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Ternary quadratic forms with rational zeros

par John FRIEDLANDER et Henryk IWANIEC

Dédié à Jean-Pierre Serre

Résumé. Formes quadratiques ternaires avec zéros rationnels
Nous considérons les formes quadratiques de Legendre

ϕab(x, y, z) = ax2 + by2 − z2

et, en particulier, une question posée par J–P. Serre, de compter le
nombre de paires d’ entiers 1 6 a 6 A, 1 6 b 6 B, pour lesquels la
forme ϕab possède un zéro rationnel et non-trivial. Sous certaines
conditions faibles sur les entiers a, b, on peut trouver la formule
asymptotique pour le nombre de telles formes.

Abstract. We consider the Legendre quadratic forms

ϕab(x, y, z) = ax2 + by2 − z2

and, in particular, a question posed by J–P. Serre, to count the
number of pairs of integers 1 6 a 6 A, 1 6 b 6 B, for which
the form ϕab has a non-trivial rational zero. Under certain mild
conditions on the integers a, b, we are able to find the asymptotic
formula for the number of such forms.

1. Introduction
In his paper [7] J–P. Serre considered, among other things, the question

of how many forms

(1) ϕab(x, y, z) = ax2 + by2 − z2

have a non-trivial rational zero. Interest in these forms dates back to Le-
gendre. We study the family of such forms with integer coefficients 1 6
a 6 A, 1 6 b 6 B. Serre was interested in the case A = B and proved
that, for A = B sufficiently large, most such forms do not have such a zero,
specifically, the number N of forms which do, satisfies the upper bound

(2) N � AB√
logA
√

logB
.
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He also noted that one can prove the lower bound AB/(logA)(logB) and
predicted that the lower bound could be improved, perhaps to match the
upper bound. Subsequently, Guo [2] confirmed this by establishing an as-
ymptotic formula (in the case A = B, for a slightly modified sum).

In this paper we consider some variations of Serre’s problem. We begin
by proving an asymptotic formula, also for a slightly modified sum, and
valid so long as neither A nor B is extremely small compared to the other.
Our arguments differ from those of Guo in a number of respects.

Let N(A,B) denote the number of such pairs with the extra conditions
that a and b are odd, squarefree, and relatively prime.

Theorem 1. Let δ > 0. For A, B > exp
(
(logAB)δ

)
we have

(3) N(A,B) = 6
π3

AB√
logA
√

logB

{
1 +O

( 1
logA

+ 1
logB

)}
,

where the implied constant depends on δ.

Our restriction that a and b be squarefree is quite natural because square
factors of the coefficients can be absorbed into the variables of the form.
We expect that the other constraints can also be avoided by some technical
modifications and the asymptotic formula given for the original sum N
(with a different constant) but we did not pursue this.

As for the restriction that neither of A, B be very small compared to
the other, we expect that this could be eased considerably, certainly un-
der the assumption of the Grand Riemann Hypothesis, albeit with a more
complicated main term. In fact we are even able to establish an asymptotic
formula when one of the coefficients of ϕab(x, y, z), say b, is held fixed. Let
b > 1 be odd and squarefree. Let Nb(A) be the number of a 6 A, a odd,
squarefree and prime to b, such that ϕab(x, y, z) has a non-trivial rational
zero.

Theorem 2. If b 6 (logA)C we have

Nb(A) = c(b)
τ(b)

A√
logA

{
D(b) +O

((log logA)
3
2

√
logA

)}
where C is any positive constant and the implied constant depends on C.
Here c(b) is the arithmetic function given in (15) and

(4) D(b) = 4
ηb
L(1, χb)

1
2
∏
p

(
1− χb(p)

p

) 1
2
(
1 + χb(p)

2p+ 1

)
,

where ηb = 3 , 4 , 2 , 6 according as b ≡ 1 , 3 , 5 , 7 ( mod 8), respectively.

Thus, for each b, the form (1) has no non-trivial rational zero for almost
all a prime to b.
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By the Minkowski local–global principle (see page 42 of [6]) an indefinite
quadratic form represents zero over the rationals if and only if it represents
it over every p–adic field. In view of this principle it is an interesting problem
to consider more generally a subset P of the primes and to ask how large
|P| must be in order to conclude that almost all a fail this test for some
p ∈ P.

