

Yasushi MIZUSAWA

On the maximal unramified pro-2-extension over the cyclotomic \mathbb{Z}_2 -extension of an imaginary quadratic field

Tome 22, nº 1 (2010), p. 115-138.

 $\verb|\c| http://jtnb.cedram.org/item?id=JTNB_2010__22_1_115_0>$

© Université Bordeaux 1, 2010, tous droits réservés.

L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

On the maximal unramified pro-2-extension over the cyclotomic \mathbb{Z}_2 -extension of an imaginary quadratic field

par Yasushi MIZUSAWA

RÉSUMÉ. Pour k quadratique imaginaire, nous étudions le groupe de Galois $G(k_\infty)$ de la pro-2-extension non ramifiée maximale audessus de la \mathbb{Z}_2 -extension cyclotomique k_∞ de k. Nous déterminons des familles de tels corps imaginaires k pour lesquels $G(k_\infty)$ est un pro-2-groupe métabélien et en donnons une présentation explicite ; nous précisons de même des familles pour lesquelles $G(k_\infty)$ est un pro-2-groupe métacyclique non abélien. Nous calculons enfin en termes de Théorie d'Iwasawa les groupes de Galois de 2-tours de corps de classes de certaines 2-extensions cyclotomiques.

ABSTRACT. For the cyclotomic \mathbb{Z}_2 -extension k_∞ of an imaginary quadratic field k, we consider the Galois group $G(k_\infty)$ of the maximal unramified pro-2-extension over k_∞ . In this paper, we give some families of k for which $G(k_\infty)$ is a metabelian pro-2-group with the explicit presentation, and determine the case that $G(k_\infty)$ becomes a nonabelian metacyclic pro-2-group. We also calculate Iwasawa theoretically the Galois groups of 2-class field towers of certain cyclotomic 2-extensions.

1. Introduction

Let p be a fixed prime number. For an algebraic number field k, we denote by G(k) the Galois group of the maximal unramified pro-p-extension $L^{\infty}(k)$ over k. The sequence of the fixed fields corresponding to the commutator series of G(k) is a classic object called p-class field tower when k is a finite extension of the field $\mathbb Q$ of rational numbers. In this case, the group G(k) can be infinite by the criteria originated from Golod-Shafarevich [13], while various finite p-groups also appear as G(k), especially when p=2 and k is an imaginary quadratic field ([3] [4] [6] etc.).

The main object of this paper is the Galois group $G(k_{\infty})$ for the cyclotomic \mathbb{Z}_p -extension k_{∞} of a finite extension k of \mathbb{Q} , where \mathbb{Z}_p denotes (the additive group of) the ring of p-adic integers. From the nonabelian Iwasawa theoretical view seen in Ozaki [30], Sharifi [33], Wingberg [36] and [10] [11]

[12] etc., it is expected that the Galois group $G(k_{\infty})$ would give good information on the structure of $G(k_{\bullet})$ (e.g., either finite or not) for finite extensions k_{\bullet} of k contained in k_{∞} . However, it is still rather difficult to obtain the explicit presentation of nonabelian $G(k_{\infty})$ in general, while the imaginary quadratic fields k with abelian $G(k_{\infty})$ are classified (cf. [27] [28]).

Here, we note that $G(k_{\infty})$ is allowed to have infinite p-adic analytic quotient while it is conjectured that G(k) has no such quotient for finite extensions k of \mathbb{Q} as a part of Fontaine-Mazur conjecture (cf. [5] [36] etc.). Then a question arises: When does the Galois group $G(k_{\infty})$ itself become a p-adic analytic pro-p-group, and what kind of such groups appear? In this paper, we treat the case that p=2, and give some families of imaginary quadratic fields k for which $G(k_{\infty})$ becomes a metabelian 2-adic analytic pro-2-group with the explicit presentation.

Let us recall some knowledge on the Galois groups G(k) and $G(k_{\infty})$, and define some notations. For a finite extension k of \mathbb{Q} , it is well known that G(k) is a finitely presented pro-p-group satisfying the property called FAb that any subgroup of finite index has finite abelianization (cf. [5] etc.). The abelianization of G(k), which is regarded as the Galois group of the maximal unramified abelian p-extension L(k) (called Hilbert p-class field) over k, is isomorphic to the p-Sylow subgroup A(k) of the ideal class group of k via Artin map.

For the cyclotomic \mathbb{Z}_p -extension k_{∞} of k, the abelianization of $G(k_{\infty})$ is also identified with the Galois group $X(k_{\infty})$ of the maximal unramified abelian pro-p-extension $L(k_{\infty})$ over k_{∞} , which we call Iwasawa module of k_{∞} . The Iwasawa module $X(k_{\infty})$ is isomorphic via Artin map to the projective limit $\varprojlim A(k_{\bullet})$ with respect to the norm mappings. It is conjectured that $G(k_{\infty})$ is finitely generated as a pro-p-group, and it is true when k is an abelian extension of \mathbb{Q} by the theorem of Ferrero-Washington [9]. Further, as a consequence of Greenberg's conjecture [14], it is conjectured that $G(k_{\infty})$ is a FAb pro-p-group if k is a totally real number field (cf., e.g., [26]).

Notations. Throughout the following sections, always p=2, and the above notations are used. For each integer $n \geq 0$, we define algebraic integers $\pi_{n+1}=2+\sqrt{\pi_n}$ with $\pi_0=2$, inductively. For any finite extension k of \mathbb{Q} , we write $k_n=k(\pi_n)$. The cyclotomic \mathbb{Z}_2 -extension k_{∞} of k is obtained by adding all π_n to the field k. Let D(k) be the subgroup of A(k) generated by ideal classes represented by some odd power of prime ideals of k lying above 2, and E(k) the unit group of the ring of algebraic integers in k.

For closed subgroups G, H of a pro-2-group, we denote by [G, H] the closed subgroup generated by the commutators $[g, h] = g^{-1}h^{-1}gh$ of $g \in G$ and $h \in H$, and G^2 denotes the closed subgroup generated by square elements g^2 of $g \in G$. The lower central series of G is defined by $G_1 = G$ and $G_i = [G_{i-1}, G]$ for $i \geq 2$ inductively, and the order of G is denoted by

|G|. For a G-module A, we denote by A^G the submodule generated by all G-invariant elements.

2. Main results

Let $k = \mathbb{Q}(\sqrt{-m})$ be an imaginary quadratic field with a positive squarefree integer m, and Γ the Galois group of the cyclotomic \mathbb{Z}_2 -extension k_{∞} of k. Note that $\pi_n = 2 + 2\cos(2\pi/2^{n+2})$ generates the principal prime ideal (π_n) of $\mathbb{Q}_n = \mathbb{Q}(\pi_n)$ above 2. Then the field $k_n = k(\cos(2\pi/2^{n+2}))$ is a cyclic extension of degree 2^n over k, which is contained in k_{∞} . Since $k_1 = k(\sqrt{2})$, we may assume that m is odd in our purpose.

Let γ be the topological generator of Γ which sends $\cos(2\pi/2^{n+2})$ to $\cos(5\cdot 2\pi/2^{n+2})$ for all $n \geq 0$, and take an extension $\tilde{\gamma} \in \operatorname{Gal}(L^{\infty}(k_{\infty})/L(k))$ of γ , which is a generator of the inertia subgroup of some place above 2 in $\operatorname{Gal}(L^{\infty}(k_{\infty})/k)$. By using this, we define the action of Γ on $G(k_{\infty}) = \operatorname{Gal}(L^{\infty}(k_{\infty})/k_{\infty})$ by the left conjugation $\gamma g = \tilde{\gamma} g \tilde{\gamma}^{-1}$ for $g \in G(k_{\infty})$. Then the Galois group $G(k_{\infty})$ becomes a pro-2- Γ operator group. The action of Γ on the Iwasawa module $X(k_{\infty})$ is induced from this action.

The complete group ring $\mathbb{Z}_2[[\Gamma]]$ can be identified with the ring $\Lambda = \mathbb{Z}_2[[T]]$ of formal power series via $\gamma \leftrightarrow 1 + T$. Then the Iwasawa module $X(k_{\infty})$ becomes a finitely generated torsion Λ -module isomorphic to $\lim A(k_n)$ as Λ -modules. The characteristic polynomial

$$P(T) = \det \left((1+t)id - \gamma \left| X(k_{\infty}) \otimes_{\mathbb{Z}_2} \overline{\mathbb{Q}}_2 \right) \right|_{t=T}$$

which we call Iwasawa polynomial associated to $X(k_{\infty})$, is defined as a distinguished polynomial in Λ , where $\overline{\mathbb{Q}}_2$ is the algebraic closure of the field of 2-adic numbers. The degree $\lambda(k_{\infty}/k)$ of P(T), which is the \mathbb{Z}_2 -rank of $X(k_{\infty})$, coincides with the λ -invariant which appears in Iwasawa's formula for $|A(k_n)|$. In the present case, the structure of $X(k_{\infty})$ as a \mathbb{Z}_2 -module, including $\lambda(k_{\infty}/k)$, can be completely calculated from m by the results of Ferrero [8] and Kida [19].

Studying the Galois group $G(k_{\infty})$ with the action of Γ is equivalent to consider the special quotient $\operatorname{Gal}(L^{\infty}(k_{\infty})/k)$ of the Galois group $G_S(k)$ of the maximal pro-2-extension of k unramified outside 2. The Galois group $G_S(k)$ has been well studied, while the quotient $\operatorname{Gal}(L^{\infty}(k_{\infty})/k)$ and the subquotient $G(k_{\infty})$ are still rather uncertain. The main results of this paper, which determine the structure of $G(k_{\infty})$ in some special cases, are the following two theorems.

The first one treats the case that $G(k_{\infty})$ becomes a metacyclic pro-2-group.

Theorem 2.1. Let k_{∞} be the cyclotomic \mathbb{Z}_2 -extension of an imaginary quadratic field $k = \mathbb{Q}(\sqrt{-m})$ with a positive squarefree odd integer m. If $m \equiv 1 \pmod{4}$ and the Iwasawa λ -invariant $\lambda(k_{\infty}/k) = 1$, the Galois group $G(k_{\infty})$ of the maximal unramified pro-2-extension of k_{∞} has a presentation

$$G(k_{\infty}) = \langle a, b \mid [a, b] = a^{-2}, a^{2|X(\mathbb{Q}_{\infty}(\sqrt{m}))|} = 1 \rangle^{\text{pro-}2}$$

as a pro-2-group, where $X(\mathbb{Q}_{\infty}(\sqrt{m}))$ is the Iwasawa module of the cyclotomic \mathbb{Z}_2 -extension of the real quadratic field $\mathbb{Q}(\sqrt{m})$, which is a finite cyclic 2-group.

Remark. The Galois group $G(k_{\infty})$ of Theorem 2.1 has an infinite open normal cyclic subgroup which is generated by b^2 . Then $G(k_{\infty})$ is a 2-adic analytic pro-2-group of dimension 1 (cf. [7] Corollary 8.34 etc.). The finiteness of $X(\mathbb{Q}_{\infty}(\sqrt{m}))$ is known as a result of Ozaki-Taya [31], and the presentation of G(k) is described by Lemmermeyer [23]. Further, the generators a and b can be chosen such that $f^{\alpha}a = a$ and $f^{\alpha}b = a^{2\bullet}b^{1-P(0)}$, where $f^{\alpha}a = a$ and $f^{\alpha}a = a$ are certain special case. In §3, we will prove Theorem 2.1, and determine all $f^{\alpha}a = a$ for which $f^{\alpha}a = a$ nonabelian metacyclic.

The second result gives the case that $G(k_{\infty})$ becomes a certain nonmetacyclic metabelian pro-2-group.

