URNAL

de Théorie des Nombres

e BORDEAUX

anciennement Seminaire de Theorie des Nombres de Bordeaux

Hilbert-Speiser number fields and Stickelberger ideals
Tome 21, n° 3 (2009), p. 589-607.

<http://jtnb.cedram.org/item?id=JTNB_2009__21_3_589_0>

© Université Bordeaux 1, 2009, tous droits réservés.

L’acces aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.cedram.org/), implique I’accord
avec les conditions générales d’utilisation (http://jtnb.cedram.
org/legal /). Toute reproduction en tout ou partie cet article sous
quelque forme que ce soit pour tout usage autre que I’utilisation a
fin strictement personnelle du copiste est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir
la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/


http://jtnb.cedram.org/item?id=JTNB_2009__21_3_589_0
http://jtnb.cedram.org/
http://jtnb.cedram.org/legal/
http://jtnb.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/

Journal de Théorie des Nombres

de Bordeaux 21 (2009), 589-607

Hilbert-Speiser number fields and Stickelberger
ideals

par Humio ICHIMURA

RESUME. Soit p un nombre premier. On dit quun corps de nom-
bres F' satisfait la condition (H,.) si toute extension abélienne
N/F d’exposant divisant p™ posséde une base normale d’entiers
sur I’anneau des p-entiers. On dit aussi que F satisfait la condition
(H ) 8'il satisfait (H,,.) pour tout n > 1. Il est bien connu que le
corps des rationnels @ satisfait (H,) pour les nombres premiers
p. Dans cet article, nous donnons une condition simple pour qu’un
corps de nombres F' satisfasse (H;,) en termes du groupe des
classes d’idéaux de K = F((pn) et d'un “idéal de Stickelberger”
associé au groupe de Galois Gal(K/F'). Comme application, nous
donnons un corps quadratique imaginaire qui pourait vérifier la
condition tres forte (M) pour un petit nombre premier p.

ABSTRACT. Let p be a prime number. We say that a number field
F satisfies the condition (H,.) when any abelian extension N/F
of exponent dividing p™ has a normal integral basis with respect
to the ring of p-integers. We also say that I satisfies (H ) when
it satisfies (H,.) for all n > 1. Tt is known that the rationals Q
satisfy (HI’DOO) for all prime numbers p. In this paper, we give a
simple condition for a number field F' to satisfy (H,.) in terms of
the ideal class group of K = F((,») and a “Stickelberger ideal”
associated to the Galois group Gal(K/F). As an application, we
give a candidate of an imaginary quadratic field F' which has a
possibility of satisfying the very strong condition (H ]’Doo) for a small
prime number p.

1. Introduction

Let p be an odd prime number. For a number field F, let O be the
ring of integers and O = Op[1/p| the ring of p-integers of F. A finite
Galois extension N/F with group I' has a normal p-integral basis (p-NIB
for short) when O is cyclic over the group ring ORI'. We say that F
satisfies the Hilbert-Speiser condition (H,.) when any abelian extension
N/F of exponent dividing p™ has a p-NIB, and that F satisfies (H, )
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when it satisfies (H,.) for all n. The classical theorem of Hilbert and
Speiser combined with Kersten and Michalicek [17, Theorem 2.1] asserts
that the rationals @ satisfy (H) for all p. One naturally asks “can there
exist any number field F other than @ satisfying the very strong condition
(H;)oo) for some p ?”, which is a starting point of this study. The main result
(Theorem 1.1) of this paper is a necessary and sufficient condition for F
to satisfy (H.) for n (< o0). It is given in terms of a Stickelberger ideal
associated to the Galois group of F((yn) over F', where (pn is a primitive
p"-th root of unity. As an application (Theorem 1.2), we give a candidate
of an imaginary quadratic field F' which has a possibility of satisfying the
very strong condition (H,e) for a small prime number p.

To be more precise, let us introduce some notation. For an integer n > 1,
let G,, = (Z/p™)* be the multiplicative group. Let Sg, be the classical
Stickelberger ideal of the group ring Z(G,, associated to the abelian exten-
sion Q((n)/Q. Let H be a subgroup of G,. For an element a € QG,,
put

o = Z a,0 € QH with o= Z Q0.
occH ceGn
In other words, ay is the H-part of . We define the Stickelberger ideal
Sy of the group ring ZH simply by

Sy ={an|aeSs,} CZH.

In Section 2, we collect several properties of this ideal.

Let F' be a number field. For an integer n > 1, let K,, = F({pn), and
we identify the Galois group Gal(K,,/F) with a subgroup H = Hp,, of G,
through the Galois action on (p». For simplicity, we write

Srn = SHp,,-

Let Clp and Cl} be the ideal class groups of the Dedekind domains Op
and Of, respectively. Let hp = |Clp| and by = |Cl}|. Letting D be the
subgroup of Clp generated by the classes containing a prime ideal of Op
over p, we have an isomorphism Cly = Clr/D. Hence, we have Cl}, = Clp
and hlz = hp when the prime ideals of O over p are principal.

Theorem 1.1. Under the above setting, a number field F satisfies the
condition (Hl’,n) if and only if the Stickelberger ideal Sr; annihilates the
class group Cly. for all 1 <i <n.

When n = 1, we proved this assertion in [11] and [16, Appendix]|, and
gave the following application.