Let Nb(A,P) be the number of a, 1 6 a 6 A, a squarefree, co-prime
with b and such that ϕab(x, y, z) has p-adic zeros for every p ∈ P.

For simplicity we consider b > 1, b ≡ 1 (mod 4) and squarefree. Let Pb
be the subset of odd primes in P which are inert in the quadratic field
Q(
√
b), that is satisfying (b/p) = −1.

Theorem 3. For b > 1, b ≡ 1 (mod 4), squarefree, we have

(5) Nb(A,P)� A
∏
p6A
p∈Pb

(
1− 1
p

)
.

Corollary 1. Suppose that Pb is sufficiently large that∑
p∈Pb

1
p

=∞ .

Then, for almost all a, squarefree and co-prime with 2b, the quadratic form
ϕab(x, y, z) has no p-adic zero for at least one prime p ∈ P.

Note that the upper bound in Theorem 3 holds for completely general
sets P. We are also interested in obtaining a lower bound of the same quality
and we succeed in doing so for completely general sets P as long as Pb is
somewhat smaller than it is when P is the full set of primes.

Theorem 4. Let b > 1, b ≡ 1 (mod 4), squarefree. Assume that P satisfies∑
p6x
p∈Pb

1
p
< κ log log x

with some constant 0 6 κ < 1/2 and all sufficiently large x. Then, for all
sufficiently large A

(6) Nb(A,P) � A
∏
p6A
p∈Pb

(
1− 1
p

)
.

H.I. wishes to thank the University of Toronto for their hospitality during
the period this work was begun and finished and both authors wish to
thank the Banff International Research Station for their hospitality during
a period in which a substantial part of the paper was completed. We also
thank the referee for a careful reading of the paper.
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We dedicate this paper to Jean–Pierre Serre, both for the beauty of his
mathematics and also in recognition of his support, during many years, for
analytic number theory. We also thank him for important comments on an
earlier draft of the paper and in particular for drawing our attention to the
work of Guo.

2. A characterization using Hilbert symbols
In the case of (1) the local-global principle is characterized by the re-

quirement that the Hilbert symbol (see pages 19-20 of [6]) satisfy

(7)
(
a, b

p

)
= 1 ,

for every p. If p - 2ab then (7) always holds. For p = 2 we require

(8)
(
a, b

2

)
= (−1)

a−1
2
b−1

2 = 1.

Thus we see that we can only get a solution if at least one of the odd
integers a and b is congruent to one modulo four. The sumN(A,B) can thus
be decomposed into three (out of four) subsums, N11(A,B), N13(A,B),
N31(A,B), in accordance with the residue classes modulo four of a and b
respectively.

The estimation of each of these three is almost identical and gives rise
to asymptotically the same amount. Therefore we shall place emphasis on
one of them, the contribution from the pairs a, b satisfying the additional
constraint

(9) a ≡ b ≡ 1 (mod 4) .

For the remaining primes our local requirement becomes

(10)
(
a, b

p

)
=
(
b

p

)
= 1 ,

if p | a, and

(11)
(
a, b

p

)
=
(
a

p

)
= 1 ,

if p | b. This indicates that the problem reduces to counting integers with
certain restrictions on their prime factors. That in turn suggests the pos-
sibility of using a sieve method and indeed Serre applied a sieve argument
in his original proof of the upper bound (2). The problem has also been
studied subsequently in Section 4.5 of [1] wherein Cojocaru and Murty, by
a different sieve argument, derive a non-trivial upper bound, but not of the
expected order of magnitude.
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Put < a, b >= 1 if all of the local conditions are satisfied and put
< a, b >= 0 otherwise. Therefore we have

N(A,B) =
∑∑
a6A b6B

2ab squarefree

< a, b > .

Suppose that at least one of a and b is congruent to one modulo four. Then
we can express the symbol < a, b > in terms of Jacobi symbols by using
the law of quadratic reciprocity as follows:

< a, b > = 1
τ(ab)

∏
p|ab

(
1 +
(a
p

))(
1 +
( b
p

))
= 1
τ(ab)

∑
k`=a

∑
mn=b

(k`
m

)(mn
k

)
= 1
τ(ab)

∑
k`=a

∑
mn=b

(k
n

)( `
m

)
.

