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On the counting function for the generalized
Niven numbers

par Ryan DAILEDA, Jessica JOU, Robert LEMKE-OLIVER,
Elizabeth ROSSOLIMO et Enrique TREVIÑO

Résumé. Étant donnés q ≥ 2 un entier naturel et f une fonction
complètement q-additive à valeurs dans l’ensemble des nombres
entiers relatifs, on calcule une expression asymptotique de la fonc-
tion Nf qui à x associe la cardinalité de l’ensemble

{0 ≤ n < x | f(n) | n}
quand les valeurs de f sont soumises à une petite restriction. Dans
le cas où f = sq, la somme des chiffres d’un nombre en base q, les
valeurs de la function Nf comptent les nombres q-Harshad. Donc,
notre résultat généralise la formule asymptotique dans ce cas.

Abstract. Given an integer base q ≥ 2 and a completely q-
additive arithmetic function f taking integer values, we deduce
an asymptotic expression for the counting function

Nf (x) = # {0 ≤ n < x | f(n) | n}
under a mild restriction on the values of f . When f = sq, the
base q sum of digits function, the integers counted by Nf are
the so-called base q Niven numbers, and our result provides a
generalization of the asymptotic known in that case.

1. Introduction
Let q ≥ 2 be a fixed integer and let f be an arbitrary complex-valued

function defined on the set of nonnegative integers. We say that f is com-
pletely q-additive if

f(aqj + b) = f(a) + f(b)
for all nonnegative integers a, b, j satisfying b < qj . Given a nonnegative
integer n, there exists a unique sequence (aj(n))j∈N ∈ {0, 1, . . . , q − 1}N so
that

(1.1) n =
∞∑
j=0
aj(n)qj .

Manuscrit reçu le 28 février 2008.
Classification math.. 11A25, 11A63, 11K65.
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The right hand side of expression (1.1) will be called the base q expansion
of n. Using the base q expansion (1.1), we find that the function f is
completely q-additive if and only if f(0) = 0 and

f(n) =
∞∑
j=1
f(aj(n)).

It follows that a completely q-additive function is completely determined
by its values on the set {0, 1, . . . , q − 1}.

The prototypical example of a completely q-additive function is the base
q sum of digits function sq, which is defined by

sq(n) =
∞∑
j=0
aj(n).

A q-Niven number is a positive integer n that is divisible by sq(n). The
question of the average distribution of the q-Niven numbers can be answered
by studying the counting function

Nq(x) = #{0 ≤ n < x | sq(n) | n},

a task which has been undertaken by several authors (see, for example, the
papers of Cooper and Kennedy [1, 2, 3, 4] or De Koninck and Doyon [5]).
The best known result is the asymptotic formula

Nq(x) = (cq + o(1)) x
log x
, where cq = 2 log q

(q − 1)2

q−1∑
j=1

(j, q − 1),

which was proven only recently by De Koninck, Doyon and Kátai [6], and
independently by Mauduit, Pomerance and Sárközy [8].

Given an arbitrary non-zero, integer-valued, completely q additive func-
tion f , we define an f-Niven number to be a positive integer n that is
divisible by f(n). In the final section of [6] it is suggested that the tech-
niques used therein could be applied to derive an asymptotic expression for
the counting function of the f -Niven numbers,

Nf (x) = # {0 ≤ n < x | f(n) | n} .

It is the goal of this paper to show that, under an additional mild restriction
on f , this is indeed the case. Our main result is the following.

Theorem 1. Let f be a non-zero, integer-valued, completely q-additive
function and set

µ = 1
q

q−1∑
j=0
f(j) , σ2 = 1

q

q−1∑
j=0
f(j)2 − µ2,
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F = (f(1), f(2), . . . , f(q − 1)) and
d = gcd {rf(s)− sf(r) | r, s ∈ {1, 2, . . . , q − 1}} .

Assume (F, q − 1) = 1.
(i) If µ 6= 0 then for any ε ∈ (0, 1/2)

Nf (x) = cf
x

log x
+O

(
x

(log x)
3
2−ε

)
where

cf = log q
|µ|

 1
q − 1

q−1∑
j=1

(j, q − 1, d)

 .
The implied constant depends only on f and ε.

