn(T )(Tνn(T ) + 2) for all n ≥ 0, we have

xn+1 = 2n + (2n − 2xn)(−(1 + 2yn) + (C1/2)(2n − 2xn))
yn+1 = −(C0/2)(2n − 2xn)2 + 2yn(1 + yn).

Especially, x2 ≡ C1, y2 ≡ 0 (mod 4) by Lemma 4.4. Then we know that
xn ≡ 2n−2C1, yn ≡ 0 (mod 2n) for all n ≥ 2 inductively. �

Assume that C1 ≡ 0 (mod 4) and n ≥ 2. Lemma 4.5 yields that xn ≡
yn ≡ 0 (mod 2n). Further, det(An) ∈ 23nZ×2 and An ≡ O (mod 2n). Then
we can find some Un ∈ GL3(Z2) such that

An = Un

 2n 0 0
0 2n 0
0 0 2n

 ≡
 2n 0 0

yn 2n 0
xn yn 2n

 mod 2n+1

by noting the congruence of right hand side. This implies that νnH is
generated by a2n+1 , b2n+1 and c2n , and that A(Kn) ' (Z/2nZ)⊕3 as a Z2-
module. Then we have the presentation of G(kn) ' G/〈 a2n+1

, b2n+1
, c2n 〉

for n ≥ 2, and know that |G(kn)| = 23n+2. �

Example. There are 48 (resp. 53) pairs of prime numbers q1 ≡ 3 (mod 8),
q2 ≡ 7 (mod 16) such that q1q2 < 5000 and (q1/q2) = −1 (resp. (q1/q2) = 1).
For all of them, we can see that P (T ) ≡ T 2 +2 (mod 4), i.e. C1 ≡ 0 (mod 4)
(resp. that P (T ) ≡ T 2 + 2T (mod 4)) by the computation with the use of
Stickelberger elements. Especially, if q1 = 3 and q2 = 7, i.e. k = Q(

√
−21),

then P (T ) ≡ T 2 + 15604T + 26266 (mod 215).

5. On some relating problems
5.1. Let k be an imaginary quadratic field in which the prime number 2
splits. Then the unique Z⊕2

2 -extension k̃ of k is unramified over k∞, i.e. G(k̃)
is a closed normal subgroup of G(k∞) such that G(k∞)/G(k̃) ' Z2. In this
case, Greenberg’s generalized conjecture is considered as a problem relating
to the structure ofG(k∞), which asserts thatX(k̃) = G(k̃)/G(k̃)2 is pseudo-
null as a finitely generated torsion Z2[[Gal(k̃/k)]]-module. In [11] and [29], it
is shown that G(k∞) is not a nonabelian free pro-2-group if X(k̃) is pseudo-
null. Further, some criteria for the pseudo-nullity of X(k̃) are established
(cf., e.g., [17]), though the explicit structure of X(k̃) is uncertain in general.
Here, we obtain the following by the analogous arguments to the proof of
Theorem 2.2.
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Proposition 5.1. Let k = Q(
√
−q1q2q3) be an imaginary quadratic field

with prime numbers q1 ≡ q2 ≡ 3, q3 ≡ 7 (mod 8) such that (q1q2/q3) = −1,
and k̃ the Z⊕2

2 -extension of k. Then k̃ is an unramified Z2-extension over
the cyclotomic Z2-extension k∞ of k satisfying that L(k̃) = L(k∞), i.e.
there is an exact sequence

0→ X(k̃)→ X(k∞)→ Gal(k̃/k∞)→ 0.

Especially, X(k̃) is pseudo-null as a Z2[[Gal(k̃/k)]]-module.

Proof. Let p be a prime ideal of k above 2, and k(p3) the ray 2-class field
of k modulo p3, which is a quadratic extension of L(k). Let k′∞ be the Z2-
extension of k unramified outside p. Note that the genus field of k is K =
k(
√
−q1,

√
−q2), and that k′∞∩k(p3) is a quadratic extension of k′∞∩L(k).