(12)

If we were to count the forms ϕab with multiplicity then the divisor
function factor 1/τ(ab) would not be present and the problem would be
much easier, but we wish to concentrate on the more natural question of
Serre. The problem thus reduces to the estimation of sums over Hilbert
symbols and thereby to sums over Jacobi symbols. Similar sums also occur
in the very recent work of Fouvry and Klüners [3].

By (12) we have

(13) N11(A,B) =
∑∑∑∑
k`6A, mn6B

2k`mn squarefree
k≡` (mod 4), m≡n (mod 4)

1
τ(k`mn)

(k
n

)( `
m

)
,

while in the cases of N13, N31, the second, respectively first, of the (mod 4)
congruences requires a minus sign. Note that, since k, `, m, n are pairwise
coprime, the divisor function can be split.

3. Lemmas
The proofs of our first two theorems are based on results concerning

character sums.
Lemma 1. Let χ (mod q) be a Dirichlet character and (d, q) = 1. Then,
we have for x > 2,∑

n6x
(n,d)=1

µ2(n)χ(n)
τ(n)

= δχc(dq)
x√

log x

{
1 +O

((log log 3dq)
3
2

log x

)}

+OC
(
τ(d)qx(log x)−C

)
,

(14)
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with any C > 0. Here, δχ is zero unless χ is the principal character, in
which case δχ = 1 and

(15) c(r) = π−
1
2
∏
p

(
1 + 1

2p

)(
1− 1
p

)1
2 ∏
p|r

(
1 + 1

2p

)−1
.

This lemma has the following immediate consequence of independent
interest, and it is in this more general form that we shall use it.

Corollary 2. Let (ad, q) = 1 where q = q1q2 with (q1, q2) = 1. For χ2 a
character modulo q2 We have

∑
n6x

(n,d)=1
n≡a (mod q1)

µ2(n)χ2(n)
τ(n)

= δχ2
c(dq)
ϕ(q1)

x√
log x

{
1 +O

((log log 3dq)
3
2

log x

)}

+OC
(
τ(d)qx(log x)−C

)
.

(16)

This is an analogue of Landau’s theorem on the number of integers which
are the sum of two squares and also of the Siegel-Walfisz theorem for primes
in arithmetic progressions. Actually, our proofs of these in Section 8 go
along such lines. Note that both of the above results are trivial if q exceeds
(log x)C . This limitation comes as usual from that in Siegel’s theorem.

Since we can use Lemma 1 only for relatively small moduli we require
an additional tool to cover the larger ranges. For this we use the following
estimate for general bilinear forms in the Jacobi symbol.

Lemma 2. Let αm, βn be any complex numbers supported on odd integers
and bounded by one. Then we have

(17)
∑
m6M

∑
n6N

αm βn
(m
n

)
�
(
MN

5
6 +M

5
6N
)(

log 3MN
)7

6 ,

where the implied constant is absolute.

We shall prove this in Section 9 using ideas originally due to Heilbronn [4]
and frequently exploited since. This result is useful if bothM and N exceed
a sufficiently high power of log 3MN .

The proof of Theorem 3 requires the following estimate for the mean
value of a fairly general non-negative multiplicative function.

Lemma 3. Let f(m) be a non-negative multiplicative function such that∑
y<p6x

f(p) log p
p

6 α log x
y

+ β
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for all 2 6 y 6 x where α > 0, β > 1 are constants. Then∑
m6x

µ2(m)f(m)� (α+ β) x
log x

∏
p6x

(
1 + f(p)

p

)
.

This lemma is well-known in principle and has a simple proof. For the
proof of Theorem 4 we shall require a result from sieve theory.

4. Proof of Theorem 1
In this section we give the proof of Theorem 1, subject to the verification

in the following sections of Lemmas 1 and 2. We begin with the formula (13)
for N11(A,B).

Let V > 3 be a parameter to be chosen later (as a large power of logAB).
If k 6 V and ` 6 V we trivially get a contribution

(18) O(V 2B) ,

and similarly, if m 6 V and n 6 V , we trivially get a contribution

(19) O(V 2A) .

Next, if k 6 V and n 6 V then we apply Lemma 2 for the sum over ( `m),
getting an amount

�
∑
k6V

∑
n6V

A

k

B

n

(
k

1
6A−

1
6 + n

1
6B−

1
6
)
(logAB)

7
6

� AB
(
V

1
6A−

1
6 + V

1
6B−

1
6
)
(logAB)

7
6 .