Proposition 1.1. ([14, Theorem 1]). Let p be an odd prime number with
p = 3 mod 4, and assume that GRH is satisfied when p = 163. Then the
imaginary quadratic field F = Q(\/—p) satisfies (H,) if and only if p = 3,
7,11, 19, 43, 67 or 163.
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The above imaginary quadratic fields are the famous 7 ones of class
number one with an odd prime conductor.

Let hy» be the class number of the p™-th cyclotomic field Q({y»), and h;,rn
the class number of the maximal real subfield of Q((yn). Let hyn = hpn/ h;n
be the relative class number. Using Theorem 1.1 and some other results,
we prove the following:

Theorem 1.2. Letp =3, 7, 11, 19, 43, 67 or 163, and F = Q(/—p). Let
n > 2 be an integer. Assume that hin /bt =1 and hy /hy is odd, and that
GRH is satisfied when p = 163. Then I satisfies (Hyn).

Let us comment on the assumption on class numbers. Washington [24,
25] began studying the non-p-part of h,n or the quotient ry, = h;nH / P
He proved that for a prime number ¢ # p, 7, is not divisible by ¢ for all
sufficiently large n and that the set of primes ¢ with £ { h,. for all n has
natural density 1. When £ = 2 and p = 3, 7, it is known that h,» is odd for
all n > 1 (Horie [8], the author [15]). It is plausible that the assumption
on hy,n/h, is satisfied also for the other p’s and all n. On the other hand,
the class number h;n is a very difficult object, and the exact value of h;n is
known only for small p and n (partly, under GRH) due to van der Linden
[18]. For this, see also Washington [26, page 421]. It is known that when
p = 3, the assumption on h;n/h;; is satisfied for 2 <n < 4, and for n =5
under GRH. When p = 7, it is satisfied for n = 2. Recently, Buhler et al [1]
proposed a striking conjecture that h;rn = h;n for all n > 1 except for a
finite number of primes p. Thus, we can say that the imaginary quadratic
field F' = Q(y/—p) in Theorem 1.2 satisfies the very strong Hilbert-Speiser
condition (HZ’DOO) if we are lucky enough; namely, if a prime number p in
Theorem 1.2 is not an exceptional one in the above conjectual sense (and
the assumption on h,,. is satisfied for all n).

In [7, Theorem 136], Hilbert gave his famous alternative proof of the
Kummer-Stickelberger theorem for the class group of Q((,) using the
Hilbert-Speiser theorem. Frohlich [3] generalized this argument for the
class group of a general cyclotomic field Q((,). The “only if” part of The-
orem 1.1 is a natural generalization of these works. Let us refer to a work
of McCulloh [19, 20, 21]. Let I be a cyclic group of order p; I' = F where
F; is the additive group of the finite field ', = Z/p. Denote by CI(OfI)
and R(OpI") the locally free class group of the group ring OpI' and the
subset of the classes [On] for all tame I'-extensions N/F, respectively. It is
known that R(OpI') is contained in the kernel CI°(OFpI") of the projection
Cl(OpI') — ClF induced from the augmentation Opl' — Op. Through
the natural action of G; on I', the group ring ZG1 acts on the locally free
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class group. In [19, 20], McCulloh proved that
(1.1) R(OpT) = CI°(OpT)%61.

Similar result is obtained also when I is an abelian group of exponent p.
Theorem 1.1 for the case n = 1 is a consequence of a p-integer version of
(1.1) as we have seen in [16, Appendix]. In [21], McCulloh tried to generalize
this beautiful theorem for a general abelian group, but could not obtain a
result as sharp as (1.1) (see [21, Theorem 7.49]). Our proof of Theorem
1.1 for general n is quite elementary, and is a natural generalization of the
arguments in [11] where we gave a simple and direct proof of Theorem 1.1
for the case n = 1 without using McCulloh’s theorem (1.1). In place of
(1.1), we used, in [11], (i) a p-integer version of a theorem of Gémez Ayala
[5, Theorem 2.1] on normal integral basis of a Kummer extension of prime
degree and (ii) a Galois descent property of p-NIB for a cyclic extension of
degree p ([10, Theorem 1]). Gémez Ayala’s theorem was generalized in [9,
Theorem 2] and Del Corso and Rossi [2, Theorem 1] for a cyclic Kummer
extension of arbitrary degree. (See Remark 5.1.) A generalization of the
descent property is given in Section 4 (Theorem 4.1).

This paper is organized as follows. In Section 2, we collect several prop-
erties of the Stickelberger ideals. In Section 3, we derive Theorem 1.2 from
Theorem 1.1 and the results in Section 2. In Section 4, we study a Galois
descent property of p-NIB, which is a key for proving Theorem 1.1. In
Section 5, we prove Theorem 1.1. In Section 6, we prove the lemmas given
in Section 2.

