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The geometry of the third moment
of exponential sums

par Florent JOUVE

Résumé. Nous donnons une interprétation géométrique à deux
types distincts de sommes d’exponentielles. L’une d’elles corres-
pond au moment d’ordre trois des sommes de Kloosterman sur Fq

de type K(ν2; q). Nous commençons par établir un lien entre les
sommes considérées et le nombre de points Fq-rationnels sur cer-
taines surfaces projectives lisses : l’une d’entre elles est une surface
K3 et l’autre est une surface cubique lisse. Appliquant la théorie
de Grothendieck-Lefschetz, on retrouve alors en particulier une
formule pour le troisième moment des sommes de Kloosterman
obtenue par D. H. et E. Lehmer en 1960.

Abstract. We give a geometric interpretation (and we deduce
an explicit formula) for two types of exponential sums, one of
which is the third moment of Kloosterman sums over Fq of type
K(ν2; q). We establish a connection between the sums considered
and the number of Fq-rational points on explicit smooth projec-
tive surfaces, one of which is a K3 surface, whereas the other
is a smooth cubic surface. As a consequence, we obtain, applying
Grothendieck-Lefschetz theory, a generalized formula for the third
moment of Kloosterman sums first investigated by D. H. and E.
Lehmer in the 60’s .

1. Introduction

The problem of estimating exponential sums over finite fields is a quite
standard issue in analytic number theory. Indeed, it arises in classical ques-
tions such as determining the Fourier coefficients of cusp forms or resolving
the Waring problem via the circle method. As a consequence of Deligne’s
proof of the Riemann Hypothesis for varieties over finite fields, and, to an
even wider extent, of its vast generalization described in [9], a deep and ef-
ficient understanding of fairly general types of such sums was derived (see
e.g. [17]). That algebro-geometric method has now become the standard
way to estimate exponential sums over finite fields.

Manuscrit reçu le 24 novembre 2007.
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In our present work, however, instead of investigating the properties of
the `-adic sheaves (as the standard attack would suggest) associated to the
exponential sum over Fq (with q not a power of `) we consider, we exhibit
an algebraic surface whose number of Fq-rational points is explicitly related
to the sum.

Let us first make precise what are the sums involved. Let p be a prime
distinct from 2 and 3, q a power of p and ϕ a nontrivial additive character
of Fq:

ϕ : Fq → C× .

For any couple of integers (α, β) such that α− 1 = 3(β− 1), we consider
the sum

S(aα, aβ; q) =
∑

x∈Fq

ϕ(aαx3 + aβx) ,

with parameter a ∈ Fq.

In [6], Birch was the first to consider moments of those sums (in the case
q = p). In loc. cit. he conjectured that a modular interpretation should
exist for a certain type of such moments. That conjecture was precised by
Atkin in [3] and Livné finally proved it in [19]. Our first object of study is
what we call the third Birch sum

B3(q) =
∑

a∈Fq

S(aα, aβ; q)3 .

That is nothing but the third moment of S(aα, aβ; q) (we point out the
fact that a straightforward computation yields the precise value of the first
and second moment of the sums S(aα, aβ; q)).

To evaluate B3(q), we establish an explicit relation between the number
of Fq-rational points on a certain smooth cubic surface and the value of
B3(q). The arithmetic of such surfaces is well understood notably thanks
to the work of Swinnerton-Dyer who showed that the number of Fq-rational
points on a smooth projective cubic surface S is entirely determined by the
decomposition of the set of 27 lines lying on S into Galois orbits (see [26]).
Via that geometric interpretation, we deduce an explicit formula for the
value of B3(q):

Theorem 1.1. The quantity B3(q)/q is precisely the number of Fq-rational
points on an affine surface, the projective completion of which is a smooth
cubic surface. More precisely,
• If p ≡ 1 (mod 3), then there exist integers Ap ≡ 1 (mod 3) and Bp

satisfying 4p = A2
p + 27B2

p and such that, if we let ε = 1 if 4 is a cube
modulo p and ε = −1 otherwise, we get