Theorem 2.2. Let $k = \mathbb{Q}(\sqrt{-q_1q_2})$ be an imaginary quadratic field with prime numbers $q_1 \equiv 3 \pmod{8}$ and $q_2 \equiv 7 \pmod{16}$, and k_{∞} be the cyclotomic \mathbb{Z}_2 -extension of k with the Galois group Γ . Then the Galois group $G(k_{\infty})$ of the maximal unramified pro-2-extension of k_{∞} has a presentation

$$G(k_{\infty}) = \langle a, b, c \mid [a, b] = a^{-2}, [b, c] = a^{2}, [a, c] = 1 \rangle^{\text{pro-}2}$$

with the action of the topological generator γ of Γ (defined above):

$${}^{\gamma}a = a$$
, ${}^{\gamma}b = bc$, ${}^{\gamma}c = a^{C_1}b^{-C_0}c^{1-C_1}$,

where the 2-adic integers C_1 and C_0 are the coefficients of the Iwasawa polynomial

$$P(T) = T^2 + C_1 T + C_0$$

associated to the Iwasawa module of k_{∞} .

Remark. The Galois group $G(k_{\infty})$ of Theorem 2.2 has an abelian maximal subgroup generated by a, b^2, c , which is a free \mathbb{Z}_2 -module of rank 3. Then $G(k_{\infty})$ is a 2-adic analytic pro-2-group of dimension 3 (cf. [7] Corollary 8.34 etc.). Especially, $G(k_{\infty})$ is a Poincaré pro-2-group which has cohomological dimension $cd_2(G(k_{\infty})) = 3$ and Euler characteristic $\chi(G(k_{\infty})) = 0$ (cf. [22] [32]). It is known that G(k) is an abelian 2-group of type $(2, 2^{\bullet})$ by [23]. We will prove Theorem 2.2 in §4, and consider the Galois groups $G(k_n)$ of the 2-class field towers of k_n .

By Iwasawa Main Conjecture (Theorem of Mazur-Wiles [25], Wiles [35]) and Iwasawa's construction of p-adic L-functions (cf., e.g., [34] § 7.2), there exists a power series $\Phi(T) \in \Lambda$ constructed from Stickelberger elements, such that $\Phi(T)$ and P(T) generate the same principal ideal of Λ and $L_2(s,\psi)=2\Phi(5^s-1)$ is the 2-adic L-function for the even Dirichlet character ψ associated to the real quadratic field $\mathbb{Q}(\sqrt{m})$ ($m=q_1q_2$ in Theorem 2.2). Then the coefficients of Iwasawa polynomial P(T) are approximately computable in our cases. For the method of computation, we refer to [16] etc.

3. On metacyclic cases

3.1. Preliminaries. Let $k = \mathbb{Q}(\sqrt{-m})$ be an imaginary quadratic field with a positive squarefree *odd* integer m. By Theorem 1 of [19], the \mathbb{Z}_2 -torsion submodule $\mathrm{Tor}_{\mathbb{Z}_2}X(k_\infty)$ of the Iwasawa module $X(k_\infty)$ is non-trivial if and only if $1 \neq m \equiv 1 \pmod 4$. In this case, Theorem 5 of [8] says that

$$\operatorname{Tor}_{\mathbb{Z}_2} X(k_{\infty}) \simeq \lim D(k_n) \simeq \mathbb{Z}/2\mathbb{Z}$$

via Artin map, and $\operatorname{Tor}_{\mathbb{Z}_2}X(k_\infty)$ coincides with the decomposition subgroup of any place above 2 in $X(k_\infty)$. The \mathbb{Z}_2 -rank $\lambda(k_\infty/k)$ can be also calculated by [8] and [19] from the prime factors of m.

Especially, the following three conditions • are equivalent:

- $m \equiv 1 \pmod{4}$ and $\lambda(k_{\infty}/k) = 1$.
- $X(k_{\infty}) \simeq (\mathbb{Z}/2\mathbb{Z}) \oplus \mathbb{Z}_2$ as \mathbb{Z}_2 -modules.
- m satisfies one of the following:
 - $\circ m = \ell \text{ with a prime number } \ell \equiv 9 \pmod{16}$
 - $omega = p_1p_2$ with two distinct prime numbers; $p_1 \equiv p_2 \equiv 5 \pmod{8}$
 - $omega = q_1q_2$ with two distinct prime numbers; $q_1 \equiv q_2 \equiv 3 \pmod{8}$

If one of them is satisfied, $A(k_n)$ is an abelian group of type $(2, 2^{\bullet})$ for each sufficiently large n, and Theorem 2.1 says that $G(k_n)$ is a metacyclic 2-group. On the other hand, various types of pro-2-groups appear as G(k) for imaginary quadratic fields k with $A(k) \simeq (2, 2^{\bullet})$ (e.g., infinite [15], metabelian [1] [3] [23], of derived length 3 [6], etc.).

In order to prove Theorem 2.1, we need the following which is essentially the same as Proposition 7 of [2].

Lemma 3.1. Let G a pro-2-group of rank 2, and H a maximal subgroup of G. Then G is abelian if and only if $G_2 = H_2$.

Proof. We can choose the generators a, b of G such that H is generated by a, b^2 and G_2 . Since

$$[a, b^2] = [a, b]^2[[a, b], b] \equiv 1 \mod (G_2)^2 G_3$$

 $H/(G_2)^2G_3$ is an abelian group. If G is not abelian, G_2/G_3 is a nontrivial cyclic 2-group generated by $[a,b]G_3$, especially, $G_2/(G_2)^2G_3$ has order 2. Then $G_2 \neq (G_2)^2G_3 \supset H_2$. Since the "only if" part is obvious, this completes the proof.

3.2. Proof of Theorem 2.1. By the assumption, the shape of m is one of the above " \circ ". In each case, the field $K = k(\sqrt{-1})$ is an unramified quadratic extension of k in which the prime ideal of k above 2 splits. The maximal real subfield of the CM-field K is the real quadratic field $K^+ = \mathbb{Q}(\sqrt{m})$. Note that K_{∞} is also unramified quadratic extension of k_{∞} .

Let $G = \operatorname{Gal}(L^2(k_{\infty})/k_{\infty})$ be the Galois group of the maximal unramified metabelian pro-2-extension $L^2(k_{\infty})$ over k_{∞} , and $H = \operatorname{Gal}(L^2(k_{\infty})/K_{\infty})$ be the maximal subgroup of G associated to K_{∞} . The pro-2-group G is generated by two elements a, b such that $a^2 \in G_2$. Let N be the normal closed subgroup of G generated by a and G_2 with the fixed field $L'(k_{\infty})$. Then $G/N \simeq \mathbb{Z}_2$ is generated by bN, and $N/G_2 \simeq \varprojlim D(k_n)$. Since any place of k_{∞} above 2 splits in K_{∞} , i.e. $K_{\infty} \subset L'(k_{\infty})$, the maximal subgroup H/G_2 of $X(k_{\infty})$ contains N/G_2 . Then H is generated by a, b^2 and G_2 .

Lemma 3.2. *H* is a pro-2-group of rank 2.

Proof. Let $\Delta = \operatorname{Gal}(K_{\infty}/\mathbb{Q}_{\infty}(\sqrt{-1}))$, and put

$$\mathfrak{E}_n = E(\mathbb{Q}_n(\sqrt{-1}))/(E(\mathbb{Q}_n(\sqrt{-1})) \cap N_{\Delta}K_n^{\times})$$

for each $n \geq 0$, where N_{Δ} is the norm mapping from K_n to $\mathbb{Q}_n(\sqrt{-1})$. Note that the number of prime ideals of $\mathbb{Q}_n(\sqrt{-1})$ which divide m is at most 4, and that K_n is a quadratic extension of $\mathbb{Q}_n(\sqrt{-1})$ unramified outside m. Since $A(\mathbb{Q}_n(\sqrt{-1}))$ is trivial, and the norm mappings $\mathfrak{E}_n \to \mathfrak{E}_1$ for each $n \geq 1$ and $\mathfrak{E}_1 \to \mathfrak{E}_0$ are surjective, the genus formula (e.g. [8] Lemma 1) for K_n over $\mathbb{Q}_n(\sqrt{-1})$ implies that

$$|A(K_n)/2A(K_n)| = |A(K_n)^{\Delta}| \le \frac{2^3}{|\mathfrak{E}_n|} \le \frac{2^3}{|\mathfrak{E}_0|}.$$

Assume that $m = \ell$, and $|\mathfrak{E}_1| = 1$. Then there exist some $x, y \in \mathbb{Q}_1(\sqrt{-1})^{\times}$ such that $\sqrt[4]{-1} = x^2 - y^2\ell$. Since ℓ splits in $\mathbb{Q}_1(\sqrt{-1})$ completely, we may regard x and y as ℓ -adic numbers. By considering the ℓ -adic values, we know that $x \in \mathbb{Z}_{\ell}^{\times}$ and $y \in \mathbb{Z}_{\ell}$. This implies that $-1 \equiv x^8 \pmod{\ell}$, i.e. $\ell \equiv 1 \pmod{16}$, which is a contradiction. Therefore $|\mathfrak{E}_1| \geq 2$ if $m = \ell$.

In the case that $m = p_1p_2$, if we assume that $|\mathfrak{E}_0| = 1$, then $\sqrt{-1} \equiv x^2 \pmod{p_1}$ with some p_1 -adic unit $x \in \mathbb{Q}(\sqrt{-1})^{\times}$, i.e. $p_1 \equiv 1 \pmod{8}$, similarly. This contradiction implies that $|\mathfrak{E}_0| \geq 2$ if $m = p_1p_2$.

Assume that $|\mathfrak{E}_1| = 1$ in the remained case that $m = q_1 q_2$, then $1 + \sqrt{2} \in N_{\Delta} K_1^{\times}$. By taking the norm from K_1^{\times} to $\mathbb{Q}(\sqrt{-2}, \sqrt{q_1 q_2})^{\times}$, we obtain some $x, y \in \mathbb{Q}(\sqrt{-2})^{\times}$ satisfying $-1 = x^2 - y^2 q_1 q_2$. Since q_1 splits in $\mathbb{Q}(\sqrt{-2})$,

those can be regarded as $x \in \mathbb{Z}_{q_1}^{\times}$ and $y \in \mathbb{Z}_{q_1}$, then $-1 \equiv x^2 \pmod{q_1}$. This implies a contradiction $q_1 \equiv 1 \pmod{4}$. Therefore $|\mathfrak{E}_1| \geq 2$ when $m = q_1q_2$.

By the above, it is known that $A(K_n)$ has rank at most 2 for all n in any cases. Since $H/H_2 \simeq \varprojlim A(K_n)$ and $H/G_2 \simeq (\mathbb{Z}/2\mathbb{Z}) \oplus \mathbb{Z}_2$, the rank of H/H_2 must be 2, i.e. H is a pro-2-group of rank 2.

Note that the bracket operation $[\ ,\]:G_i/G_{i+1}\times G/G_2\to G_{i+1}/G_{i+2}$ is a bilinear surjective morphism over \mathbb{Z}_2 . Since G_2/G_3 is generated by $[a,b]G_3$, and

$$[a, b^2] = [a, b]^2[[a, b], b] \equiv [a, b]^2 \equiv [a, b]^2[[a, b], a] = [a^2, b] \equiv 1 \mod G_3$$

 H/G_3 is an abelian group generated by aG_3 , b^2G_3 and $[a,b]G_3$. By Lemma 3.2, the torsion subgroup of H/G_3 which is generated by aG_3 and $[a,b]G_3$ must be cyclic, so that

$$a^2 \equiv [a, b] \mod G_3$$
.