2. Properties of Stickelberger ideals

In this section, we collect some properties of the Stickelberger ideals,
which are necessary to prove Theorems 1.1 and 1.2. Some of them are
formal generalizations of the previous results in [11, 12, 13, 16] for the case
n = 1. For a while, we fix an odd prime number p and an integer n > 1.
Let G = Gy, = (Z/p™)*, and let Sg be the classical Stickelberger ideal of
the group ring ZG associated to the abelian extension Q((y»)/Q. For the
definition, see [26, Chap. 6] and/or Sinnott [23, page 189]. (It is quite easy
to see that the ideal S given in [26] equals the one in [23].) For an integer
i with p {4, let 0; = i be the class in G represented by i. For a subgroup
H of G, the Stickelberger elements 6 and 0, are defined by

OH:Z,]%O';lEQH,
and

il 4
(2.1) O =Omr =) 0 | 7 € ZH

i
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for r € Z, respectively. Here, i runs over the integers relatively prime
top with 1 <4 < p"—1and i € H, and for a real number z, [z] is
the largest integer < x. These elements are the H-parts of 0g and 0g .,
respectively. As is well known, the elements ¢, are contained in Sg, and
Sg is generated, as a module over Z, by ¢, for all integers r with p { r
(cf. [26, Lemma 6.9]). Hence, the same holds for the H-part Sy

(2.2) Su=0n,|r€Z)g=0u,|recz ptr)y.

Here, (* * %)  denotes the module generated by * * * over Z. Let Ny be
the norm element of ZH, and e = ey = p"0y. The element e plays a role
in the proof of Theorem 1.1. We have

Ny = _QH,—l €Sy and e= QH’pn = 9H,1+p" € Sy.

We easily see that

(2.3) (r—o,)0g =0u, forrwithre H
and that
(2.4) ZH - -0gNZH C Sy.

When H = G, these two assertions are well known (see Lemma 6.9 or
page 376 of [26]). They are shown exactly similary for the general case.
From (2.3), it follows that

(2.5) ore =remod p"Sy for r with 7 € H.

Let Py and Ay be the p-part and the non-p-part of H, respectively. Let
wp : G1 = (Z/p)* — Z, be the Teichmiiller character. Regarding Ay
as a subgroup of G, let wy = WplAy For a module X over Z,G; (resp.
ZyApy) and a Q,-valued character x of G (resp. Ap), let X(x) be the
x-component. Namely, X (x) is the maximal submodule of X on which G
(resp. Ap) acts via x. The following is a generalization of the well known

fact (Sg, ® Zp)(wp) = Z) (ct. [26, page 101]). Here (and in what follows),
Z) is the ring of p-adic integers, and @Q,, is the p-adic rationals.

Lemma 2.1. We have (Sg®Z,)(wy) = Z, Py regarding Z,H as a module
over Z,Ag. In particular, when Ag is trivial, Sy ® Z,, = Z,H.

Let J = o_1 be the element of G,, of order 2 (complex conjugation).
The classical Stickelberger ideal S, of ZG,, is contained essentially in the
“odd part” (1 — J)ZG,. This is generalized as follows.

Lemma 2.2. Let H be a subgroup of G = G,, with |H| odd, and let Hy =
H - (J) where J =o0_1. Let 6, =0 or 1 according to whether p™ divides r
or not. Then the following equations hold :

QHIZ(I—J)QH—I—JNH and aHl,r:(1_J)9H,r+(r_5r)JNH-
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Let us look at the effect of the restriction map ¢ : ZGp 41 — ZG,. Let
H' be a subgroup of Gp41, and H = ¢(H') C G,,. There are two cases: (I)
|H'| = |H| and (II) |H'| = p|H|. Let € = e/, e = ey, and N = Ny. For
elements or subsets « and 3 of ZH, let («, 3) be the ideal of ZH generated
by them.

Lemma 2.3. Under the above setting, the following assertion holds :
The case (I) : Sg C ¢(Sy).
The case (11) : Sy = (p(Sy), Ng). Further, we have
(p—Dp™*
2

3. Proof of Theorem 1.2

p(e') = pe + N.

In this section, we derive Theorem 1.2 from Theorem 1.1 and the results
in Section 2. We use the same notation as in Theorem 1.1.

Lemma 3.1. Let F' be a number field and n > 2. Assume that the norm
map Cly; — Cly is surjective for 1 <i <n—1 and that the natural map
Cly — Cly, is trivial. Under these assumptions, if Sp,, annihilates Cly ,
then Sg; kills Cl’Kl, foralll <i<n.

Proof. By the second assumption, the norm element Ng; of ZHp; kills
Cl’Ki. Then, from Lemma 2.3 and the first assumption, we obtain the
assertion. [

Proof of Theorem 1.2. Let F = Q(y/—p) with p = 3, 7, 11, 19, 43, 67 or
163. Let n > 2 be an integer, and assume that hf /bt =1 and ho. /hy, is
odd. Let K,, = F((y») = Q((p»). Since the unique prime ideal of K, over p
is principal, we have Cl = Cl,. Let G = G, and H = Gal(K,,/F) C G.
The assumptions in Lemma 3.1 are satisfied as the class number hg of F
is one. Hence, by Theorem 1.1, it suffices to show that Sy kills Clk,,. The
order |H| is odd and G = H - (J) with J = 0_;. By Lemma 2.2, we have

(1= Nbu, =0, — (r — 6,)JNp.

The element 0¢ , kills Clg, by the classical Stickelberger theorem, and Ny
kills Clg, as hp = 1. Therefore, it follows that

(3.1) ol — o).