(ii) If µ = 0 then

Nf (x) = cf
x log log x
(log x)

1
2

+O
(
x

(log x)
1
2

)
where

cf =
( log q

2πσ2

) 1
2

 1
q − 1

q−1∑
j=1

(j, q − 1, d)

 .
The implied constant depends only on f .

The hypothesis (F, q−1) = 1 is the restriction alluded to above. It is tech-
nical in nature and will not be utilized until the end of Section 4.1. There
we will see that it allows us to reduce the study of the distribution of the
values of f when its argument is restricted to specified congruence classes
to the study of how the values themselves are distributed in congruence
classes. While this hypothesis prevents Theorem 1 from being as general as
one might hope, it is worth noting that it is not terribly restrictive either,
especially when q is large. Fixing q ≥ 3, if we choose integer values for
f(1), f(2), . . . , f(q−1) (uniformly) randomly in the interval [−n, n], then f
is completely determined and the probability that F = 1 is ζ(q−1)−1+o(1),
as n→∞. Since ζ(q − 1) tends to 1 as q tends to infinity, we see that for
large q almost all completely q-additive functions f satisfy (F, q − 1) = 1.
It would still be of interest, however, to obtain the analogue of Theorem 1
in the case that (F, q − 1) > 1.

Most of the proof of Theorem 1 is a straightforward generalization of
the methods used in [6] and it is the intent of this paper to indicate where
significant and perhaps non-obvious modifications to that work must be
made. The first notable change is the introduction and use of the quantities
d and F . As d = 0 and F = 1 when f = sq these quantities play no role in
earlier work.
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Finally, in order to shorten the presentation, we have attempted to unify
the µ 6= 0 and µ = 0 cases for as long as possible. The result is a slightly
different approach in the µ 6= 0 case than appears in [6]. The final steps
when µ = 0 are entirely new.

2. Notation
We denote by Z,Z+,Z+

0 ,R and C the sets of integers, positive integers,
non-negative integers, real numbers and complex numbers, respectively.
For the remainder of this paper, we fix an integer q ≥ 2 and a non-zero
completely q additive function f : Z+

0 → Z. The variable x will always be
assumed real and positive and n will always be an integer. Following [6] we
set

A(x|k, l, t) = #{0 ≤ n < x |n ≡ l (mod k) and f(n) = t},
a(x|t) = #{0 ≤ n < x | f(n) = t}.

As usual, we use the notation F (x) = O(G(x)) (or F (x) � G(x)) to
mean that there is a constant C so that for all sufficiently large x, |F (x)| ≤
CG(x). The constant C and the size of x are allowed to depend on f (and
hence on q), but on no other quantity unless specified.

3. Preliminary Lemmas
For real y we define ‖y‖ to be the distance from y to the nearest integer.

Lemma 1. Let M = max1≤j≤q−1 |f(j)|. Let s, k ∈ Z+ with (s, k) = 1 and
suppose that there is a pair j1, j2 ∈ {0, 1, . . . , q − 1} so that k - j1f(j2) −
j2f(j1). Then for any ξ ∈ R

(3.1) max
0≤j≤q−1

∥∥∥∥f(j)ξ + js
k

∥∥∥∥ ≥ 1
2Mk
.

Proof. We first claim that the maximum in question is at least positive. To
see this we argue by contradiction and assume that ‖f(j)ξ + js/k‖ = 0 for
0 ≤ j ≤ q − 1. Then f(j)ξ + js/k = nj ∈ Z for each j. Solving for ξ and
equating the resulting expressions, we find that if f(j1), f(j2) 6= 0 then

(3.2) k(nj1f(j2)− nj2f(j1)) = s(j1f(j2)− j2f(j1)).