Then

$$\begin{aligned} [[a,b],a] &\equiv [a^2,a] = 1 \mod G_4 \,, \\ [[a,b],b] &\equiv [a^2,b] = [a,b]^2 [[a,b],a] \equiv [a,b]^2 \mod G_4 \,. \end{aligned}$$

This implies that $G_3 \subset G_4(G_2)^2$.

Let $\overline{G} = G/(G_2)^2$, which is also a finitely generated pro-2-group. Then the lower central series $\overline{G}_i = G_i(G_2)^2/(G_2)^2$ makes a fundamental system of closed neighborhoods of $1 \in \overline{G}$. Since $\overline{G}_3 = \overline{G}_4$, it becomes that $\overline{G}_3 = \{1\}$, i.e. $G_3 \subset (G_2)^2$. By the induced surjective morphism $G_2/G_3 \to G_2/(G_2)^2$, we know that the abelian group G_2 is a cyclic pro-2-group generated by [a,b].

Further, we know that $G_3 = (G_2)^2$ and $a^2 = [a, b]^u$ with some $u \in \mathbb{Z}_2^{\times}$, so that G_2 is a cyclic pro-2-group generated by a^2 . Since N/G_2 is generated by aG_2 and is the decomposition subgroup of G/G_2 for any place lying above 2, then N becomes a cyclic pro-2-group generated by a which is the decomposition subgroup of G for any place of $L^2(k_{\infty})$ lying above 2. From the exact sequence

$$1 \to N \to G \to G/N \to 1$$

which has the cyclic terms N (generated by a) and $G/N \simeq \mathbb{Z}_2$ (generated by bN), we know that $G \simeq N \rtimes (G/N)$ is a metacyclic pro-2-group.

Lemma 3.3. For each $n \ge 0$, $A(K_n^+) = D(K_n^+)$ is a cyclic 2-group.

Proof. Note that the number of prime ideals of \mathbb{Q}_n which ramify in K_n^+ is at most 2. By the genus formula for the quadratic extension K_n^+ over \mathbb{Q}_n , we know that $A(K_n^+)$ is a cyclic 2-group. If $A(K_n^+)$ is trivial, there is nothing we have to show. Assume that $A(K_n^+)$ is nontrivial.

Let $F^+ = F_n^+$ be the unique unramified quadratic extension of K_n^+ , which is a (2,2)-extension of \mathbb{Q}_n , and put $F = F^+(\sqrt{-1})$. Note that any prime ideal of K_n^+ above 2 is totally ramified in K_∞ . The field F_∞ is an

unramified (2,2)-extension of k_{∞} , i.e. the fixed field of G^2G_2 . Since G^2G_2 does not contain N, any prime ideal of K_{∞} above 2 does not split in F_{∞} . Then any prime ideal of K_n^+ above 2 does not split in F_n^+ , i.e. in $L(K_n^+)$. This implies that $A(K_n^+) = D(K_n^+)$.

The Galois group $\Gamma = \operatorname{Gal}(k_{\infty}/k)$ can be identified with $\operatorname{Gal}(K_{\infty}/K)$ and $\operatorname{Gal}(K_{\infty}^+/K^+)$. By Proposition 1 of [14] and Lemma 3.3, we know that $X(K_{\infty}^+) \simeq A(K_n^+)$ for all sufficiently large n.

For each $n \geq 0$, the principal prime ideal (π_n) of \mathbb{Q}_n does not ramify in K_n^+ , so that the map $\iota_n : A(K_n^+) \to A(K_n)$ induced from the lifting of ideals is injective by Theorem 1 of [24]. Note that $\varprojlim D(K_n) \simeq N/H_2$ via Artin map. Then $D(K_n)$ is a cyclic 2-group for all $n \geq 0$. Since the prime ideals of K_n^+ above 2 ramify in K_n , the image of ι_n is a subgroup of $D(K_n)$ of index 2. By taking the projective limit, the sequence

$$0 \to X(K_{\infty}^+) \stackrel{\iota_{\infty}}{\to} \varprojlim D(K_n) \to \mathbb{Z}/2\mathbb{Z} \to 0$$

is exact, where $\iota_{\infty} = \lim \iota_n$.

Assume that $X(K_{\infty}^+)$ is trivial. In this case, since $|N/G_2| = 2$, the natural map $N/H_2 \to N/G_2$ is an isomorphism, i.e. $G_2 = H_2$. By Lemma 3.1, we know that G is abelian. This implies the claim of Theorem 2.1 in the case that $|X(K_{\infty}^+)| = 1$.

On the other hand, we assume that $X(K_{\infty}^+)$ is nontrivial. Then there exists a totally real number field F^+ such that F_n^+ is an unramified quadratic extension of K_n^+ for all sufficiently large n. (In fact, $F^+ = F_n^+$ for some n.) By Lemma 3.3, it becomes that $A(F_n^+) = D(F_n^+)$ and $|A(K_n^+)| = 2|A(F_n^+)|$.

For the CM-field $F = F^+(\sqrt{-1})$, the field F_{∞} is an unramified quadratic extension of K_{∞} , which is the fixed field of G^2G_2 . One can see that $\varprojlim D(F_n) \simeq N^2/(G^2G_2)_2$ via Artin map, then $D(F_n)$ is a cyclic 2-group for all $n \gg 0$. Assume that n is sufficiently large. Since (π_n) is not a square of an ideal in F_n^+ and the prime ideals of F_n^+ above 2 ramify in F_n , the injective morphism $A(F_n^+) \to D(F_n)$ with cokernel of order 2 is induced from the lifting of ideals by Theorem 1 of [24] similarly. By taking the projective limit, we have the exact sequence:

$$0 \to X(F_{\infty}^+) \to \varprojlim D(F_n) \to \mathbb{Z}/2\mathbb{Z} \to 0.$$

Here, we note that $|X(K_{\infty}^+)| = 2|X(F_{\infty}^+)|$ is finite. By the above,

$$|N/(G^2G_2)_2| = 2|N^2/(G^2G_2)_2| = 4|X(F_{\infty}^+)| = 2|X(K_{\infty}^+)| = |N/H_2|.$$

Then the natural isomorphism $N/(G^2G_2)_2 \to N/H_2$ induces that $H_2 = (G^2G_2)_2$. By Lemma 3.1 and 3.2, H is abelian, i.e. $L^2(k_\infty) = L(K_\infty)$.

Whether $|X(K_{\infty}^+)| = 1$ or not, $N \simeq \varprojlim D(K_n)$ via Artin map and which is a finite cyclic 2-group of order $2|X(K_{\infty}^+)|$ generated by a. Therefore G has a relation $a^{2|X(K_{\infty}^+)|} = 1$, and Γ acts on a trivially.

For each $n \geq 0$, choose a prime ideal \mathfrak{P}_n of K_n which is lying above 2. Then the unique prime ideal of k_n lying above 2 splits into \mathfrak{P}_n and \mathfrak{P}_n^b in K_n . On the other hand, a prime ideal of $\mathbb{Q}_n(\sqrt{-1})$ lying above 2 is also unique and principal, and also splits into \mathfrak{P}_n and \mathfrak{P}_n^b in K_n . Therefore $\mathfrak{P}_n\mathfrak{P}_n^b$ is a principal ideal of K_n for all $n \geq 0$. This implies that b acts on $N \simeq \varprojlim D(K_n)$ as inverse, i.e. $b^{-1}ab = a^{-1}$. Then G has another relation $[a,b] = a^{-2}$.

Let F be a free pro-2-group generated by two letters a, b, and R the closed normal subgroup generated by the conjugates of $\mathsf{a}^{2|X(K_\infty^+)|}$, $\mathsf{a}^2[\mathsf{a},\mathsf{b}]$. By the above, the natural morphism $\mathsf{F} \to G$: $\mathsf{a} \mapsto a$, $\mathsf{b} \mapsto b$ induces a surjective morphism $\mathsf{F}/\mathsf{R} \to G$. Since the isomorphisms $(\mathsf{F}/\mathsf{R})_2 = \mathsf{F}_2\mathsf{R}/\mathsf{R} \simeq G_2$ and $\mathsf{F}/\mathsf{F}_2\mathsf{R} \simeq G/G_2$ are induced, we know that $\mathsf{F}/\mathsf{R} \simeq G$ which gives a presentation of G.

Since $G_2 \simeq G(k_\infty)_2/(G(k_\infty)_2)_2$ is a cyclic 2-group, the pro-2-group $G(k_\infty)_2$ is also cyclic. Then $L^2(k_\infty) = L^\infty(k_\infty)$, i.e. $G = G(k_\infty)$. This completes the proof of Theorem 2.1.

3.3. Remark on Γ **-actions.** Now, we shall see the action of Γ on $G = G(k_{\infty})$. Since $G/N \simeq X(k_{\infty})/\mathrm{Tor}_{\mathbb{Z}_2}X(k_{\infty}) \simeq \Lambda/(P(T))$ and is generated by bN, we have

$$1 \equiv {}^{P(T)}b \equiv {}^{\gamma}b \cdot b^{-1+P(0)} \bmod N.$$

Then there exist some $2^{\bullet}u \in \mathbb{Z}_2$ with $1 \leq 2^{\bullet} \in 2^{\mathbb{Z}}$ and $u \in \mathbb{Z}_2^{\times}$ such that ${}^{\gamma}b = (a^u)^{2^{\bullet}}b^{1-P(0)}$. By replacing a with a^u , we may assume that the generators a, b in the presentation of $G(k_{\infty})$ of Theorem 2.1 are given with the Γ -action:

$${}^{\gamma}a = a$$
, ${}^{\gamma}b = a^{2^{\bullet}}b^{1-P(0)}$.

Let Γ be identified with the cyclic closed subgroup of $\operatorname{Gal}(L^{\infty}(k_{\infty})/k)$ generated by $\widetilde{\gamma}$. Then $G/[\Gamma, G]G_2 \simeq (G/G_2)/T(G/G_2) \simeq A(k)$ and

$$a^{2^{\bullet}} \equiv b^{P(0)} \mod [\Gamma, G]G_2$$
.

On the other hand, $G/[\Gamma,G]N \simeq (G/N)/T(G/N) \simeq A(k)/D(k) \simeq \mathbb{Z}_2/P(0)\mathbb{Z}_2$ and $[\Gamma,G]N/[\Gamma,G]G_2 \simeq D(k) \simeq \mathbb{Z}/2\mathbb{Z}$. Therefore the above congruence implies that $2^{\bullet} = 1$ if A(k) is a cyclic 2-group, especially if $m = \ell$. In the other cases, we know that $2^{\bullet} \equiv 0 \pmod{2}$. However, in the case that $m = p_1p_2$, the value 2^{\bullet} seems to depend on the structure of G(k) and $X(K_{\infty}^+) \simeq \varprojlim A(K_n^+)$ concerning with Theorem 4, 5 and 6 of [23].

3.4. Determination of nonabelian metacyclic cases. As a corollary of Theorem 2.1, all imaginary quadratic fields k with nonabelian metacyclic $G(k_{\infty})$ can be determined. Here, we remark that all imaginary quadratic fields k with abelian $G(k_{\infty})$ are classified in [27].