Let p # 163. Then h;{ = land h, is odd. It follows from the assumption
on the class numbers that h;n =1 and hyn = h;nhgn is odd. Therefore,
(3.1) implies that Sy kills Clg, . Next, let p = 163. In this case, we have
h;; = 4 under GRH, and h, =4 - N for some odd integer N. Similarly to
the above, we see from (3.1) and the assumption on the class numbers that
Sy kills the Sylow g-subgroup Clk, [g] for all odd prime numbers g. Hence,
it suffices to show that Sy kills the 2-part Clk,, [2]. By the assumption on
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the class numbers, the natural map Clg, [2] — Clkg, [2] is an isomorphism.
Let H = Gal(K1/F) C Gy, and let ¢ be the restriction map ZH — ZH.
From the above, 0y, kills Clk, [2] if and only if ¢(6g,) kills Clg,[2]. In
[14], we already showed that the Stickelberger ideal Sz associated to H
kills Clg, under GRH. Hence, we see from Lemma 2.3(II) that ¢(0g,,)
kills Cly,. Therefore, F' satisfies (H)n) also when p = 163 under GRH.
g

4. Galois descent of p-NIB

Let p be an odd prime number and F' a number field. Let K,, = F((pn)
and H = Gal(K,,/F) C G, = (Z/p")*. Let e = ey € Sy = Sp. The
following lemma is an excercise in Galois theory, and we do not give its
proof.

Lemma 4.1. (I) Let L/K,, be a cyclic extension of degree p"™. Then there
exists a cyclic extension N/F of degree p" such that L = NK, and N N
K, = F if and only if there exists an element a € K such that L =
Ko ((a®)MP"),

(I) Let N/F be a cyclic extension of degree p* with 1 < i <n — 1. If
NNK,=F, then NK,, = K,((a®)'?") for some a € K.

Let B /F be the cyclotomic Z,-extension, and let B’ be the n-th layer
of B¥/F with B% = F. When p does not divide [K,, : F], the condition
NN K, = F in Lemma 4.1 trivially holds. When p divides [K, : F],
the condition is equivalent to N N B} = F, which is also equivalent to
NNB¥ =F.

The following assertion on p-NIB is well known.

Lemma 4.2. (I) When (,n € F*, a cyclic extension N/F of degree p"
unramified outside p has a p-NIB if and only if N = F(el/p") for some unit
ec OF.

(IT) The extension B'%/F has a p-NIB for any n > 1.

For the first assertion, see Greither [6, Proposition 0.6.5], and for the
second one, [6, Proposition 1.2.4] or [17, Theorem 2.1].

Lemma 4.3. Assume that p divides [K,, : F| and that any finite abelian
extension N/F of exponent dividing p" such that NN K, = F has a p-NIB.
Then F' satisfies (Hn).

Proof. Let N/F be an arbitrary abelian extension of exponent dividing
p". Using Galois theory, we see that there exists an intermediate field Ny
of NB%/F such that NyB% = NB% and Ny N B = F. By Lemma
4.2(IT), B%/F has a p-NIB. By the second assumption, N1 /F has a p-NIB.
Therefore, since B'%/F is unramified outside p, the composite N1 B%/F has
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a p-NIB by a classical result on rings of integers (cf. Frohlich and Taylor
[4, (2.13)]). As N C N;B%, N/F has a p-NIB. [

We say that a number field I satisfies the Galois descent condition (D))
when for any finite abelian extension N/F of exponent dividing p™ such that
NNK, =F, N/F has a p-NIB if the pushed-up extension N K, /K, has a
p-NIB. The following is a key for proving Theorem 1.1.

Theorem 4.1. A number field F' satisfies (Dyn) if it satisfies (H,—.).

To prove Theorem 4.1, we need to prepare several lemmas.

Lemma 4.4. Let K be a number field with (pn € K*. Let I' be a finite
abelian group of exponent p", and I' a quotient group of I'.  Then the re-

striction map Ok’ — O%T induces a surjection (OxI')* — (OKI)* on
the groups of units.

Proof. As 1/p € O, the Wedderburn decomposition induces the following
ring isomorphisms

fOT = A=1]0k, a— (x(@)
X

9:0xT = B=[]0%, B— @(B))y-
"

Here, x (resp. v) runs over the K-valued characters of ' (resp. I'), which we
regard as a homomorphism from O%T" (resp. O%T') to O% by linearity. The
restriction map ¢ : O% ' — O)T induces a natural projection ¢’ : A — B
such that gop = ¢ o f. We easily see that ¢/(A*) = B*. This implies

that the restriction map ¢ induces a surjection (O%I')* — (O T)*. O
In the following, let

(4.1) ['= () x - x ()

be a finite multiplicative abelian group of exponent p™, and let p*" be the
order of v, for 1 <r < g. We may as well assume that

(4.2) 1<ep<---<es<n and ey =-=¢e=n

for some s < g. Let
X:Z/pel@@Z/peg

be the additive group. For an element I € X, we often write I = (i1, ,i4)
for some integers i, defined modulo p° . _

We fix a primitive p"-th root ¢ = (p» of unity. Then § = P s a
primitive p’-th root of unity for 1 < i < n. Let K be a number field with
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¢ € K*, and let L/K be a I'-extension. For an element w € L and each
I= (i, ,ig) € X, let

Z <H g—lr/\r) S

AeX
be the associated resolvent. Here, A = (Ay,- -+, Ay) runs over X. We easily
see that
(wp) " = Zk -wy.