Since (q3/q1) = −(q3/q2) and q1 ≡ q2 ≡ 3 (mod 8), a prime ideal of k above
either q1 or q2 has the decomposition subgroup of order 4 in Gal(k(p3)/k),
and hence the rank of Gal(k(p3)/k) is 2. Therefore k ( k′∞ ∩ L(k). Since
(q1q2/q3) = −1 and q3 ≡ 7 (mod 8), the prime ideal of k above q3 is inert
in k(

√
−q3), and the prime ideal of k(

√
−q3) above q3 splits completely in

k(p3). If k(
√
−q3) ⊂ k′∞∩L(k), the prime ideal of k above q3 does not split

in k′∞ ∩ k(p3). This is a contradiction. Therefore k(
√
−q3) 6⊂ k′∞ ∩L(k). By

replacing q1 and q2 suitably, we may assume that k(
√
−q1) ⊂ k′∞∩L(k) ⊂ k̃.

Let G = Gal(L2(k∞)/k∞) be the Galois group of the maximal unramified
metabelian pro-2-extension of k∞. SinceG/G2 ' X(k∞) is a free Z2-module
of rank λ = 1 + 2v−2 by [8], where 2v is the largest 2-power dividing q3 + 1,
then we can choose the generator system a, b1, · · · , bλ−1 of G such that

H = Gal(L2(k∞)/k̃) = 〈 b1, · · · , bλ−1, G2 〉

and N = Gal(L2(k∞)/k∞(
√
−q1)) = 〈 a2 〉H. Further, by the similar argu-

ments to the proof of Lemma 4.2 with the use of Proposition 4.1 and Kida’s
formula [20], we can show that X(k∞(

√
−q1)) is also a free Z2-module of

rank λ.
Now, we put B = 〈 [bi, bj ] | 1 ≤ i < j ≤ λ − 1 〉(G2)2G3. Since [a2, bi] ∈

(G2)2G3, N/B is abelian. Then, by considering the surjective morphism
X(k∞(

√
−q1))→ N/B, we can see that all [a, bi] are contained in B. This

yields that G2 = B, i.e. G2/G3 is generated by all [bi, bj ]G3. Since [bi, bj ] ∈
H2 and H2 is a normal subgroup of G, we know that G2 ⊆ H2. Therefore
G2 = H2, i.e. L(k̃) = L(k∞).

Note that Gal(k̃/k) is generated by the restricted elements of a and γ̃.
Since a acts on X(k̃) ' H/G2 trivially and P (γ̃ − 1) annihilates X(k̃), we
know that X(k̃) is a pseudo-null Z2[[Gal(k̃/k)]]-module. �
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Remark. For the imaginary quadratic fields k of Proposition 5.1, the
pseudo-nullity of X(k̃) can be shown as a consequence of the criteria by
Itoh [17].

5.2. For the imaginary quadratic fields k treated in Theorem 2.1 and
Theorem 2.2, we have seen that L(K∞) = L2(k∞) for the genus fields K of
k. For several other families of k with the genus fields K 6= k, if X(K+

∞) is
trivial, one can also calculate the structure of the quotient Gal(L(K∞)/k∞)
of G(k∞) by the similar arguments. However, it is still difficult problem to
determine the structure of G(k∞) itself and even the metabelian quotient
Gal(L2(k∞)/k∞) in general situation. One of the difficulties is the structure
of G(K+

∞) relating with Greenberg’s conjecture [14]. If G(K+
∞) is infinite,

one can easily find the open subgroups of G(k∞) with arbitrary large gen-
erator rank by using Kida’s formula [20].

As a step to the above problem, the following seems to be one of the
considerable problems: Characterize the imaginary quadratic fields k with
L2(k∞) = L(K∞) 6= L(k∞). This can be regarded as an analogy of Problem
2 in [38] Appendix 2.
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