Corollary 3.4. For an imaginary quadratic field $k = \mathbb{Q}(\sqrt{-m})$ with a positive squarefree odd integer m, the Galois group $G(k_{\infty})$ becomes nonabelian metacyclic if and only if m is one of the following:

- o $m = \ell$ with a prime number $\ell \equiv 9 \pmod{16}$ such that $2^{(\ell-1)/4} \equiv -1 \pmod{\ell}$
- $om = p_1p_2$ with distinct two prime numbers; $p_1 \equiv p_2 \equiv 5 \pmod{8}$

Proof. Assume that $G = G(k_{\infty})$ is nonabelian metacyclic. In particular, G/G_2 is not cyclic. Then there exists some cyclic closed normal subgroup N of G such that G/N is also a cyclic pro-2-group. Since $\{1\} \neq G_2 \subsetneq N$, N/G_2 is a nontrivial finite cyclic 2-group. By the exact sequence

$$1 \to N/G_2 \to G/G_2 \to G/N \to 1$$

the rank of $X(k_{\infty}) \simeq G/G_2$ must be 2, and $X(k_{\infty})$ has \mathbb{Z}_2 -rank $\lambda(k_{\infty}/k) \leq 1$ with nontrivial $\operatorname{Tor}_{\mathbb{Z}_2}X(k_{\infty})$. Therefore, as seen in §3.1, $X(k_{\infty}) \simeq (\mathbb{Z}/2\mathbb{Z}) \oplus \mathbb{Z}_2$, i.e. m is one of " \circ " in §3.1. Further, m satisfies that $|X(\mathbb{Q}_{\infty}(\sqrt{m}))| \neq 1$ by the present assumption and Theorem 2.1. By Theorem (1) (2) of [31], $|X(\mathbb{Q}_{\infty}(\sqrt{m}))| = 1$ for the cases that $m = \ell$ with $2^{(\ell-1)/4} \not\equiv -1 \pmod{\ell}$ or $m = q_1q_2$. This completes the "only if" part.

Assume that $m = \ell$ with $2^{(\ell-1)/4} \equiv -1 \pmod{\ell}$ or $m = p_1p_2$, conversely. Note that $\mathbb{Q}_1(\sqrt{\ell})$ is an unramified quadratic extension of $\mathbb{Q}(\sqrt{2\ell})$. Then $|A(\mathbb{Q}_1(\sqrt{\ell}))| = 2$ by the known facts that $|A(\mathbb{Q}(\sqrt{2\ell}))| = 4$ (cf., e.g. [37] Theorem 3.4 (c)). Since there is a surjective morphism $X(\mathbb{Q}_{\infty}(\sqrt{\ell})) \to A(\mathbb{Q}_1(\sqrt{\ell}))$, the left hand side is also nontrivial. On the other hand, $X(\mathbb{Q}_{\infty}(\sqrt{p_1p_2}))$ is finite but nontrivial by Theorem (5) of [31]. As a result, $|X(\mathbb{Q}_{\infty}(\sqrt{m}))| \neq 1$ for each m above. Therefore G becomes nonabelian metacyclic by Theorem 2.1.

4. On nonmetacyclic metabelian case

4.1. Preliminaries. For a CM-field k with the maximal real subfield k^+ , we denote by $Q(k) = |E(k)/W(k)E(k^+)| \le 2$ Hasse's unit index, where W(k) is the group of the roots of unity contained in k. Let $\delta(k) = 1$ if $\sqrt{-1} \in k$, and 0 otherwise.

For the cyclotomic \mathbb{Z}_2 -extension k_{∞} of a CM-field k, we denote by $\Pi(k_{\infty})$ the number of places of k_{∞} above 2 which ramify over k_{∞}^+ . For each sufficiently large n, there exists a CM-field k_n^{\vee} such that $(k_n^{\vee})^+ = k_n^+$ and $k_n \neq k_n^{\vee} \subset k_{n+1}$. If $k_n = k_n^+(\sqrt{\alpha})$ with some $\alpha \in k_n^+$, the field $k_n^{\vee} = k_n^+(\sqrt{\alpha}\pi_n)$.

According to the method of Ferrero [8], we obtain the following criterion for the freeness of the Iwasawa module $X(k_{\infty})$ as a \mathbb{Z}_2 -module.

Proposition 4.1. For a CM-field k with the maximal real subfield k^+ , the Iwasawa module $X(k_{\infty})$ of the cyclotomic \mathbb{Z}_2 -extension k_{∞} is a free \mathbb{Z}_2 -module if $X(k_{\infty}^+)$ is trivial and

$$Q(k_n^{\vee}) \le 1 + \delta(k) - \Pi(k_{\infty})$$

for all sufficiently large n.

Proof. Assume that n is sufficiently large, and note that k_{∞} (resp. k_{∞}^+) is unramified outside 2 and totally ramified at all places above 2 over k_n (resp. k_n^+). Then the extension k_{n+1} over k_n^{\vee} is unramified outside 2 in which $\Pi(k_{\infty})$ prime ideals ramify. For all $n \gg 0$, we have

$$|W(k_{n+1})| = 2^{\delta(k)-1}|W(k_n)||W(k_n)| = 2^{\delta(k)}|W(k_n)|.$$

Further, $Q(k_n) \ge Q(k_{n+1})$ if $\delta(k) = 1$, and $Q(k_n) \le Q(k_{n+1})$ otherwise by [24] Proposition 1 (d) (e). Therefore $Q(k_n) = Q(k_{n+1})$ for all $n \gg 0$.

Let γ_n be the generator of $\operatorname{Gal}(k_{n+1}/k_n)$, and J a complex conjugation identified with the generator of $\operatorname{Gal}(k_{n+1}/k_{n+1}^+)$. Then $\sigma_n = J\gamma_n$ is a generator of $\Delta_n = \operatorname{Gal}(k_{n+1}/k_n^\vee)$. Since $|A(k_{n+1}^+)| = 1$ by our assumption, 1+J annihilates $A(k_{n+1})$, i.e. J acts on $A(k_{n+1})$ as -1. Therefore $1-\sigma_n$ acts on $A(k_{n+1})$ as $1+\gamma_n$. Then we have the exact sequence:

$$0 \to A(k_{n+1})^{\Delta_n} \to A(k_{n+1}) \xrightarrow{1-\sigma_n} (1+\gamma_n)A(k_{n+1}) \to 0.$$

The genus formula for k_{n+1} over k_n^{\vee} yields that

$$\frac{|A(k_{n+1})|}{|(1+\gamma_n)A(k_{n+1})|} = |A(k_{n+1})^{\Delta_n}| \le 2^{\Pi(k_\infty)-1}|A(k_n^\vee)|.$$

On the other hand, by Proposition 2 of [24] and our assumption,

$$|A(k_{n+1})| = \frac{Q(k_{n+1})}{Q(k_n^{\vee})Q(k_n)} \frac{|W(k_{n+1})|}{|W(k_n^{\vee})||W(k_n)|} |A(k_n)||A(k_n^{\vee})|$$

$$\geq 2^{H(k_{\infty})-1} |A(k_n)||A(k_n^{\vee})|$$

where we use the fact that $Q(K) = 2^{Q(K)-1}$ for any CM-field K. Since $(1+\gamma_n)A(k_{n+1})$ coincides with the image of the morphism $A(k_n) \to A(k_{n+1})$ induced from lifting of ideals, we have that

$$|\operatorname{Ker}(A(k_n) \to A(k_{n+1}))| = \frac{|A(k_n)|}{|(1+\gamma_n)A(k_{n+1})|} \le 1.$$

by combining the above inequalities. This implies that the morphisms $A(k_n) \to \varinjlim A(k_{\bullet})$ induced from the lifting of ideals are injective for all $n \gg 0$. Since the \mathbb{Z}_2 -torsion submodule of $X(k_{\infty})$ is characterized by the well known isomorphism:

$$\operatorname{Tor}_{\mathbb{Z}_2} X(k_{\infty}) \simeq \varprojlim \operatorname{Ker}(A(k_n) \to \varinjlim A(k_{\bullet}))$$

(obtained from Theorem 7 and 10 of [18]), we know the freeness of $X(k_{\infty})$.

4.2. Proof of Theorem 2.2. For an imaginary quadratic field $k = \mathbb{Q}(\sqrt{-q_1q_2})$ with prime numbers $q_1 \equiv 3 \pmod{8}$ and $q_2 \equiv 7 \pmod{16}$, we know that $\lambda(k_{\infty}/k) = 2$ and $X(k_{\infty}) \simeq (\mathbb{Z}/2\mathbb{Z}) \oplus \mathbb{Z}_2^{\oplus 2}$ as \mathbb{Z}_2 -modules by [8] and [19] (recall §3.1).

The genus field $K = k(\sqrt{q_1}, \sqrt{q_2})$ of k is a CM-field with the maximal real subfield $K^+ = \mathbb{Q}(\sqrt{q_1}, \sqrt{q_2})$, which contains three unramified quadratic extensions $k(\sqrt{q_1}), k(\sqrt{q_2}), k(\sqrt{-1})$ of k. For the cyclotomic \mathbb{Z}_2 -extensions of these fields, the \mathbb{Z}_2 -module structure of the Iwasawa modules are as follows.

Lemma 4.2. $X(K_{\infty})$ and $X(k_{\infty}(\sqrt{q_1}))$ are free \mathbb{Z}_2 -modules of rank 3, and $X(k_{\infty}(\sqrt{q_2}))$, $X(k_{\infty}(\sqrt{-1}))$ are free \mathbb{Z}_2 -modules of rank 2.

Proof. $X(\mathbb{Q}_{\infty}(\sqrt{q_1}))$, $X(\mathbb{Q}_{\infty}(\sqrt{q_2}))$ and $X(\mathbb{Q}_{\infty}(\sqrt{q_1q_2}))$ are trivial, as mentioned in [31]. The genus formula for K_n^+ over $\mathbb{Q}_n(\sqrt{q_1q_2})$ implies that $|A(K_n^+)| = 1$ for all $n \geq 0$, i.e. $X(K_{\infty}^+)$ is also trivial. By Proposition 4.1, $X(K_{\infty})$ is a free \mathbb{Z}_2 -module since $\delta(K) = 1$ and $\Pi(K_{\infty}) = 0$.

On the other hand, $\delta(k(\sqrt{q_1})) = 0$ and $\Pi(k_{\infty}(\sqrt{q_1})) = 0$. The extension $k_n(\sqrt{q_1})^{\vee} = \mathbb{Q}_n(\sqrt{q_1}, \sqrt{-q_2\pi_n})$ over $\mathbb{Q}_n(\sqrt{q_1})$ is essentially ramified (cf. [24] p.349) since the integral ideal $(-q_2\pi_n)$ of $\mathbb{Q}_n(\sqrt{q_1})$ has nontrivial squarefree factor (q_2) . Then $Q(k_n(\sqrt{q_1})^{\vee}) = 1$ for all n by [24] Theorem 1 (i)-1. This yields the freeness of $X(k_{\infty}(\sqrt{q_1}))$ by Proposition 4.1. The freeness of $X(k_{\infty}(\sqrt{q_2}))$ is also obtained similarly.

For the remained case, $\delta(k(\sqrt{-1})) = 1$ and $\Pi(k_{\infty}(\sqrt{-1})) = 1$. Since the ideal (π_n) remains prime in $\mathbb{Q}_n(\sqrt{q_1q_2})$, the extension $k_n(\sqrt{-1})^{\vee} = \mathbb{Q}_n(\sqrt{q_1q_2},\sqrt{-\pi_n})$ is also essentially ramified. Then $Q(k_n(\sqrt{-1})^{\vee}) = 1$ for all n by [24] Theorem 1 (i)-1. By Proposition 4.1, we know the freeness of $X(k_{\infty}(\sqrt{-1}))$.

Note that K_{∞}^+ has 2 (resp. 4) places above q_1 (resp. q_2), which are not inert over \mathbb{Q}_{∞} . By using Kida's formula [20], we know the \mathbb{Z}_2 -rank of the Iwasawa modules.

Let $G = \operatorname{Gal}(L^2(k_{\infty})/k_{\infty})$ be the Galois group of the maximal unramified metabelian pro-2-extension $L^2(k_{\infty})$ over k_{∞} , and denote by N, N', N'' and H the open normal subgroups of G with the fixed fields $k_{\infty}(\sqrt{q_1}), k_{\infty}(\sqrt{q_2}), k_{\infty}(\sqrt{-1})$ and K_{∞} , respectively.