Since (s, k) = 1, this implies that k|j1f(j2)− j2f(j1), which is excluded by
assumption. Since this same condition is trivially verified if f(j1) = 0 or
f(j2) = 0, we have a contradiction in any case.
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To prove the lemma we again argue by contradiction. Let us remark that
for any k > 0

1
k
≤
∥∥∥∥(j1f(j2)− j2f(j1)) s

k

∥∥∥∥
=
∥∥∥∥(f(j1)f(j2)ξ + j1f(j2)s

k

)
−
(
f(j1)f(j2)ξ + j2f(j1)s

k

)∥∥∥∥
≤
∥∥∥∥f(j2)

(
f(j1)ξ + j1s

k

)∥∥∥∥+
∥∥∥∥f(j1)

(
f(j2)ξ + j2s

k

)∥∥∥∥ .
If we assume now that (3.1) is not verified, then

|f(j1)| ≤M

<
1

2kmax0≤j≤q−1 ‖f(j)ξ + js/k‖

≤ 1
2 ‖f(j2)ξ + j2s/k‖

and similarly

|f(j2)| < 1
2 ‖f(j1)ξ + j1s/k‖

.

Therefore, by properties of ‖ · ‖,

1
k
≤ |f(j2)| ·

∥∥∥∥f(j1)ξ + j1s
k

∥∥∥∥+ |f(j1)| ·
∥∥∥∥f(j2)ξ + j2s

k

∥∥∥∥
≤ 2M max

0≤j≤q−1

∥∥∥∥f(j)ξ + js
k

∥∥∥∥
< 2M 1

2Mk
= 1
k

which is a contradiction. �

It is proven in [7] that if z1, z2, . . . , zq−1 ∈ C satisfy |zj | ≤ 1 for j =
1, 2, . . . , q − 1. then

(3.3)

∣∣∣∣∣∣1q
1 +

q−1∑
j=1
zj

∣∣∣∣∣∣ ≤ 1− 1
2q

max
1≤j≤q−1

(1− Re zj).

Since for real y we have ‖y‖2 � 1 − cos(2πy) and 1 + y ≤ ey, the next
lemma is an immediate consequence.
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Lemma 2. Let e(y) = e2πiy. There is a positive constant c1 = c1(f) so
that for any ξ, r ∈ R

(3.4)

∣∣∣∣∣∣1q
q−1∑
j=0
e (f(j)ξ + rj)

∣∣∣∣∣∣ ≤ exp
(
−c1 max

1≤j≤q−1
‖f(j)ξ + rj‖2

)
.

4. The distribution of the values of f
4.1. Argument restricted to a congruence class. Let k ∈ Z+, l ∈ Z+

0
and t ∈ Z. Our first goal in this section is to relate A(x|k, l, t) to the
function a(x|t) through a series of reductions on the modulus k. The first
three reductions are proven exactly as in [6], substituting our Lemma 2 for
their Lemma 3. We state them for the convenience of the reader.
Reduction 1. Write k = k1k2 where k1 is the largest divisor of k so
that (k1, q) = 1. Then the primes dividing k2 also divide q and we let
h be the smallest positive integer so that k2 divides qh. Since k divides
k1q
h, the congruence class l (mod k) is the union of classes l(j) (mod k1qh),

j = 1, . . . , qh/k2. For each j write

l(j) = l(j)1 + qhl(j)2

where 0 ≤ l(j)1 < q
h. Then

A(x|k, l, t) =
qh/k2∑
j=1
A

(
x− l(j)1
qh

∣∣∣∣∣ k1, l(j)2 , t− f(l
(j)
1 )
)
.

Since (k1, q) = 1, we are led to the next reduction.
Reduction 2. Suppose that (k, q) = 1. Let k = k1k2 where k1 is the
largest divisor of k so that (k1, q−1) = 1. Then there is a positive constant
c3 = c3(f) so that

A(x|k, l, t) = 1
k1
A(x|k2, l, t) +O

(
x

1− c3
log 2k

)
.

Before moving to the next reduction, we note that the primes dividing k2
must also divide q − 1.
Reduction 3. Suppose that the prime divisors of k also divide q−1. Then
there is a positive constant c4 = c4(f) so that

A(x|k, l, t) = (k, q − 1)
k

A(x|(k, q − 1), l, t) +O
(
x

1− c4
log 2k

)
.