Let OIL, ; be the additive group con31st1ng of integers € O} such that

k= fé’;@ -x for all 1 < k < g. The resolvent wy is an element of C’)}J’ ;- The
following lemma is well known and easy to show.

Lemma 4.5. Under the above setting, assume that O = Ok I'-w for some
w € O). Then we have

/ / / /
OLJ:OK'H)[ and OL: @ OL,I?
Iex
where I runs over X.

Lemma 4.6. Under the setting and the assumption of Lemma 4.5, let af
be an arbitrary generator of O ; over O, and put

W = Z Oé]GOIL.
IeX

Then we have O} = Ok - W.

Proof. We easily see that the resolvent W; of W equals pay with e =
e1 + -+ e4. Hence, as p is a unit, it follows that

0L =P Okar= OxW; COKT - W,
Iex Iex

which implies that O} = O T -W. O

Proof of Theorem j.1. Let T' and the integers e, be as in (4.1) and (4.2).
Let K = K,, = F((p»). Let N/F be a I'-extension with N N K, = F,
and L = NK. Assume that O] = O%T' - w for some w € O}. To prove
the assertion, it suffices to show that we can take W € O such that
O = O)T - W. Actually, when this is the case, we have Oy = ORI - W.
Let

Q= {1} - x {1} x () e x (") T
Then the quotient
L=T/Q= 1) x - x (3)
is a finite abelian group of exponent p"~!. Let N; be the intermediate field
of N/F corresponding to Q2 by Galois theory, and let L1 = N1 K. Then the
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Galois groups Gal(N;/F) and Gal(L;/K) are naturally isomorphic to T.
Let
Y =2Z/p" 00 Z/po@pZ/p2)* Y cX

and

_ D(g—s
Xzz/p(ﬁ@”‘@z/pes@(Z/pn—1> (g—s)

be the additive groups. We write an element J of X in the form J
(j1,+ -+ ,jg) for some integers j, defined modulo p® (resp. p"~!) for 1
r<s (resp. s+1<r <g). We see that

g
=X 3 ([ T e )

Iey JeX AeX \r=1 r=s+1

IA

Here, I and A = ()\1,;-- ,Ag) Tun over Y and X, respectively, and J =
(41, ,Jg) runs over X. The right hand side equals

. . A A
Z (Z 5;1]1)\1 X oo X Z gnigl)\g) . w711.--’ygg7
A jl jg

where j,. runs over the integers with 0 < j. < p® — 1 (resp. 0 < j, <
p"l—1)for 1 <r <s(resp. s+ 1 <7 <g). We see that this equals
A

A
pf-zlwyll""yﬂg with f=e+---+es+(g—s)(n—1)
A

where A runs over the subset

{0} x -+ x {0} x <p”*1Z/p”Z

Hence, it follows that

)@(9*8) C X

Z wr :pf Trpp,w.
Iey
On the other hand, we have O} = O T- T'rp,/r,w from the assumption.
As we are assuming that F' satisfies (H 1,7 »_1), there exists an element w; €
Oy, € Oy such that O}, = O%T -wi. Hence, (Tryr,w)* = w; for some
unit A € (OkT')*. By Lemma 4.4, there exists a unit B € (O%I')* which

is sent to A by the restriction map O} ' — O%T. Now, replacing w with

w?, we may as well assume that

(4.3) > wp € Oy.
Iey

Let H = Gal(K/F) = Gal(L/N) C G, and let p = 0, (k € Z) be a
generator of H sending ¢ = (p» to ¢*. Put

Z=X\Y.



Hilbert-Speiser number fields and Stickelberger ideals 599

The Galois group H acts on I = (i1, ,iy) € Z by the rule
I* = kI = (1K, -+ ,igK).

For each I = (i1, -+ ,ig) € Z, we have p { i, for some s +1 < r < g.
From this, we see that each H-orbit in Z consists of ¢ = |H| elements, and
that the set Z is the union of T' = |Z|/¢ orbits. Choose a representative
I; (1 <t <T) of each orbit. Since (¥ = (", we see that

(OL1)" = OL -

Therefore, we obtain

T (-1 T (-1 .
P oL =PB 1) =BD O - wh,.
IeZ t=1 k=0 t=1 k=0
Now, we put
T (-1
W:Zw1+22wh Zwl—i—ZTrL/Nw]t
Iey t=1k=0 Iey

Then we see that O = O)T' - W from Lemma 4.6 and that W € Oy by
(4.3). Therefore, N/F has a p-NIB. O

Remark 4.1. Let K = F((pn). In [10], we showed that (i) when p does
not divide [K : F|, any cyclic extension N/F of degree p" has a p-NIB
if NK/K has a p-NIB, but that (ii) when p divides [K : F], this descent
property does not hold in general. This is a reason that we imposed a
strong assumption in Theorem 4.1.