Since $G/G_2 \simeq X(k_\infty)$, G/G_2 has an element aG_2 of order 2 with some $a \in G$, and the Galois group G is a pro-2-group of rank 3. As seen in §3.1, aG_2 generates the decomposition subgroup of the place above 2 in $X(k_\infty)$. Then $aG_2 \in N/G_2$, i.e. $a \in N$ since the place of k_∞ above 2 splits in $k_\infty(\sqrt{q_1})$, and aH generates N/H. Further, we can take some $b \in N'$ such

that bH generates N'/H. By taking some $c \in H$, we obtain a generator system a, b, c of G. Then the generating sets of the subgroups of G are as follows: (Note that $a^2 \in G_2$.)

$$G = \operatorname{Gal}(L^{2}(k_{\infty})/k_{\infty}) = \langle a, b, c \rangle$$

$$N = \operatorname{Gal}(L^{2}(k_{\infty})/k_{\infty}(\sqrt{q_{1}})) = \langle a, b^{2}, c, G_{2} \rangle$$

$$N' = \operatorname{Gal}(L^{2}(k_{\infty})/k_{\infty}(\sqrt{q_{2}})) = \langle b, c, G_{2} \rangle$$

$$N'' = \operatorname{Gal}(L^{2}(k_{\infty})/k_{\infty}(\sqrt{-1})) = \langle ab, c, G_{2} \rangle$$

$$H = \operatorname{Gal}(L^{2}(k_{\infty})/K_{\infty}) = \langle b^{2}, c, G_{2} \rangle$$

Note that G_2/G_3 is generated by $[a,b]G_3$, $[b,c]G_3$ and $[a,c]G_3$ as a \mathbb{Z}_2 -module, and the closed subgroup $[b,c]^{\mathbb{Z}_2}G_3$ generated by [b,c] and G_3 is a normal subgroup of G. Then

$$N'/[b,c]^{\mathbb{Z}_2}G_3 = \langle b,c,[a,b],[a,c],G_3 \rangle/[b,c]^{\mathbb{Z}_2}G_3$$

is an abelian group, in which b and c makes a free \mathbb{Z}_2 -submodule of rank 2 since they are linearly independent over \mathbb{Z}_2 in G/G_2 . On the other hand,

$$[a,b]^2 \equiv [a^2,b] \equiv 1, \quad [a,c]^2 \equiv [a^2,c] \equiv 1 \mod G_3,$$

i.e. [a, b] and [a, c] makes the torsion submodule of $N'/[b, c]^{\mathbb{Z}_2}G_3$. By Lemma 4.2 and the surjective morphism

$$X(k_{\infty}(\sqrt{q_2})) \simeq N'/N_2' \to N'/[b,c]^{\mathbb{Z}_2}G_3,$$

[a,b] and [a,c] must be contained in $[b,c]^{\mathbb{Z}_2}G_3$, i.e. there exist some $z_1, z_2 \in \mathbb{Z}_2$ such that

$$[a,b] \equiv [b,c]^{z_1}, \quad [a,c] \equiv [b,c]^{z_2} \mod G_3.$$

Then G_2/G_3 is a cyclic \mathbb{Z}_2 -module generated by $[b,c]G_3$. Especially, there exists some $z \in \mathbb{Z}_2$ such that

$$a^2 \equiv [b, c]^z \mod G_3.$$

If $[b,c] \in (G_2)^2 G_3$, then $G_2 = G_3$, i.e. G is an abelian pro-2-group. However, the natural morphism $X(K_\infty) \to X(k_\infty)$ can not be injective by Lemma 4.2. Therefore

$$[b, c] \not\equiv 1 \mod (G_2)^2 G_3.$$

Assume that $z_2 \in \mathbb{Z}_2^{\times}$. Then

$$[ab, c] \equiv [a, c][b, c] \equiv [a, c]^{1+z_2^{-1}} \equiv 1, \quad [b, c]^2 \equiv [a, c]^{2z_2^{-1}} \equiv 1 \mod G_3.$$

This yields that

$$N''/G_3 = \langle ab, c, [b, c], G_3 \rangle/G_3$$

is an abelian group in which $[b,c]G_3$ is a torsion element. Since abG_3 and cG_3 makes a free \mathbb{Z}_2 -submodule of rank 2 and there is a surjective morphism

$$X(k_{\infty}(\sqrt{-1})) \simeq N''/N_2'' \to N''/G_3,$$

it becomes that $[b,c] \in G_3$ by Lemma 4.2. This contradiction yields that $z_2 \in 2\mathbb{Z}_2$.

By the above, we have that

$$[a, b^2] \equiv [a, b]^2 \equiv 1, \ [b^2, c] \equiv [b, c]^2 \equiv 1, \ [a, c] \equiv 1 \ \operatorname{mod}(G_2)^2 G_3.$$

Then

$$N/(G_2)^2G_3 = \langle a, b^2, c, [b, c], G_3 \rangle/(G_2)^2G_3$$

is an abelian group. Since b^2G_2 and cG_2 are linearly independent in G/G_2 and $a^4 \equiv [b,c]^{2z} \equiv 1 \mod (G_2)^2 G_3$, the free rank of the \mathbb{Z}_2 -module $N/(G_2)^2G_3$ is 2 and the torsion submodule is

$$\operatorname{Tor}_{\mathbb{Z}_2}(N/(G_2)^2G_3) = \langle a, [b, c], G_3 \rangle/(G_2)^2G_3.$$

By Lemma 4.2 and the surjective morphism

$$X(k_{\infty}(\sqrt{q_1})) \simeq N/N_2 \rightarrow N/(G_2)^2 G_3,$$

we know that $\operatorname{Tor}_{\mathbb{Z}_2}(N/(G_2)^2G_3)$ is a cyclic 2-group.

If $z \in 2\mathbb{Z}_2$, then $a^2 \equiv [b,c]^2 \equiv 1 \mod (G_2)^2 G_3$. In this case, one of a, [b,c], a[b,c] is contained in $(G_2)^2G_3$. However, this induces a contradiction that either $a \in G_2$ or $[b, c] \in (G_2)^2 G_3$. Then we know that $z \in \mathbb{Z}_2^{\times}$.

By the bracket operation $[-,-]:G_2/G_3\times G/G_2\to G_3/G_4$ which is a bilinear surjective morphism over \mathbb{Z}_2 , we have that

$$G_3/G_4 = \langle [[b,c],a], [[b,c],b], [[b,c],c], G_4 \rangle / G_4.$$

and that

$$\begin{aligned} [[b,c],a] &\equiv [a^{2z^{-1}},a] = 1 \mod G_4, \\ [[b,c],b] &\equiv [a^{2z^{-1}},b] = [a^{z^{-1}},b]^2 [[a^{z^{-1}},b],a^{z^{-1}}] \equiv [[a,b]^{z^{-1}},a^{z^{-1}}] \\ &\equiv [a^{2z_1z^{-2}},a^{z^{-1}}] = 1 \mod (G_2)^2 G_4, \\ [[b,c],c] &\equiv \cdots \equiv [a^{2z_2z^{-2}},a^{z^{-1}}] = 1 \mod (G_2)^2 G_4. \end{aligned}$$

These yield that $G_3 \subseteq (G_2)^2 G_4$.

Then $\overline{G}_3 = \overline{G}_4$ for the lower central series $\overline{G}_i = G_i(G_2)^2/(G_2)^2$ of \overline{G} $G/(G_2)^2$. Since the subgroups \overline{G}_i make a fundamental system of closed neighborhoods of $1 \in \overline{G}$, it becomes that $\overline{G}_3 = \{1\}$, i.e. $G_3 \subseteq (G_2)^2$. By the induced surjective morphism

$$G_2/G_3 = \langle [b, c]G_3 \rangle \to G_2/(G_2)^2,$$

we know that G_2 is a cyclic pro-2-group generated by [b, c]. Then the Galois group $G(k_{\infty})_2 = \operatorname{Gal}(L^{\infty}(k_{\infty})/L(k_{\infty}))$ with the cyclic abelianization G_2 is also cyclic. This yields that $L^2(k_\infty) = L^\infty(k_\infty)$ and $G = G(k_\infty)$. Since $(G_2)^2$ is generated by $[b, c]^2$, we may assume that

$$[a,b] = [b,c]^{z_1}, \quad [a,c] = [b,c]^{z_2}, \quad [b,c]^z = a^2$$

by replacing $z_1 \in \mathbb{Z}_2$, $z_2 \in 2\mathbb{Z}_2$ and $z \in \mathbb{Z}_2^{\times}$ suitably. Then G_2 is generated by a^2 , and N is generated by a, b^2, c . Since N/N_2 is a free \mathbb{Z}_2 -module of rank 3 by Lemma 4.2, a^2N_2 can not be a torsion element of N/N_2 , i.e. $G_2/N_2 \simeq \mathbb{Z}_2$. This implies that

$$G_2 = \langle [b, c] \rangle = \langle a^2 \rangle \simeq \mathbb{Z}_2$$

and $N_2 = \{1\}$, i.e. N is an abelian pro-2-group. Then H is also abelian, and $L^2(k_\infty) = L(K_\infty) = L(k_\infty(\sqrt{q_1}))$. Further,

$$\begin{split} 1 &= [b^2, c] = [b, c]^2[[b, c], b] = a^{4z^{-1}}[a^{2z^{-1}}, b] = a^{2z^{-1}}(b^{-1}ab)^{2z^{-1}} \\ &= a^{2z^{-1}}(a[a, b])^{2z^{-1}} = a^{2z^{-1}}(a^{1+2z_1z^{-1}})^{2z^{-1}} = a^{4(z_1+z)z^{-2}}, \\ 1 &= [a, b^2] = \dots = a^{4z_1(z_1+z)z^{-2}}, \\ 1 &= [a, c] = a^{2z_2z^{-1}}. \end{split}$$

Since a is not a torsion element of G, we have that $z_1 = -z$ and $z_2 = 0$, i.e.

$$[a,b] = a^{-2}, \quad [b,c] = a^{2z^{-1}}, \quad [a,c] = 1.$$

Let Γ be identified with the Galois group $\operatorname{Gal}(k_{\infty}(\sqrt{q_1})/k(\sqrt{q_1}))$. Since

$$\langle a \rangle / G_2 = \langle aG_2 \rangle \simeq \operatorname{Tor}_{\mathbb{Z}_2} X(k_{\infty}) \simeq \lim D(k_n)$$

(recall §3.1), the cyclic closed subgroup $\langle a \rangle$ generated by a is the decomposition subgroup of G for any place lying above 2. Especially, $\langle a \rangle$ is a normal subgroup of G and a Λ -submodule of $N = X(k_{\infty}(\sqrt{q_1})) \simeq \varprojlim A(k_n(\sqrt{q_1}))$. Further, since any place of $k_{\infty}(\sqrt{q_1})$ lying above 2 is totally ramified over $k(\sqrt{q_1})$, we have an isomorphism

$$\langle a \rangle \simeq \varprojlim D(k_n(\sqrt{q_1})) \simeq \Lambda/T\Lambda$$

as Λ -modules, i.e. Γ acts on $\langle a \rangle$ trivially. Since

$$G/\langle a \rangle \simeq X(k_{\infty})/\mathrm{Tor}_{\mathbb{Z}_2}X(k_{\infty})$$

as Λ -modules, we can take some x_0, x_1, x_2 and $y_0, y_1, y_2 \in \mathbb{Z}_2$ such that

$$^{\gamma}a = a, \quad ^{\gamma}b = a^{x_0}b^{x_1}c^{x_2}, \quad ^{\gamma}c = a^{y_0}b^{y_1}c^{y_2}.$$

By using these 2-adic integers, the Iwasawa polynomial P(T) associated to $X(k_{\infty})$ is written as

$$P(T) = \det\left((1+T) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} x_1 & x_2 \\ y_1 & y_2 \end{bmatrix} \right).$$

Especially, the coefficients are

$$C_1 = 2 - x_1 - y_2$$
, $C_0 = (1 - x_1)(1 - y_2) - x_2y_1 \in 2\mathbb{Z}_2$.