We have therefore reduced to the case in which the modulus is a divisor of
q − 1.
Reduction 4. We now come to the first new reduction. The proof closely
follows that of Reductions 2 and 3 of [6], substituting our Lemma 1 for
their Lemma 1 and our Lemma 2 for their Lemma 3. We therefore choose
to omit it. Suppose that k|q − 1 and let d denote the greatest common
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divisor of j1f(j2) − j2f(j1) for j1, j2 ∈ {0, 1, . . . , q − 1}. Then there is a
positive constant c5 = c5(f) so that

A(x|k, l, t) = (k, d)
k
A(x|(k, d), l, t) +O

(
x1−c5

)
.

We note that in the case f = sq we have d = 0, making this reduction
unnecessary. As such, it has no analogue in [6].
Reduction 5. Suppose that k divides (q− 1, d). Then qj ≡ 1 (mod k) for
all j ≥ 1 and j1f(j2) ≡ j2f(j1) (mod k) for all 0 ≤ j1, j2 ≤ q − 1. From
this and the complete q-additivity of f it follows that mf(n) ≡ nf(m)
(mod k) for all m,n ∈ Z+

0 . Let F = (f(1), f(2), . . . , f(q − 1)) and suppose
further that (F, q− 1) = 1. Since the values of f are linear combinations of
f(1), f(2), . . . , f(q − 1) with nonnegative integer coefficients, the condition
(F, q−1) = 1 implies that we can find an m ∈ Z+ so that (f(m), q−1) = 1.
Therefore if n ∈ Z+

0 satisfies f(n) = t we have mt = mf(n) ≡ nf(m)
(mod k) and it follows that

A(x|k, l, t) =
{
a(x|t) if mt ≡ lf(m) (mod k),
0 otherwise.

This is the analogue of the final reduction in section 4.5 of [6].

4.2. Unrestricted argument. We now turn to the distribution of the
values of f when its argument is free to take on any value. We let µ and σ
denote the mean and standard deviation of f on the setD = {0, 1, . . . , q−1}
of base q digits. That is,

µ = 1
q

q−1∑
j=0
f(j) , σ2 = 1

q

q−1∑
j=0
f(j)2 − µ2.

We also set
Nx =

⌊ log x
log q

⌋
where byc is the greatest integer not exceeding y.

Following [1], we view D as a probability space in which each element is
assigned a measure of 1/q. We use the digits of the base q expansion (1.1)
to identify the set of nonnegative integers n strictly less than qN (N ∈ Z+)
with the product space DN . In this way f can be viewed as the random
variable on DN obtained by summing together N independent copies of f
acting on D alone. In this setting, if we apply Theorem 15, Chapter III of
[9] we immediately obtain the next lemma.
Lemma 3. Let F : D → R have average value 0. If F is extended to
a completely q-additive function on Z+

0 , then there is a constant C > 0,
depending only on q and F , so that for N ∈ Z+ we have

#{0 ≤ n < qN |F (n) ≥ k} ≤ qNe−Ck2/N
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and
#{0 ≤ n < qN |F (n) ≤ −k} ≤ qNe−Ck2/N

for all 0 ≤ k ≤ N/C.

Proposition 1. Let ε ∈ (0, 1/2) and set I = [µNx−N1/2+ε
x , µNx+N1/2+ε

x ].
Then

#{0 ≤ n < x|f(n) 6∈ I} � x

(log x)2

the implied constant depending only on f and ε.

Proof. For C > 0, as N ∈ Z+ tends to infinity eventually 0 ≤ N1/2+ε±µ ≤
(N + 1)/C, so that Lemma 3 applied to the function F = f − µ gives

#
{

0 ≤ n < qN+1
∣∣∣f(n)− µN ≥ N1/2+ε

}
� qNe−c1N2ε

and
#
{

0 ≤ n < qN+1
∣∣∣f(n)− µN ≤ −N1/2+ε

}
� qNe−c2N2ε

for some positive constants c1 and c2. Setting c = min{c1, c2} these in-
equalities together give

(4.1) #
{

0 ≤ x < qN+1
∣∣∣|f(n)− µN | ≥ N1/2+ε

}
� qNe−cN2ε

.