(20)

Similarly, if ` 6 V and m 6 V then we apply Lemma 2 for the sum over
( kn), getting a contribution again bounded by (20).

In the range k > V and n > V we again apply Lemma 2, but now to the
sum over k and n, getting an amount

(21) O
(
ABV −

1
6 (logAB)

13
6
)
.

Similarly, in the range ` > V and m > V we again get a contribution
satisfying the same bound (21).

Now there are two remaining ranges:

(22) k 6 V , m 6 V , 2km squarefree,

(23) ` 6 V , n 6 V , 2`n squarefree.

By symmetry, the contribution of these two ranges is identical so we may
concentrate on (22). For each pair k 6 V , m 6 V , 2km squarefree, we need



104 John Friedlander, Henryk Iwaniec

to consider the sum

(24) Sk,m =
∑∑

`6A/k, n6B/m
(`n,2km)=1, (`,n)=1

`≡k (mod 4), n≡m (mod 4)

µ2(`)
τ(`)
µ2(n)
τ(n)

(k
n

)( `
m

)
.

We intend to apply Lemma 1 twice, for the characters

χk =
(k
∗

)
and χm =

( ∗
m

)
.

Before doing so however we need to remove the condition (`, n) = 1 which
we do by means of the Möbius function, summed over common divisors d
of ` and n. Having done so we interchange the order of summation, split
the sum into two according to whether d is small or large. We give a trivial
bound for the larger d and arrive at:

Sk,m =
∑
d6∆

(d,2km)=1

µ(d)
τ2(d)

( d
m

)(k
d

) ∑
`6A/kd

(`,2kd)=1,
`≡kd (mod 4)

µ2(`)
τ(`)

( `
m

)

∑
n6B/md

(n,2md)=1
n≡m (mod 4)

µ2(n)
τ(n)

(k
n

)
+O
( AB

∆km

)
.

(25)

Here, the error term, after being summed over k, m, is

(26) O
(
∆−1AB(log V )2

)
.

The sums over ` and n are now in the proper form for an application
of Corollary 2 to each. There will be no main term unless both characters
are principal, that is k = m = 1. The contribution from the error terms in
Corollary 2 when one or both of the characters is non-principal, after being
summed over d, k, m is, for any C, bounded by

(27) O
(
ABV 3[(logA)−C + (logB)−C

])
.

The primary amount, coming to (24) from the case k = m = 1 when both
of the characters are principal, is given by the product Gd(A)Gd(B) where

Gd(A) = c(4d)A
2d
√

logA/d

{
1 +O

((log log 3d)
3
2

logA

)}
= c(4d)A

2d
√

logA

{
1 +O

( log 2d
logA

)}
.
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We input this product and then sum over d. We obtain

(28) AB√
logA
√

logB

{ ∑
d odd
µ(d)
( c(4d)

2dτ(d)

)2
+O
( 1

logA
+ 1

logB
+ 1

∆

)}
,

where the last term in the error comes from re-extending the summation
over d to infinity.

If we take, say ∆ = (logAB)4, then the error terms in (26) and (28)
are acceptable for the theorem. Next, we need to choose V so that the
error terms in (18) – (21) are admissible. A little computation shows that
V = (logAB)22 suffices. Once having this choice, we choose C in (27)
sufficiently large, say C = 68/δ where δ was given in the statement of the
theorem.

It remains to evaluate the constant in the main term of (28). By (15)

c(4d) = 4
5
c(1)
∏
p|d

(
1 + 1

2p

)−1
,

so that the constant in question is∑
d odd

= 1
4

(4
5
c(1)
)2 ∏
p>2

(
1− 1(

1 + 1
2p
)2(2p)2

)
= 1

6π
∏
p

(
(1 + 1

2p

)2(
1− 1
p

)(
1− 1

(2p+ 1)2

)
= 1
π3 .

Recall that this constant is the one which comes from the range (22) so to
get the constant for N11 we need to double this to include the range (23).
Then, to include the contributions from N13 and N31, we need to triple
that. This completes the proof of Theorem 1.