5. Proof of Theorem 1.1

We fix an odd prime number p and an integer n > 1. Let F' be a number
field. Let 2 be a p"-th power free integral ideal of O%. Namely, oP" 1 2l for
any prime ideal p of O%. Then we can uniquely write

pr—1

A= [ &’
i=1

for some square free integral ideals ; of O/ relatively prime to each other.
The associated ideal B, of 2 is defined by

p"—1
(5.1) B, = H Q[i[ri/pn] 0<r<p—1).

i=1
Clearly, we have By = B; = O%. The following is a version of a theorem
of Gémez Ayala [5, Theorem 2.1].
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Theorem 5.1. ([2, Theorem 1], [9, Theorem 2]). Let K be a number field
with (yn € K>, and let L/K be a cyclic extension of degree p™. Then L/K
has a p-NIB if and only if there exists a nonzero integer a € Of \ (K*)P
such that L = K (a'/?") satisfying the following two conditions :

(i) The principal ideal aO% is p™-th power free.

(ii) The ideals of O associated to aO% by (5.1) are principal.

For an integer x € Z, let (x),, be the unique integer such that (z),, =
xz mod p" and 0 < (z)p, < p" —1. We can easily show the following simple
formulas for x, y, z € Z.

(5.2) r = {pﬂ p" + (@)pn-
(5.3) (—2)pmn =" — (¥)pn if p"ta.
[ ] i)

Lemma 5.1. Let F be a number field, and a € O an integer satisfying
the conditions (i) and (ii) in Theorem 5.1. Let s € Z be an integer with
1<s<p"—1andpts. Then we can write a® = bx"" for some b, x € O
with b satisfying the conditions (i) and (ii).

Proof. Write aO% = [1; ;" for some square free integral ideals 2; relatively
prime to each other. Let B, be the ideals associated to aO% by (5.1). They
are principal ideals as the integer a satisfies the conditions (i) and (ii). We
see from (5.1) and (5.2) that

p’n
asO}ﬂ = H Q[iis = H Q[i(is)p,n (H Q[Z[ZS/PTL]> — H Qli(is)p,n . %Sp"‘
As 9B, is principal, it follows that
a* =ba” and bOp =[] W er

for some b, z € O%. In particular, b satisfies the condition (i). For each
0<r<pt-—1,let
¢ = H Q[i[r(is)p,n/pn}
i
be the ideal associated to bO% by (5.1). Using (5.4), we see that

i R P s R P

and hence
¢, = %(rs) ’ (QO%)[M/I)”} B,
Therefore, €, is principal, and b satisfies the condition (ii). O

p,n
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The following assertion is an immediate consequence of Theorem 5.1 and
Lemma 5.1.

Theorem 5.2. Let K be a number field with (pn € K>, and let L =
K(a'/?")/K be a cyclic extension of degree p™ with a € K*. Write

pt—1

a0 = [ 2t 2.

=0
for some fractional ideals A; of O such that for 0 < i < p™ — 1, the
ideals A; are integral, square free and relatively prime to each other. Then
L/K has a p-NIB if and only if (i) the ideal Apn is principal and (ii) the

,pn

ideals of OY associated to the p™-th power free integral ideal aO% - 2

are principal.

Proof of the “only if” part of Theorem 1.1. Let F' be a number field, and
let K = K,, = F((pn) and H = Gal(K/F) C G,. We assume that F'
satisfies (Hyn). Then, since F' satisfies (H ;) for all 1 < < n, it suffices to
show that Sy = Sp,, kills Cly. Let r € Z be an integer with r # 0, and
let ¢ € Clj; be an arbitrary ideal class. Choose prime ideals 8 € ¢ and
Q € c of relative degree one over F' such that (Ng,pB, Ng/pQ) = Of.
The condition that I3 is of relative degree one over F' means that the prime
ideal p = P N O splits completely in K. There exists an element a € K*
with aO% = PQ". Let b = a® with e = ey, and let L = K(b'/?"). By
(2.1) and (5.2), we see that

bO/K — H/ ;Biaifll_“[/ Qria{l —9- (QGHm)p"

with L, ‘ o
A = H mzai H Q(Tz)p,no—i )

Here, 7 runs over the integers relatively prime to p with 1 < i < p" —1
and i € H. As B is of relative degree one over F, we have P || bO-.
Hence, L/K is a cyclic extension of degree p™. Further, by the assumption
on P and £, the integral ideal 2 is p™-th power free. By Lemma 4.1(I),
there exists a cyclic extension N/F of degree p™ such that L = NK and
NNK =F. As F satisfies (H,.), N/F has a p-NIB, and hence L/K has
a p-NIB. Now, from Theorem 5.2, it follows that Q%% is principal. Hence,
Sy kills Cl. O
To prove the “if” part of Theorem 1.1, we prepare some lemmas.

Lemma 5.2. Let F' be a number field. Let K = F((pyn), H = Gal(K/F) C
Gy and e = ey. Assume that Sg annihilates Cly. For a prime ideal
of O, let m € O) be an integer such that PE€ = 7O}, the existence of
which is assured by the assumption. Let L = K(ﬂ'l/pn). If B is of relative
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degree one over F', then the extension L/ K is of degree p™ and has a p-NIB.
Further, the extension is totally ramified at B and unramified outside the
prime ideal p =P N OF.

Proof. As g splits completely in K, the integral ideal 7O}, = PB€ is p"-th
power free, and P||rO%. Hence, L/K is of degree p". Further, the ideal
B, associated to m1O0% equals

B, = [[ U7l =g foro<r<pr—1.