Note that $H = X(K_{\infty}) = \langle a^2, b^2, c \rangle$ is a free \mathbb{Z}_2 -module of rank 3 by Lemma 4.2. Since H is a Λ -module, ${}^{\gamma}c = a^{y_0}b^{y_1}c^{y_2}$ is contained in H. Further, since $\operatorname{Gal}(K_{\infty}/k_{\infty}) \simeq G/H = \langle aH, bH \rangle$ on which Γ acts trivially,

$$b^{-1\gamma}b = (b^{-1}ab)^{x_0}b^{x_1-1}c^{x_2} = a^{-x_0}b^{x_1-1}c^{x_2}$$

is also contained in H. These yield that

$$x_0, y_0, y_1 \in 2\mathbb{Z}_2, x_1, y_2 \in \mathbb{Z}_2^{\times}.$$

Assume that $x_2 \in 2\mathbb{Z}_2$. Then $b^{-1\gamma}b \in G^2$. Since $a^{-1\gamma}a$, $c^{-1\gamma}c \in G^2$ and $G_2 \subset G^2$ by the above,

$$X(k_{\infty})/2X(k_{\infty}) \simeq G/G^2 = \langle aG^2, bG^2, cG^2 \rangle$$

becomes an abelian group of type (2,2,2) on which Γ acts trivially, i.e. $TX(k_{\infty})$ is contained in $2X(k_{\infty})$. By the well known isomorphism

$$A(k) \simeq X(k_{\infty})/TX(k_{\infty})$$

(cf. [34] Lemma 13.15), we have a contradiction:

$$\operatorname{Gal}(K/k) \simeq A(k)/2A(k) \simeq X(k_{\infty})/2X(k_{\infty}) \simeq G/G^2$$
.

This yields that $x_2 \in \mathbb{Z}_2^{\times}$.

Now, we take the other generator system a', b', c' of G as follows:

$$a' = a^{(x_2 - x_0 z)z^{-1}} \equiv a \mod G^2,$$

$$b' = b^{(x_2 - x_0 z)x_2^{-1}} \equiv b \mod G^2,$$

$$c' = b^{(x_1 - 1)(x_2 - x_0 z)x_2^{-1}} c^{x_2 - x_0 z} \equiv c \mod G^2.$$

Throughout the following calculations, we use the facts that $N = \langle a, b^2, c \rangle$ is an abelian group and $a', b'^2, c' \in N$. Then

$$\begin{split} [a',b'] &= [a',b(b^2)^{-(x_0/2)zx_2^{-1}}] = [a',b] = a'^{-1}(b^{-1}ab)^{(x_2-x_0z)z^{-1}} = a'^{-2}, \\ [b',c'] &= [b(b^2)^{-(x_0/2)zx_2^{-1}},c'] = [b,c'] = [b,c^{x_2-x_0z}] \\ &= (b^{-1}cb)^{-(x_2-x_0z)}c^{x_2-x_0z} = (ca^{-2z^{-1}})^{-(x_2-x_0z)}c^{x_2-x_0z} \\ &= a^{2(x_2-x_0z)z^{-1}} = a'^2, \\ [a',c'] &= 1. \end{split}$$

Further,

$$\begin{array}{l} \gamma a' &= a', \\ \gamma b' &= \gamma b \cdot (\gamma b^2)^{-(x_0/2)zx_2^{-1}} \\ &= \gamma b \cdot (a^{x_0}b^{x_1+1}(b^{-1}cb)^{x_2}(b^{-1}ab)^{x_0}b^{x_1-1}c^{x_2})^{-(x_0/2)zx_2^{-1}} \\ &= \gamma b \cdot (a^{x_0}(b^2)^{(x_1+1)/2}(ca^{-2z^{-1}})^{x_2}(a^{-1})^{x_0}(b^2)^{(x_1-1)/2}c^{x_2})^{-(x_0/2)zx_2^{-1}} \\ &= \gamma b \cdot (a^{-2z^{-1}x_2}b^{2x_1}c^{2x_2})^{-(x_0/2)zx_2^{-1}} \\ &= \alpha^b b^{x_1}c^{x_2} \cdot a^{x_0}b^{-2x_1(x_0/2)zx_2^{-1}}c^{-x_0z} \\ &= b(b^{-1}ab)^{x_0} \cdot (b^2)^{(x_1-1)/2}c^{x_2}a^{x_0}(b^2)^{-x_1(x_0/2)zx_2^{-1}}c^{-x_0z} \\ &= ba^{-x_0} \cdot a^{x_0}b^{(x_1-1)-x_1x_0zx_2^{-1}}c^{x_2-x_0z} \\ &= b^{1-x_0zx_2^{-1}} \cdot b^{(x_1-1)(1-x_0zx_2^{-1})}c^{x_2-x_0z} \\ &= b'c', \\ \gamma c' &= (\gamma b^2)^{((x_1-1)/2)(x_2-x_0z)x_2^{-1}}(\gamma c)^{x_2-x_0z} \\ &= a(a^{-2z^{-1}x_2}b^{2x_1}c^{2x_2})^{((x_1-1)/2)(x_2-x_0z)x_2^{-1}}(a^{y_0}(b^2)^{y_1/2}c^{y_2})^{x_2-x_0z} \\ &= a(x^{-2x_0z})z^{-1}(-(x_1-1)+zy_0)b(x_2-x_0z)x_2^{-1}(x_1(x_1-1)+y_1x_2)c(x_2-x_0z)((x_1-1)+y_2) \\ &= a'^{-(x_1-1)+zy_0}(b'^2)^{(x_1(x_1-1)+y_1x_2)/2}((b'^2)^{-(x_1-1)/2}c')^{(x_1-1)+y_2} \\ &= a'^{-(x_1-1)+zy_0}b'^{-(1-x_1)(1-y_2)+x_2y_1}c'^{1-(2-x_1-y_2)} \\ &= a'^{-(x_1-1)+zy_0}b'^{-C_0}c'^{1-C_1}. \end{array}$$

By using them and the facts that ${}^{\gamma}c' \in {}^{\gamma}cG^2 \subset N$ and $G_2 = \langle a' \rangle$,

$$\begin{aligned} a'^2 &= {}^{\gamma}(a'^2) = [{}^{\gamma}b', {}^{\gamma}c'] = [b'c', {}^{\gamma}c'] = c'^{-1}[b', {}^{\gamma}c']c'[c', {}^{\gamma}c'] = [b', {}^{\gamma}c'] \\ &= b'^{-1}(c'^{-1+C_1}b'^{C_0}a'^{(x_1-1)-zy_0})b'(a'^{-(x_1-1)+zy_0}b'^{-C_0}c'^{1-C_1}) \\ &= (b'^{-1}c'b')^{-1+C_1}b'^{C_0}(b'^{-1}a'b')^{(x_1-1)-zy_0}(a'^{-(x_1-1)+zy_0}b'^{-C_0}c'^{1-C_1}) \\ &= (c'a'^{-2})^{-1+C_1}(b'^2)^{C_0/2}a'^{-(x_1-1)+zy_0}(a'^{-(x_1-1)+zy_0}(b'^2)^{-C_0/2}c'^{1-C_1}) \\ &= (a'^2)^{-(x_1-1)+zy_0+1-C_1}. \end{aligned}$$

Since a' is not a torsion element, this implies that $C_1 = -(x_1 - 1) + zy_0$, i.e. ${}^{\gamma}c' = a'^{C_1}b'^{-C_0}c'^{1-C_1}$.

Let F be a free pro-2-group generated by three letters a, b, c, and R the closed normal subgroup generated by the conjugates of $a^2[a,b]$, $a^{-2}[b,c]$ and [a,c]. Then there exists a surjective morphism $F/R \to G$: $aR \mapsto a'$, $bR \mapsto b'$, $cR \mapsto c'$. Since this morphism induces $(F/R)_2 = F_2R/R \simeq G_2$ and $F/F_2R \simeq G/G_2$, we know that $F/R \simeq G$ which gives a presentation of G. By replacing the notations a', b', c' by a, b, c, the proof of Theorem 2.2 is completed.

4.3. On metabelian 2-class field towers. As a corollary of Theorem 2.2, we calculate the Galois groups $G(k_n)$ of the 2-class field towers of k_n under some conditions as follows.

Proposition 4.3. In addition to the statement of Theorem 2.2, if $(q_1/q_2) = -1$ (i.e. q_1 is not a quadratic residue modulo q_2), then G(k) is an abelian group of type (2,2), and $G(k_1)$ has a presentation

$$G(k_1) = \langle \overline{a}, \overline{b}, \overline{c} \mid [\overline{b}, \overline{a}] = [\overline{b}, \overline{c}] = \overline{a}^2 = \overline{b}^2 = \overline{c}^2, [\overline{a}, \overline{c}] = \overline{a}^4 = 1 \rangle.$$

Further, if $C_1 \equiv 0 \pmod{4}$, $G(k_n)$ has a presentation

$$G(k_n) = \langle \, \overline{a}, \, \overline{b}, \, \overline{c} \mid [\overline{b}, \overline{a}] = [\overline{b}, \overline{c}] = \overline{a}^2, \, [\overline{a}, \overline{c}] = \overline{a}^{2^{n+1}} = \overline{b}^{2^{n+1}} = \overline{c}^{2^n} = 1 \, \rangle$$

with the order $|G(k_n)| = 2^{3n+2}$ for each $n \ge 2$.

Proof. Since $(q_1/q_2)=-1$, $G(k)\simeq(2,2)$ by [21] § 2 (ii), i.e. $K=L^\infty(k)$ and |A(K)|=1 for the genus field $K=k(\sqrt{q_1},\sqrt{q_2})$ of k. Then, by [34] Lemma 13.15, $X(K_\infty)/\nu_n X(K_\infty)\simeq A(K_n)$ as Λ -modules for all $n\geq 0$, where

$$\nu_n = \nu_n(T) = ((1+T)^{2^n} - 1)/T \in \Lambda.$$

By applying the genus formula for K_1 over K, we know that $A(K_1) \simeq X(K_{\infty})/\nu_1 X(K_{\infty})$ is cyclic. Nakayama's lemma yields that $X(K_{\infty})$ is a cyclic Λ -module.

Recall that $H = X(K_{\infty})$ is an abelian subgroup of $G = G(k_{\infty})$ which is generated by a^2 , b^2 , c. Since $\langle a^2 \rangle \simeq \Lambda/T\Lambda$, we have an exact sequence

$$0 \to \Lambda/T\Lambda \to X(K_\infty) \to X(k_\infty)/\mathrm{Tor}_{\mathbb{Z}_2}X(k_\infty) \to \mathbb{Z}/2\mathbb{Z} \to 0$$

of Λ -modules. Then the characteristic polynomial of the Λ -module $X(K_{\infty})$ is TP(T), and $H = X(K_{\infty}) \simeq \Lambda/TP(T)\Lambda$ as a Λ -module.

Lemma 4.4. $C_0 \equiv 2 \pmod{4}$.