5. Proof of Theorem 2
We give the details in the case b ≡ 3 ( mod 4), b squarefree, b 6= 1. By (12)

we have

Nb(A) =
∑
a6A

a≡1 ( mod 4)
2ab squarefree

< a, b >

= 1
τ(b)

∑
mn=b

∑∑
k`6A

k≡` ( mod 4)
(k`,2b)=1

µ2(k`)
(k
n

)( `
m

)
τ(k`)−1 .

(In the case b ≡ 1 ( mod 4) the condition k ≡ ` ( mod 4) disappears and the
remainder of the proof is almost identical.)



106 John Friedlander, Henryk Iwaniec

If m 6= 1 and n 6= 1 then by Corollary 2 we get a contribution

� 1
τ(b)

∑
mn=b

∑
k6
√
A

(k b)=1

τ(bk)bAk−1(logA)−C

� τ(b)bA(logA)2−C .

The remaining terms contribute

2
τ(b)

∑∑
k`6A

k≡` ( mod 4)
(k`,2b)=1

µ2(k`)
(k
b

)
τ(k`)−1 .

The terms with k >
√
A contribute, by Corollary 2, the amount

O
(
bA(logA)1−C) .

For each k 6
√
A we execute the summation over ` using Corollary 2 with

d = bk, q1 = 4, q2 = 1 getting

c(4bk)
ϕ(4)

A

k
√

logA/k

{
1 +O

((log log bk)
3
2

logA

)}
+O
(
τ(bk)bA

k
(logA)−C

)
.

Hence we obtain

Nb(A) = 2
τ(b)

∑
k6
√
A

k odd

µ2(k)
(k
b

)2c(bk)
5τ(k)

A

k
√

logA/k

{
1 +O

((log logA)
3
2

logA

)}

+O
(
τ(b)bA(logA)2−C)

= 4c(b)
5τ(b)

A√
logA

D(b) +O
( c(b)
τ(b)

A

logA
(log logA)

3
2
)

+O
(
τ(b)bA(logA)2−C) ,

where

D(b) =
∑
k odd
µ2(k)

(k
b

)∏
p|k

(
1 + 1

2p

)−1(
kτ(k)

)−1
.

Here the series over k is also given by the product

D(b) =
∏
p>2

[
1 +
(p
b

)(
1 + 1

2p

)−1(
2p
)−1] =

∏
p>2

[
1 + χb(p)

2p+ 1

]
,

which is the same as the Euler product (4). This completes the proof.
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6. Proof of Theorem 3
From Section 2, ignoring the condition (11) we have

Nb(A,P) 6
∑
a6A

2ab squarefree
(a,Pb)=1

1 ,

where Pb is the product of the primes p 6 A and in Pb. This is the mean
value of the multiplicative function with f(p) = 1 on primes neither dividing
2b nor in P and 0 at other primes. Therefore, Lemma 3 yields

Nb(A,P)� A

logA
∏
p6A
p-Pb

(
1 + 1
p

)
� A

∏
p6A
p|Pb

(
1− 1
p

)

which completes the proof.

7. Proof of Theorem 4
From Section 2 we have

Nb(A,P) =
∑
a6A

2ab squarefree
(a,Pb)=1

w(a) ,

where
w(a) =

∏
p|b
p∈P

1
2

(
1 +
(a
p

))
.

Note that w(a) is the characteristic function of the condition (11) for primes
p ∈ P. This sum can be viewed as the sifted sum S(A, A) for the sequence
A = w(a) over integers a with 2ab squarefree, sifted by the set of primes
Pb.

The sieve requires a good approximation for the congruence sums

Ad =
∑[

a6A
(a,2b)=1
a≡0 (d)

w(a)

for d squarefree, (d, 2b) = 1. Here [ restricts the summation to squarefree
integers. Since w(a) is periodic with period b we have

Ad =
∑∗

β ( mod 2b)
w(β)

∑[

a6A
a≡β (2b)
a≡0 (d)

1 .
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The inner sum is equal to∑[
=
∑[

a6A/d
a≡βd̄ (2b)
(a,2bd)=1

1 =
∑

(α,2bd)=1
µ(α)

∑
δ|d
µ(δ)

∑
a6A/dα2δ
α≡β′ ( 2b)

1

=
∑

α<
√
A/d

(α,2bd)=1

µ(α)
∑
δ|d
µ(δ)
( A

2bdα2δ
+O(1)

)

= A

2bd
ϕ(d)
d

∏
p-2bd

(
1− 1
p2

)
+O
(
τ(d)
√
A/d
)

= 2A
3ζ(2)bd

∏
p|b

(
1− 1
p2

)∏
p|d

(
1 + 1
p

)−1
+O
(
τ(d)
√
A/d
)
.