As Sy kills Cl, these ideals 98, are principal. Therefore, L/K has a p-NIB
by Theorem 5.1. The other assertions are obvious. [

Lemma 5.3. Let F' be a number field, K = F((yn), and H = Gal(K/F) C
Gp. Assume that Sg kills Cly. Let B be a prime ideal of O such that
PE = A" for some ideal A of O, where e = ey. Then A is a principal
ideal.

Proof. As e € Sy and Sy kills Cl), the ideal class [2] is contained in the
Sylow p-subgroup Cl[p]. We show that [] = 1. Let A = Apy be the
non-p-part of H. When A is trivial, we see that Cl}[p] = {0} from Lemma
2.1 as Sy kills Cl, and hence [2] = 1. Let us deal with the case where A
is nontrivial. Let x : A — Z be a p-adic character, and ¢, € Z,[A] the
associated idempotent. When x = wp, we see that [2A]* = 1 from Lemma
2.1 and C’l/fgH = {0}. Let x # wy. Then we easily see that

1
Ouey € Z,H with 0y = —e.
p

When H = Gy, this is shown in [26, Proposition 7.6(b)]. It is shown
similarly for the general case. Let p® be the exponent of Cl[p]. We
choose an element €, € Z[A] so that €, = ¢, mod p"*¢. Then we see
that Ope, € Z[H]. From (2.4), it follows that 0y€é, € Sy, and hence
eéy € p"Su. Now, letting €, act on PE€ = A" we see that A is principal
as Sy kills Cly,. It follows that [A]* = 1. We obtain [2] = 1 since [A]* =1
for all y. O

Proof of the “if” part of Theorem 1.1. Let F be a number field, and n > 2.
As in the previous sections, let K; = F((,:), Hr; = Gal(K;/F) C G,
Sri = SHy,, and ep; = ep,, for each 1 <i <n. We are writing K = K,
H = Hp, and e = ef,, for brevity. Assume that the Stickelberger ideal
Sr, kills CZ/KZ_ for any 1 < i < n. Then, by [11, Theorem 1], F satisfies
the condition (H,,). Therefore, by induction, it suffices to show that F
satisfies (Hz’jn) assuming further that F' satisfies (H 1/7 .—1). Let T be a finite
abelian group of exponent p™. By Lemma 4.3, it suffices to show that any
I-extension N/F with N N K,, = F has a p-NIB. Let N/F be such a I'-
extension. By Theorem 4.1, it suffices to show that L = NK/K has a
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p-NIB. By Lemma 4.1, we can write
L=K ((af)l/p”7 .. 7(@5)1/2771)

for some integers a; € O (1 < i < g). For each prime ideal p of O, we
choose and fix a prime ideal P of O} over . Then we can write

CLZO/[( = H ‘I}Xp*i
8]

for some X,; € ZH with nonnegative coefficients, where o runs over all
prime ideals of O} and X,,; = 0 for almost all p. By (2.5), we have

Xpie = s, ;e mod p"Sy
for some integer 0 < s, ; < p™ — 1. Therefore, as Sy kills Cl, we obtain
(5.5) af O =[] B¢ - (2:0k )"
©

for some x; € K*. To show that L/K has a p-NIB, we have to study the
Kummer generators (a€)/?". For this, we look into each factor € in the
decomposition (5.5). Let D = D, C H be the decomposition group of p.
There are two cases: (i) |D| is not a power of p and (ii) |D| is a power of p.

First, we deal with the case where |D| is not a power of p. Let h = |H|
and p = g, be a generator of H with x € Z. Then we have

h—1 '
e= Z (K" )pnp "
=0
Let a=[H : D] and d = h/a. As p® € D fixes B, it follows that
a—1 d—1
Pe=T[ (B )" with =D (K77 )pn.
r=0 q=0

Let P and N be the p-part and the non-p-part of D, respectively, so that
we have D = P x N. As N is nontrivial, we see that

cr =k Z (2)pn Z (¥)p,n = 0 mod p™.
zeP yeEN

Hence, € = AP" for some ideal A. Now, by Lemma 5.3, we see that 2 is
a principal ideal. Therefore, for studying the Kummer generators of L/K,
we may as well assume that in the decomposition (5.5), p runs over the
prime ideals of O for which |D| is a power of p.

Let p be a prime ideal of O, and let D = D,,. Assume that |D| = pt
for some integer £ with 1 < ¢ < n. Let us show the following:
Claim There exists an integer w, € O such that (i) P€ = Wgnféxpn(’)’K
for some x € K* and (ii) the extension K(ﬂé/pe)/K has a p-NIB and is
totally ramified at B and unramified outside p.
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When ¢ = n, such an integer 7, exists by Lemma 5.2. So, let £ < n. Then
the decomposition field of p equals K,. Let Py =P N O/Kz' The ideal Sgy
kills C’Z’KZ by the assumption, and g splits completely in K. Therefore, by

Lemma 5.2, there exists an integer 7, € O}, such that (i) mfw = 1,0k,

and (ii) the extension K, g(wglg/ P Z) /Ky has a p-NIB and is totally ramified at
P, and unramified outside p. We easily see that the pushed-up extention

K(ﬂ;,/pé)/K has the same property. Let ¢ : ZH — Z Hp be the restriction
map. Then, as |H| = p"~*|Hr |, we see from the second assertion of Lemma
2.3(II) that

n

p(e) =p"‘ers+p aNpy

for some a € Z. Here, Ng/ is the norm element of ZHp,. As Np, € Sy
kills Cl,, we have