The stated result now follows since

# {0 ≤ n < x |f(n) 6∈ I } ≤ #
{

0 ≤ n < qNx+1
∣∣∣|f(n)− µNx| ≥ N1/2+ε

x

}
� qNxe−cN2ε

x

� x

(log x)2 .

�

We remark that if ε > 0, Lemma 4 of [8], when translated into our present
notation, immediately implies that

(4.2) #{0 ≤ n < x|sq(n) 6∈ I} � max
{
x exp

(
− 6
q2 − 1

N2ε
x

)
, x

1− c
log log x

}
for some c > 0. Since the right hand side of (4.2) is O

(
x

(log x)2

)
, this

provides a proof of Proposition 1 in the case f = sq. In fact, if in the proof
of Proposition 1 we replace N1/2+ε

x by N1/2
x λx, where λx = o(N1/2

x ), we
obtain a more general result that is very similar to Lemma 4 of [8].

As observed in [6] in the case f = sq, Theorem 6, Chapter VII of [9] can
be used to obtain the following result.
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Proposition 2. If (f(1), f(2), . . . , f(q − 1)) = 1 then uniformly for t ∈ Z
we have

a(x|t) = x

σ
√
Nx
ϕ

(
t− µNx
σ
√
Nx

)
+O

(
x

Nx

)
where ϕ(y) = (2π)−1/2e−y

2/2. The implied constant depends only on f .
Corollary 1. If F = (f(1), f(2), . . . , f(q − 1)) then

a(x|t) = Fx

σ
√
Nx
ϕ

(
t− µNx
σ
√
Nx

)
+O

(
x

Nx

)
when t ≡ 0 (mod F ) and a(x|t) = 0 otherwise.
Proof. Apply the proposition to the function g = f/F . �

5. Proof of Theorem 1
It suffices to consider the case in which µ ≥ 0, since Nf (x) = N−f (x).

Fixing ε ∈ (0, 1/2), according to Proposition 1 we have

(5.1) Nf (x) =
∑
t∈I

t≡0 (mod F )

A(x||t|, 0, t) +O
(
x

(log x)2

)
.

As in Section 5 of [6], one can show that Reductions 1 through 5 together
with the corollary to Proposition 2 yield

(5.2) A(x||t|, 0, t) = (t, q − 1, d)
|t|

a(x|t) +O
(
x logNx
tNx

)
uniformly for (nonzero) t ∈ I. Since (t, q−1, d) depends only on the residue
of t (mod q − 1), substitution of (5.2) into (5.1) yields

(5.3) Nf (x) =
q−1∑
j=1

(j, q − 1, d)
∑
t∈I
t6=0

t≡0 (mod F )
t≡j (mod q−1)

a(x|t)
|t|

+O
(
x logNx
Nx

E1(x)
)

where

E1(x) =
{
N
ε−1/2
x if µ > 0,

logNx if µ = 0.
Lemma 4. For j = 1, 2, . . . , q − 1 we have∑

t∈I
t6=0

t≡0 (mod F )
t≡j (mod q−1)

a(x|t)
|t|

= 1
q − 1

∑
t∈I
t6=0

t≡0 (mod F )

a(x|t)
|t|

+O
(
x

Nx
E2(x)

)

where

E2(x) =
{
N
ε−1/2
x if µ > 0,
N

1/2
x if µ = 0.
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Proof. Since we have assumed (F, q−1) = 1, for each j = 1, 2, . . . , q−1 there
is a unique bj (mod F (q−1)) so that the two simultaneous congruences t ≡
0 (mod F ) and t ≡ j (mod q − 1) are equivalent to the single congruence
t ≡ bj (mod F (q − 1)). The corollary to Proposition 2 implies that for
t, k ≡ 0 (mod F ) we have

(5.4) a(x|t+ k)
|t+ k|

= a(x|t)
|t|

+O
(
x

|t| log x
+ x

t2(log x)1/2

)

when t+ k 6= 0, the implied constant depending only on f and k.
When µ > 0 we therefore have