We have ∑∗

β ( mod 2b)
w(β) = 1

τP(b)
∑∗

β ( mod 2b)

∑
m|b
m|P

( β
m

)
= ϕ(b)
τP(b)

where P is the product of the primes in P and τP(b) denotes the number
of divisors of b composed of primes in P. Hence, we conclude that

(29) Ad = 2bg(bd)A
3ζ(2)τP(b)

+O
(
τ(d)
√
A/d
)
,

where g is the multiplicative function given by

(30) g(p) =
(
p+ 1

)−1
,

and the implied constant depends on b. The approximation (29) also holds
trivially for d not squarefree in which case we set g(d) = 0 because Ad =
0 and hence so does the remainder term. Therefore we can write Ad =
Xg(d) + rd where

X = 2bg(b)A
3ζ(2)τP(b)

and ∑
d6D

(d,2b)=1

|rd| �
√
AD logD .

In sieve terminology this means that our sequence has level of distribution

D = A
(
logA

)−4
.

The sieve needed here has dimension κ < 1/2 which is very convenient
for lower bounds and as a result we obtain Theorem 4. The precise sieve
statement appears in a forthcoming book on sieve methods by the authors.
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The full details of this result are entwined in the book so thoroughly as to
make impractical their inclusion here. Alternatively, see [5].

One could also try to prove Theorem 4 using the theory of multiplicative
functions. However, the lack of multiplicativity of the function w(a) makes
it unclear how to proceed without giving up positivity. On the other hand,
the sieve is more flexible in this regard; actually it also can be used to treat
the problem for more general sequences of coefficients a.

8. Proof of Lemma 1
The sum (14) is given by Perron’s formula, cf page 60 of [8]:

1
2πi

∫ 2+iT

2−iT
Zd(s, χ)

xs

s
ds+O

( x
T

log x
)
,

with any 1 6 T 6 x, where Zd(s, χ) is the corresponding generating Dirich-
let series

Zd(s, χ) =
∑

(n,d)=1
µ2(n)χ(n)

τ(n)
n−s =

∏
p-d

(
1 + χ(p)

2ps
)

=
∏
p|d

(
1 + χ(p)

2ps
)−1
L(s, χ)

1
2R(s, χ) ,

and R(s, χ) is given by the Euler product

R(s, χ) =
∏
p

(
1 + χ(p)

2ps
)(

1− χ(p)
ps

)1
2
,

which converges absolutely for Re s > 1
2 .

We move the integration to the contour consisting of the straight line
segments from 2− iT left to 1− η − iT , then upward to 1− η then to the
right to 1 − T−1, followed by a positively oriented circle centred at s = 1
returning to 1 − T−1, then, again on straight line segments, left to 1 − η,
upward to 1− η + iT , and finally right to 2 + iT .

We make the choices T = exp(c
√

log x) and η = c(ε)/qε log T for small
ε, where the constants are chosen so that one may apply the Theorems of
de la Vallée Poussin and of Siegel. By those theorems, we do not cross any
singularities in this change of the contour, and, as in the proofs of those
theorems, the contribution coming from those line segments not along the
real line is bounded by

O
(
τ(dq)x exp

(
−c(ε) log x
qε log T

)
(log x)2

)
.

If χ is not principal then Zd(s, χ) is holomorphic so the contribution from
the integrals over the real segment cancel and that around the circle van-
ishes so we have no main term.
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If χ = χ0 (mod q) is principal then we have

Zd(s, χ0) =
∏
p-dq

(
1 + 1

2ps
)

= Ldq(s)ζ(s)
1
2R(s) ,

where
Ld(s) =

∏
p|d

(
1 + 1

2ps
)−1

and

R(s) =
∏
p

(
1 + 1

2ps
)(

1− 1
ps

) 1
2
.

Writing

ζ(s) = 1
s− 1

{
1 +O(|s− 1|)

}
we find that the integral on the small circle is bounded by O(τ(dq)x/

√
T )

which is admissible and it remains to estimate the integrals on the real
segments which, in case of the principal character, do not cancel.