PBE = B O0) =22 2" O
for some x € K*. Thus, the Claim is shown.
Let €1, - , € be a system of fundamental units of O%. From the above,
it follows that

L C E: K(eil/p”’ ﬂ_;}/p[(@) | 1<i< r, p|NK/F(al"'ag)> X

Here, o runs over the prime ideals of O% with p|Ng/p(a1---ay) for which
|Dy| is a power of p, and ¢(p) = n — ordy|Dy|. The cyclic extension

K(eg/pn)/K has a p-NIB by Lemma 4.2(I), and K(w;/pé(p))/K has a p-NIB
by Claim. Further, these extensions over K are linearly disjoint over K,
and their relative discriminants are relatively prime to each other. There-
fore, by [4, (2.13)], the composite L/K has a p-NIB. It follows that L/K
hasa p-NIBas L C L. O

Remark 5.1. Let m > 1 be an integer, and K a number field with
(m € K*. In [9, Theorem 2|, we gave a necessary and sufficient condition
for a cyclic Kummer extension L/K to have a normal integral basis, which
is a generalization of [5, Theorem 2.1]. Recently, Del Corso and Rossi [2]
showed that the “only if” part of [9, Theorem 2] is incorrect when m is not
a power of a prime number, and gave a correct version.

6. Proof of Lemmas in section 2

In this section, we show the lemmas in Section 2.

Lemma 6.1. Let A and B be subgroups of G = G,, with A C B. Then we
have

Sp CSAZB.
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Proof. When n = 1, this assertion was shown in [16, Lemma 3]. We can
show it for the case n > 2 exactly similarly (using (2.1) and (5.4)). O

The following simple lemma was shown in [13, Lemma 6]. Let Qp be an
algebraic closure of Q,,.

Lemma 6.2. Let H be a finite cyclic group, and let % be an ideal of
Z,H. If AU ?Cﬁ Z,H, then there exists a character x : H — Q; such
that x(A) G Zy[x]. Here, x is regarded as a homomorphism from Zy,H to
Q, by linearity, and Z,[x] is the subring of Q, generated by the values of
X over Z,.

Proof of Lemma 2.1. Let H be an arbitrary subgroup of G = G,,, and let
Py, Ag and wy be as in Section 2. For simplicity, we write Sg, = SH® Z),.
Let ¢ : Py — Q; be an arbitrary p-adic character, and let x = wyg X ¥
be the character of H = Ay x Py such that x|a,, = wg and x|p, = .
Then we have x(Sup) = ¥(Sup(wn)). Let ¥ be a character of Pg with
¢|pH =1, and ¥ = we X ¢ the character of G = Ag x Pg with X|Aq = WG
and X|p, = . By (2.3), we see that the image X(Sg ) is generated, over
Zy[X], by the elements (r — x(r))B; g1 for integers r with p { r. Here,

12
L= ;
is the first Bernoulli number. We can easily show that the ideal of Z,[x]
generated by the elements r — y(r) equals the principal ideal generated by
1 — (1 +p). Tt follows from this that Y(Sg,) = Z,[X] by [26, Lemma
7.12] and the 3rd and 4th formulas in [26, page 126]. Hence, by Lemma
6.1, we obtain ¥(Su p(wr)) = X(Su,p) = Zp[x]. Therefore, it follows that
Sup(wh) = Z,Py from Lemma 6.2. O
Proof of Lemma 2.2. When n = 1, this assertion was shown in [13, Lemma
4]. We can show it exactly similarly for the general case (using (2.1) and
(5.3)). O
Proof of Lemma 2.3. Let H = H,,1 be a subgroup of G,41, and H =
H,, = ¢(H') where ¢ is the restriction map ZG,,+1 — ZG,,. For simplicity,
write 6. = Or » and 0, = 0. We write elements of G411 and G, in the
form o; = j mod p" 1 and 7; = i mod p", respectively.

The case (I) where |H'| = |H|. We see that

o0 = 3 [ eon = X [ ([£]+ Gn) | oton

T Y22
jen jem: PT AP
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where j runs over the integers with 1 < j < p"*! —1 and j € H'. As the
restriction map ¢ : H' — H is an isomorphism, the left hand side equals

r Z P <p(aj)_1 + Z []:Z] Ti_l = Tcp(t%) +0,,

JeEH' 1€eH

pn+1

where 4 runs over the integers with 1 < i < p” — 1 and 7 € H. Hence, it
follows that 0, = (0,,) —re(0,) € ©(Su), and Sg C p(Sy).
The case (II) where |H'| = p|H|. It is easy to see and well known that

—1
#(0,.1) = b, + 5N,

(cf. [22, page 56]). Then, using (2.3), we obtain

—(r—1
(6.1 (06010r) = by + L=,

for any integer r with p ¥ r. As |H'| = p|H|, we can easily show that
olag) = p(a)g for « € ZG,y1. Here, ags (resp. ¢(a)p) is the H'-part
(resp. H-part) of o (resp. ¢(«)). Hence, it follows from (6.1) that

(62) o) =0, + LDy

for  with p f r, where N = Np. Hence, from (2.2) and N € Sy, we
see that Sg = (¢(Sk), N). We obtain the second assertion from (6.2) by
taking r =1 +p"tt. O
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