Proof. Since $\operatorname{Tor}_{\mathbb{Z}_2}X(k_\infty) \simeq D(k) \simeq \mathbb{Z}/2\mathbb{Z}$ (cf. [8] Lemma 10) under the surjective morphism $X(k_\infty) \to A(k) \simeq (2,2)$ with the kernel $TX(k_\infty)$ (cf. [34] Lemma 13.15), we know that

$$X(k_{\infty})/(TX(k_{\infty}) + \operatorname{Tor}_{\mathbb{Z}_2}X(k_{\infty})) \simeq A(k)/D(k) \simeq \mathbb{Z}/2\mathbb{Z},$$

and that $X(k_{\infty})/\mathrm{Tor}_{\mathbb{Z}_2}X(k_{\infty})\simeq \Lambda/P(T)\Lambda$ by Nakayama's lemma. By combining these isomorphism, we have $\Lambda/(T,P(T))\simeq \mathbb{Z}/2\mathbb{Z}$, i.e. $C_0\equiv 2\pmod{4}$.

Note that any polynomial in Λ acts on H by identifying T with $\gamma-1$ (i.e. ${}^Th={}^{\gamma}h\cdot h^{-1}$ for any $h\in H$). Let

$$F(T) = (C_1/C_0)P(T) - T - C_1$$

which is a polynomial in Λ by Lemma 4.4. Then

$$\begin{split} &P^{(T)}c = \gamma^2 c \cdot (\gamma c)^{C_1 - 2} c^{C_0 - C_1 + 1} \\ &= (\gamma a)^{C_1} (\gamma b)^{-C_0} (\gamma c)^{1 - C_1} \cdot (a^{C_1} b^{-C_0} c^{1 - C_1})^{C_1 - 2} c^{C_0 - C_1 + 1} \\ &= a^{C_1} (b^2 c[c, b] c)^{-C_0/2} (a^{C_1} b^{-C_0} c^{1 - C_1})^{1 - C_1} \cdot a^{C_1 (C_1 - 2)} b^{-C_0 (C_1 - 2)} c^{-(1 - C_1)^2 + C_0} \\ &= a^{C_1} (a^{-2} b^2 c^2)^{-C_0/2} a^{-C_1} b^{C_0} c^{C_0} \\ &= a^{C_0}, \\ &F^{(T)}c = (P^{(T)}c)^{C_1/C_0} (\gamma c)^{-1} c^{1 - C_1} = (a^{C_0})^{C_1/C_0} (a^{C_1} b^{-C_0} c^{1 - C_1})^{-1} c^{1 - C_1} \\ &= b^{C_0}. \end{split}$$

By Lemma 4.4, we can choose an isomorphism $H \simeq \Lambda/TP(T)\Lambda$ such that

$$a^2 \mapsto (2/C_0)P(T)$$
, $b^2 \mapsto (2/C_0)F(T)$, $c \mapsto 1$.

Note that a^2 , b^2 , c make a basis of the free \mathbb{Z}_2 -module H and that $\nu_n(0) = 2^n$, $P(0) = C_0$ and F(0) = 0. For each $n \geq 0$, there exists uniquely a pair $\mathsf{x}_n, \mathsf{y}_n \in \mathbb{Z}_2$ such that

$$\nu_n(T) \equiv \ \mathsf{x}_n\left(2/C_0\right)P(T) + \mathsf{y}_n\left(2/C_0\right)F(T) + \left(2^n - 2\mathsf{x}_n\right) \ \operatorname{mod} TP(T).$$

Especially, $x_0 = y_0 = 0$. By using these 2-adic integers, we have

$$\begin{split} \nu_n(T) \left(2/C_0 \right) & P(T) \equiv 2^n (2/C_0) P(T), \\ \nu_n(T) \left(2/C_0 \right) & F(T) \equiv \\ \left(2/C_0 \right) & \mathbf{y}_n(2/C_0) P(T) + (2^n - 2\mathbf{x}_n - C_1(2/C_0)\mathbf{y}_n) (2/C_0) F(T) - 2(2/C_0)\mathbf{y}_n \\ & \mod T P(T). \end{split}$$

Then the endomorphism $\nu_n: H \to H$ is described by

$$\nu_n \begin{bmatrix} a^2 \\ b^2 \\ c \end{bmatrix} = \begin{bmatrix} 2^n & 0 & 0 \\ (2/C_0)y_n & 2^n - 2x_n - C_1(2/C_0)y_n & -2(2/C_0)y_n \\ x_n & y_n & 2^n - 2x_n \end{bmatrix} \begin{bmatrix} a^2 \\ b^2 \\ c \end{bmatrix}$$

additively. In the following, we denote by A_n the 3×3 matrix in right hand side

Since $H = G(K_{\infty})$ is abelian and K_{∞} is totally ramified over K_n , then $G(K_n)$ is an abelian subgroup of $G(k_n)$ which is isomorphic to $A(K_n)$ via Artin map. Further, since $\nu_n H$ is a normal subgroup of G and $H/\nu_n H \simeq G(K_n)$ via the restriction map, we know that

$$G/\nu_n H \simeq G(k_n)$$

for all $n \ge 0$. For each n fixed, we denote by \overline{a} , \overline{b} , \overline{c} the images of a, b, c in right hand side.

Now, we consider the case that n=1. Since $\nu_1=T+2$, then $\mathsf{x}_1=C_1/2$, $\mathsf{y}_1=-C_0/2$, and there exists some $\mathsf{U}_1\in GL_3(\mathbb{Z}_2)$ such that

$$\mathsf{A}_1 = \left[\begin{array}{ccc} 2 & 0 & 0 \\ -1 & 2 & 2 \\ C_1/2 & -C_0/2 & 2 - C_1 \end{array} \right] = \mathsf{U}_1 \left[\begin{array}{ccc} 2 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 2 \end{array} \right].$$

Therefore $\nu_1 H$ is generated by a^4 , $a^{-2}b^2$ and $a^{-2}c^2$, and we obtain the presentation of $G(k_1) \simeq G/\langle a^4, a^{-2}b^2, a^{-2}c^2 \rangle$.

Lemma 4.5. $x_n \equiv 2^{n-2}C_1$, $y_n \equiv 0 \pmod{2^n}$ for all $n \geq 2$.

Proof. Since $\nu_{n+1}(T) = \nu_n(T)(T\nu_n(T) + 2)$ for all $n \geq 0$, we have

$$\begin{aligned} \mathbf{x}_{n+1} &= 2^n + (2^n - 2\mathbf{x}_n)(-(1+2\mathbf{y}_n) + (C_1/2)(2^n - 2\mathbf{x}_n)) \\ \mathbf{y}_{n+1} &= -(C_0/2)(2^n - 2\mathbf{x}_n)^2 + 2\mathbf{y}_n(1+\mathbf{y}_n). \end{aligned}$$

Especially, $x_2 \equiv C_1$, $y_2 \equiv 0 \pmod{4}$ by Lemma 4.4. Then we know that $x_n \equiv 2^{n-2}C_1$, $y_n \equiv 0 \pmod{2^n}$ for all $n \geq 2$ inductively.

Assume that $C_1 \equiv 0 \pmod{4}$ and $n \geq 2$. Lemma 4.5 yields that $\mathsf{x}_n \equiv \mathsf{y}_n \equiv 0 \pmod{2^n}$. Further, $\det(\mathsf{A}_n) \in 2^{3n}\mathbb{Z}_2^{\times}$ and $\mathsf{A}_n \equiv \mathsf{O} \pmod{2^n}$. Then we can find some $\mathsf{U}_n \in GL_3(\mathbb{Z}_2)$ such that

$$\mathsf{A}_n = \mathsf{U}_n \left[\begin{array}{ccc} 2^n & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 2^n \end{array} \right] \equiv \left[\begin{array}{ccc} 2^n & 0 & 0 \\ \mathsf{y}_n & 2^n & 0 \\ \mathsf{x}_n & \mathsf{y}_n & 2^n \end{array} \right] \bmod 2^{n+1}$$

by noting the congruence of right hand side. This implies that $\nu_n H$ is generated by $a^{2^{n+1}}$, $b^{2^{n+1}}$ and c^{2^n} , and that $A(K_n) \simeq (\mathbb{Z}/2^n\mathbb{Z})^{\oplus 3}$ as a \mathbb{Z}_{2^n} -module. Then we have the presentation of $G(k_n) \simeq G/\langle a^{2^{n+1}}, b^{2^{n+1}}, c^{2^n} \rangle$ for $n \geq 2$, and know that $|G(k_n)| = 2^{3n+2}$.

Example. There are 48 (resp. 53) pairs of prime numbers $q_1 \equiv 3 \pmod{8}$, $q_2 \equiv 7 \pmod{16}$ such that $q_1q_2 < 5000$ and $(q_1/q_2) = -1$ (resp. $(q_1/q_2) = 1$). For all of them, we can see that $P(T) \equiv T^2 + 2 \pmod{4}$, i.e. $C_1 \equiv 0 \pmod{4}$ (resp. that $P(T) \equiv T^2 + 2T \pmod{4}$) by the computation with the use of Stickelberger elements. Especially, if $q_1 = 3$ and $q_2 = 7$, i.e. $k = \mathbb{Q}(\sqrt{-21})$, then $P(T) \equiv T^2 + 15604T + 26266 \pmod{2^{15}}$.

5. On some relating problems

5.1. Let k be an imaginary quadratic field in which the prime number 2 splits. Then the unique $\mathbb{Z}_2^{\oplus 2}$ -extension \widetilde{k} of k is unramified over k_{∞} , i.e. $G(\widetilde{k})$ is a closed normal subgroup of $G(k_{\infty})$ such that $G(k_{\infty})/G(\widetilde{k}) \simeq \mathbb{Z}_2$. In this case, Greenberg's generalized conjecture is considered as a problem relating to the structure of $G(k_{\infty})$, which asserts that $X(\widetilde{k}) = G(\widetilde{k})/G(\widetilde{k})_2$ is pseudonull as a finitely generated torsion $\mathbb{Z}_2[[\operatorname{Gal}(\widetilde{k}/k)]]$ -module. In [11] and [29], it is shown that $G(k_{\infty})$ is not a nonabelian free pro-2-group if $X(\widetilde{k})$ is pseudonull. Further, some criteria for the pseudo-nullity of $X(\widetilde{k})$ are established (cf., e.g., [17]), though the explicit structure of $X(\widetilde{k})$ is uncertain in general. Here, we obtain the following by the analogous arguments to the proof of Theorem 2.2.

Proposition 5.1. Let $k = \mathbb{Q}(\sqrt{-q_1q_2q_3})$ be an imaginary quadratic field with prime numbers $q_1 \equiv q_2 \equiv 3$, $q_3 \equiv 7 \pmod{8}$ such that $(q_1q_2/q_3) = -1$, and \tilde{k} the $\mathbb{Z}_2^{\oplus 2}$ -extension of k. Then \tilde{k} is an unramified \mathbb{Z}_2 -extension over the cyclotomic \mathbb{Z}_2 -extension k_{∞} of k satisfying that $L(\tilde{k}) = L(k_{\infty})$, i.e. there is an exact sequence

$$0 \to X(\widetilde{k}) \to X(k_{\infty}) \to \operatorname{Gal}(\widetilde{k}/k_{\infty}) \to 0.$$

Especially, $X(\widetilde{k})$ is pseudo-null as a $\mathbb{Z}_2[[\operatorname{Gal}(\widetilde{k}/k)]]$ -module.