For, s = σ ± εi with 2
3 6 σ < 1 and ε > 0, ε→ 0,

ζ(s)
1
2 = ∓i√

1− σ
{
1 +O(1− σ)

}
,

respectively. On the same segment we also have

R(s) = R(1){1 +O(1− σ)}, s−1 = 1 +O(1− σ) ,

and

Ld(s) =
∑
h|d∞

a(h)
hs

=
∑
h|d∞
h6
√
x

a(h)
hs

+O
(τ(d)
x

1
4)
,

where |a(h)| 6 1/τ(h).
We require the following formulae:∫ 1

1−η

yσ√
1− σ

dσ =
∫ 1

−∞

yσ√
1− σ

dσ +O
(
y1−η
)

=
√
πy√

log y
+O
(
y1−η
)
,

and similarly,∫ 1

1−η
yσ
√

1− σ dσ 6
∫ 1

−∞
yσ
√

1− σ dσ = πy

2(log y)
3
2
,

for any y > 2. We shall apply these for y = x/h, h 6
√
x. Letting C denote

the part of the contour running over the real line segments, we find that



Ternary quadratic forms with rational zeros 111

the corresponding integral (1/2πi)
∫
C is given by

R(1)
π

∫ 1

1−η

xσ√
1− σ

{ ∑
h|(dq)∞
h6
√
x

a(h)
hσ

+O
(τ(dq)
x

1
4

)}{
1 +O(1− σ)

}
dσ

= R(1)
π

∑
h|(dq)∞
h6
√
x

a(h)
{ √πx/h√

log x/h

(
1 +O

( 1
log x

))
+O
((
x/h
)1−η)}

+O
(
x

3
4 τ(dq)

)
.

In the sum over h we replace
1√

log x/h
= 1√

log x

(
1 +O

( log h
log x

))
,

and then expand the sum over h to all h | (dq)∞. The leading term gives
Ldq(1) and the tail of the series is bounded by O(x3/4 log 2dq).

To estimate the contribution from the error term O
( log h

log x
)

we use∑
h|(dq)∞

|a(h)|
h

log h = −
(∏
p|dq

(
1− 1

2ps
)−1)′

s=1

�
∏
p|dq

(
1− 1

2p
)−1∑
p|dq

log p
p
,

together with the bounds∏
p|r

(
1− 1
p

)−1
� log log 3r ,

∑
p|r

log p
p
� log log 3r .

Putting these together we obtain

1
2πi

∫
C

= R(1)√
π
Ldq(1) x√

log x

{
1 +O

(x(log log 3dq)
3
2

log x

)}
+O
(
x

3
4 τ(dq)

)
+O(x1−η/2) .

This completes the proof of Lemma 1. The corollary follows at once by the
orthogonality relation for Dirichlet characters modulo q1.

9. Proof of Lemma 2
We denote by B(M,N) the sum on the left hand side of (17). By sym-

metry we can assume M > N . We apply Hölder’s inequality, obtaining∣∣B(M,N)
∣∣3 6 N2∑

n

|
∑
m

|3 6 N2∑
m1

∑
m2

∑
m3

∣∣∣∑
n

γn
(m1m2m3

n

)∣∣∣ ,
where |γn| 6 1.
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Next, we rid ourselves of the remaining set of unknown coefficients by
applying Cauchy’s inequality. This gives∣∣B(M,N)

∣∣6 6 N4∑
m1

∑
m2

∑
m3

τ3(m1m2m3)
∑
`6M3

∣∣∣∑
n

γn
( `
n

)∣∣∣2
� N4M3(log 2M)6∑

n1

∑
n2

∣∣∣∑
`

( `
n1n2

)∣∣∣
� N4M3(log 2M)6

(
M3 ∑

n1n2=�

1 +N4
)
.

Since the last sum, the number of solutions to n1n2 = �, is � N logN ,
this completes the proof.

10. Proof of Lemma 3
By partial summation we obtain∑

p6x

f(p) log p� (α+ β)x .

Hence, for any 1 6 y 6 x we have

S(y) =
∑
m6y

µ2(m)f(m) logm =
∑∑
np6y

µ2(np)f(np) log p

� (α+ β) y
∑
n6y

µ2(n)
n
f(n)

6 (α+ β) y
∏
p6x

(
1 + f(p)

p

)
.

By partial summation we can remove the log factor and the lemma follows.
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