∑
t∈I
t6=0

t≡0 (mod F )
t≡j (mod q−1)

a(x|t)
|t|

=
∑
t∈I

t≡bj (mod F (q−1))

a(x|t)
t

= 1
q − 1

∑
t∈I

t≡bj (mod F (q−1))

q−2∑
k=0

a(x|t+ kF )
t+ kF

+O
(
x

N
3/2−ε
x

)

= 1
q − 1

∑
s∈I

s≡0 (mod F )

a(x|s)
s

+O

 ∑
s∈J

s≡0 (mod F )

a(x|s)
s


+O

(
x

N
3/2−ε
x

)
,

where J is the set of integers with distance at most qF from the endpoints
of I. Since a(x|s)� x/N1/2

x , the sum over J contributes no more than the
second error term, proving the lemma in this case.

When µ = 0 we may carry through the same analysis, being careful in
the second step to omit from the summation the single value of t for which
t+kF = 0. This introduces an error of size O(x/N1/2

x ), which is consistent
with the statement of the lemma. �
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Combining Lemma 4 with equation (5.3) we can now complete the proof.
When µ > 0 we have

Nf (x) =

 1
q − 1

q−1∑
j=1

(j, q − 1, d)

 ∑
t∈I

t≡0 (mod F )

a(x|t)
t

+O
(
x logNx
N

3/2−ε
x

)

= 1
µNx

 1
q − 1

q−1∑
j=1

(j, q − 1, d)

 ∑
t∈I

t≡0 (mod F )

a(x|t)

+O
(
x log log x

(log x)3/2−ε

)

= log q
µ log x

 1
q − 1

q−1∑
j=1

(j, q − 1, d)

 ∑
t∈I

t≡0 (mod F )

a(x|t)

+O
(
x log log x

(log x)3/2−ε

)

= log q
µ

 1
q − 1

q−1∑
j=1

(j, q − 1, d)

 x

log x
+O

(
x log log x

(log x)3/2−ε

)
,

where in the final line we have used Proposition 1 to replace
∑
t∈I a(x|t)

with x + O(x/(log x)2). Since ε ∈ (0, 1/2) was arbitrary, we may discard
the log log x term in the error, giving the stated result.

When µ = 0 we have

(5.5) Nf (x) =

 1
q − 1

q−1∑
j=1

(j, q − 1, d)

 ∑
t∈I
t6=0

t≡0 (mod F )

a(x|t)
|t|

+O
(
x

N
1/2
x

)
.

Set ε = 1/4 for convenience. Writing t = Fs and using the corollary to
Proposition 2 we obtain
(5.6) ∑

t∈I
t6=0

t≡0 (mod F )

a(x|t)
|t|

= 2x
σ
√
Nx

∑
1≤s≤N3/4

x /F

1
s
ϕ

(
sF

σ
√
Nx

)
+O

(
x logNx
Nx

)
.
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Now ∑
1≤s≤N3/4

x /F

1
s
ϕ

(
sF

σ
√
Nx

)
=
∫ N3/4

x /F

1

1
s
ϕ

(
sF

σ
√
Nx

)
ds+O (1)

= 1√
2π

∫ N1/4
x /σ

√
2

F/σ
√

2Nx

e−u
2

u
du+O (1)

= 1√
2π

∫ 1

F/σ
√

2Nx

e−u
2

u
du+O (1)

= 1√
2π

∫ 1

F/σ
√

2Nx

1
u
du+O (1)

= 1
2
√

2π
logNx +O (1)

= 1
2
√

2π
log log x+O (1) .

Returning to equations (5.5) and (5.6) we find that

Nf (x) = 1
(2πσ2)1/2

 1
q − 1

q−1∑
j=1

(j, q − 1, d)

 x log log x
N

1/2
x

+O
(
x

N
1/2
x

)

=
( log q

2πσ2

)1/2
 1
q − 1

q−1∑
j=1

(j, q − 1, d)

 x log log x
(log x)1/2

+O
(

x

(log x)1/2

)
which concludes the proof.
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