Proof. Let $\mathfrak p$ be a prime ideal of k above 2, and $k(\mathfrak p^3)$ the ray 2-class field of k modulo $\mathfrak p^3$, which is a quadratic extension of L(k). Let k'_∞ be the $\mathbb Z_2$ -extension of k unramified outside $\mathfrak p$. Note that the genus field of k is $K=k(\sqrt{-q_1},\sqrt{-q_2})$, and that $k'_\infty\cap k(\mathfrak p^3)$ is a quadratic extension of $k'_\infty\cap L(k)$. Since $(q_3/q_1)=-(q_3/q_2)$ and $q_1\equiv q_2\equiv 3\pmod 8$, a prime ideal of k above either q_1 or q_2 has the decomposition subgroup of order 4 in $\mathrm{Gal}(k(\mathfrak p^3)/k)$, and hence the rank of $\mathrm{Gal}(k(\mathfrak p^3)/k)$ is 2. Therefore $k\subsetneq k'_\infty\cap L(k)$. Since $(q_1q_2/q_3)=-1$ and $q_3\equiv 7\pmod 8$, the prime ideal of k above q_3 is inert in $k(\sqrt{-q_3})$, and the prime ideal of $k(\sqrt{-q_3})$ above q_3 splits completely in $k(\mathfrak p^3)$. If $k(\sqrt{-q_3})\subset k'_\infty\cap L(k)$, the prime ideal of k above q_3 does not split in $k'_\infty\cap k(\mathfrak p^3)$. This is a contradiction. Therefore $k(\sqrt{-q_3})\not\subset k'_\infty\cap L(k)$. By replacing q_1 and q_2 suitably, we may assume that $k(\sqrt{-q_1})\subset k'_\infty\cap L(k)\subset \tilde k$.

Let $G = \operatorname{Gal}(L^2(k_{\infty})/k_{\infty})$ be the Galois group of the maximal unramified metabelian pro-2-extension of k_{∞} . Since $G/G_2 \simeq X(k_{\infty})$ is a free \mathbb{Z}_2 -module of rank $\lambda = 1 + 2^{v-2}$ by [8], where 2^v is the largest 2-power dividing $q_3 + 1$, then we can choose the generator system $a, b_1, \dots, b_{\lambda-1}$ of G such that

$$H = \operatorname{Gal}(L^2(k_{\infty})/\widetilde{k}) = \langle b_1, \cdots, b_{\lambda-1}, G_2 \rangle$$

and $N = \operatorname{Gal}(L^2(k_{\infty})/k_{\infty}(\sqrt{-q_1})) = \langle a^2 \rangle H$. Further, by the similar arguments to the proof of Lemma 4.2 with the use of Proposition 4.1 and Kida's formula [20], we can show that $X(k_{\infty}(\sqrt{-q_1}))$ is also a free \mathbb{Z}_2 -module of rank λ .

Now, we put $B = \langle [b_i, b_j] | 1 \le i < j \le \lambda - 1 \rangle (G_2)^2 G_3$. Since $[a^2, b_i] \in (G_2)^2 G_3$, N/B is abelian. Then, by considering the surjective morphism $X(k_{\infty}(\sqrt{-q_1})) \to N/B$, we can see that all $[a, b_i]$ are contained in B. This yields that $G_2 = B$, i.e. G_2/G_3 is generated by all $[b_i, b_j]G_3$. Since $[b_i, b_j] \in H_2$ and H_2 is a normal subgroup of G, we know that $G_2 \subseteq H_2$. Therefore $G_2 = H_2$, i.e. $L(\widetilde{k}) = L(k_{\infty})$.

Note that $\operatorname{Gal}(k/k)$ is generated by the restricted elements of a and $\widetilde{\gamma}$. Since a acts on $X(\widetilde{k}) \simeq H/G_2$ trivially and $P(\widetilde{\gamma} - 1)$ annihilates $X(\widetilde{k})$, we know that $X(\widetilde{k})$ is a pseudo-null $\mathbb{Z}_2[[\operatorname{Gal}(\widetilde{k}/k)]]$ -module.

Remark. For the imaginary quadratic fields k of Proposition 5.1, the pseudo-nullity of $X(\tilde{k})$ can be shown as a consequence of the criteria by Itoh [17].

5.2. For the imaginary quadratic fields k treated in Theorem 2.1 and Theorem 2.2, we have seen that $L(K_{\infty}) = L^2(k_{\infty})$ for the genus fields K of k. For several other families of k with the genus fields $K \neq k$, if $X(K_{\infty}^+)$ is trivial, one can also calculate the structure of the quotient $\operatorname{Gal}(L(K_{\infty})/k_{\infty})$ of $G(k_{\infty})$ by the similar arguments. However, it is still difficult problem to determine the structure of $G(k_{\infty})$ itself and even the metabelian quotient $\operatorname{Gal}(L^2(k_{\infty})/k_{\infty})$ in general situation. One of the difficulties is the structure of $G(K_{\infty}^+)$ relating with Greenberg's conjecture [14]. If $G(K_{\infty}^+)$ is infinite, one can easily find the open subgroups of $G(k_{\infty})$ with arbitrary large generator rank by using Kida's formula [20].

As a step to the above problem, the following seems to be one of the considerable problems: Characterize the imaginary quadratic fields k with $L^2(k_\infty) = L(K_\infty) \neq L(k_\infty)$. This can be regarded as an analogy of Problem 2 in [38] Appendix 2.

Acknowledgements

The author expresses his gratitude to Professor Ken Yamamura for giving valuable information on number fields with 2-class group of type $(2, 2^{\bullet})$. The author also thanks to the referee for helpful comments and suggestions for improvement of this paper. The author was supported by JSPS Research Fellowships for Young Scientists.

References

- E. Benjamin, F. Lemmermeyer and C. Snyder, *Imaginary quadratic fields k with cyclic* Cl₂(k¹). J. Number Theory 67 (1997), no. 2, 229–245.
- [2] E. Benjamin, F. Lemmermeyer and C. Snyder, Real quadratic fields with abelian 2-class field tower. J. Number Theory 73 (1998), no. 2, 182–194.
- [3] E. Benjamin, F. Lemmermeyer and C. Snyder, Imaginary quadratic fields k with $\operatorname{Cl}_2(k) \simeq (2, 2^m)$ and rank $\operatorname{Cl}_2(k^1) = 2$. Pacific J. Math. 198 (2001), no. 1, 15–31.
- [4] E. Benjamin, F. Lemmermeyer and C. Snyder, *Imaginary quadratic fields with* $Cl_2(k) \simeq (2, 2, 2)$. J. Number Theory **103** (2003), no. 1, 38–70.
- [5] N. Boston, Galois groups of tamely ramified p-extensions. J. Théor. Nombres Bordeaux 19 (2007), no. 1, 59–70.
- [6] M. R. Bush, Computation of Galois groups associated to the 2-class towers of some quadratic fields. J. Number Theory 100 (2003), no. 2, 313–325.
- [7] J. D. DIXON, M. P. F. DU SAUTOY, A. MANN AND D. SEGAL, Analytic pro-p groups. Second edition. Cambridge Studies in Advanced Mathematics 61, Cambridge University Press, Cambridge, 1999.
- [8] B. Ferrero, The cyclotomic Z₂-extension of imaginary quadratic fields. Amer. J. Math. 102 (1980), no. 3, 447–459.
- [9] B. FERRERO AND L. C. WASHINGTON, The Iwasawa invariant μ_p vanishes for abelian number fields. Ann. of Math. 109 (1979), no. 2, 377–395.
- [10] S. FUJII, On a higher class number formula of Z_p-extensions. Tokyo J. Math. 28 (2005), no. 1, 55−61.

- [11] S. Fujii, Non-abelian Iwasawa theory of cyclotomic Z_p-extensions. The COE Seminar on Mathematical Sciences 2007, 85–97, Sem. Math. Sci. 37, Keio Univ., Yokohama, 2008.
- [12] S. FUJII AND K. OKANO, Some problems on p-class field towers. Tokyo J. Math. 30 (2007), no. 1, 211–222.
- [13] E. S. GOLOD AND I. R. SHAFAREVICH, On the class field tower. Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 261–272.
- [14] R. GREENBERG, On the Iwasawa invariants of totally real number fields. Amer. J. Math. 98 (1976), no. 1, 263–284.
- [15] F. HAJIR, On a theorem of Koch. Pacific J. Math. 176 (1996), no. 1, 15–18. Correction: 196 (2000), no. 2, 507–508.
- [16] H. ICHIMURA AND H. SUMIDA, On the Iwasawa invariants of certain real abelian fields II. Inter. J. Math. 7 (1996), no. 6, 721–744.
- [17] T. Itoh, Pseudo-null Iwasawa modules for Z²₂-extensions. Tokyo J. Math. 30 (2007), no. 1, 199–209.
- [18] K. IWASAWA, On Z_l-extensions of algebraic number fields. Ann. of Math. (2) 98 (1973), 246-326.
- [19] Y. Kida, On cyclotomic Z₂-extensions of imaginary quadratic fields. Tohoku Math. J. (2) 31 (1979), no. 1, 91–96.
- [20] Y. Kida, Cyclotomic Z₂-extensions of J-fields. J. Number Theory 14 (1982), no. 3, 340–352.
- [21] H. KISILEVSKY, Number fields with class number congruent to 4 mod 8 and Hilbert's theorem 94. J. Number Theory 8 (1976), no. 3, 271–279.
- [22] M. LAZARD, Groupes analytiques p-adiques. Inst. Hautes Études Sci. Publ. Math. 26 (1965), 389–603.
- [23] F. LEMMERMEYER, On 2-class field towers of imaginary quadratic number fields. J. Théor. Nombres Bordeaux 6 (1994), no. 2, 261–272.
- [24] F. LEMMERMEYER, Ideal class groups of cyclotomic number fields I. Acta Arith. 72 (1995), no. 4, 347–359.
- [25] B. MAZUR AND A. WILES, Class fields of abelian extensions of Q. Invent. Math. 76 (1984), no. 2, 179–330.
- [26] Y. MIZUSAWA, On the maximal unramified pro-2-extension of Z₂-extensions of certain real quadratic fields II. Acta Arith. 119 (2005), no. 1, 93−107.
- [27] Y. MIZUSAWA AND M. OZAKI, Abelian 2-class field towers over the cyclotomic Z₂-extensions of imaginary quadratic fields. Math. Ann. 347 (2010, no. 2, 437–453.
- [28] K. OKANO, Abelian p-class field towers over the cyclotomic Z_p-extensions of imaginary quadratic fields. Acta Arith. 125 (2006), no. 4, 363–381.
- [29] M. OZAKI, Non-Abelian Iwasawa theory of Z_p-extensions. (Japanese) Young philosophers in number theory (Kyoto, 2001), RIMS Kôkyûroku 1256 (2002), 25−37.
- [30] M. OZAKI, Non-Abelian Iwasawa theory of Z_p-extensions. J. Reine Angew. Math. 602 (2007), 59−94.
- [31] M. OZAKI AND H. TAYA, On the Iwasawa λ_2 -invariants of certain families of real quadratic fields. Manuscripta Math. **94** (1997), no. 4, 437–444.
- [32] J.-P. Serre, Galois cohomology. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002.
- [33] R. T. Sharifi, On Galois groups of unramified pro-p extensions. Math. Ann. 342 (2008) 297–308.
- [34] L. C. WASHINGTON, Introduction to Cyclotomic Fields (2nd edition). Graduate Texts in Math. vol. 83, Springer, 1997.
- [35] A. WILES, The Iwasawa conjecture for totally real fields. Ann. of Math. (2) 131 (1990), no. 3, 493–540.
- [36] K. Wingberg, On the Fontaine-Mazur conjecture for CM-fields. Compositio Math. 131 (2002), no. 3, 341–354.
- [37] Y. YAMAMOTO, Divisibility by 16 of class number of quadratic fields whose 2-class groups are cyclic. Osaka J. Math. 21 (1984), no. 1, 1–22.
- [38] K. Yamamura, Maximal unramified extensions of imaginary quadratic number fields of small conductors. J. Théor. Nombres Bordeaux 9 (1997), no. 2, 405–448.

Yasushi MIZUSAWA
Department of Mathematics
Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Aichi 466-8555, JAPAN
E-mail: mizusawa.yasushi@nitech.ac.jp