B3(q)q−1 = q2 + (2 + 2χq(−1) + ζδr
6 + ζ̄6

δr)q − λr
1 − λr

2 ,
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where q = pr, χq denotes the Legendre character of Fq, ζ6 and ζ̄6 are the
primitive 6th roots of 1 in C, λ1 and λ2 are the complex numbers such that
λ1λ2 = p, λ1 + λ2 = −Ap et δ = (3− χp(−1)(2ε + 1))/2.
• If p ≡ 2 (mod 3), then

B3(q)q−1 = q2 + (3 + (−1)r + 2χq(−1))q − λr
1 − λr

2 ,

where λ1 and λ2 are the complex numbers such that λ1λ2 = p, λ1 +λ2 = 0.

We emphasize the fact that the formula obtained gives the exact value
of the sum B3(q). We notice here that the investigation of k-th moments
for k greater or equal to 4 would surely require other techniques than the
study of the variety we would attach to it. Indeed, in the case where k =
4, the variety arising, when using orthogonality relations to simplify the
expression of B4(q), is 3-dimensional, and there is no a priori analogue of
the result of Swinnerton-Dyer (i.e. a totally explicit way to compute the
number of Fq-rational points) in dimension greater than 2.

Nevertheless, the method we describe enables us to evaluate other types
of sums as well. Consider, for instance, the famous Kloosterman sums with
parameter λ ∈ Fq:

K(λ; q) =
∑

x∈F×
q

ϕ(x + λx−1) ,

where ϕ still denotes a nontrivial additive character of Fq. The moments
of order 1, 2 and 3 of those sums were computed by Salié in [22]; however,
D. H. and E. Lehmer were the first to raise the question of the value of the
n-th moment indexed by the squares of Fq:

σn(q) =
∑

λ∈Fq

K(λ2; q)n .

As in the previous case, the computation of the moments σ1(q) and
σ2(q) are straightforward. In [18], the authors obtain an explicit formula
for the third moment in the special case where q = p. Their method, though
elementary, requires lots of tricks in the transformations of the sums con-
sidered.

Noticing that the formula proved in [18] uses the decomposition p =
a2 + 3b2 for primes p ≡ 1 (mod 3) gives us the intuition that there must
exist a geometric interpretation for σ3(q) involving the elliptic curve E
with Weierstrass model y2 = x3 + 1 (or a quadratic twist of that curve).
We show that such a link actually exists:

Theorem 1.2. Assume that p 6= 2, 3. There exits a K3 surface defined over
Fq and isomorphic, over Fq2, to the Kummer surface Km(E×E), such that
the number of Fq-rational points on that surface is explicitly related to the
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value of σ3(q). Moreover, we have the exact formula

σ3(q) = εrq2 + q(2qχq(−1) + χq(−1)(λr
1 + λr

2) + 2)

where
• if p ≡ −1 (mod 6), then ε = −1 and λ1 = p, λ2 = −p,
• if p ≡ 1 (mod 6), then ε = 1 and there exist integers a and b such that

p = a2 + 3b2. In that case λ1 and λ2 are defined as the reciprocal roots of
the polynomial p2T 2 − (4a2 − 2p)T + 1.

The Kummer surface Km(E×E) is the smooth model of the surface E×E
blown up in its 16 points of order 2 (see [4, page 170]). Thus, the number of
Fq-rational points on such a surface is explicitly related to |E(Fq)|. In the
Theorem above, the surface attached to σ3(q) is isomorphic to Km(E×E)
only when considered as a surface over a field containing a primitive cube
root of 1. That explains why we are naturally led to distinguish the case
p ≡ 1 (mod 6) from the case p ≡ −1 (mod 6).

To prove the theorems stated above, we need to compute the number
of Fq-rational points on two smooth projective surfaces (the first being a
cubic surface and the second being a K3 surface). To do so we will need
standard facts about zeta functions of varieties over finite fields. We briefly
review the terminology and results that will be helpful in what follows.

Recall that the zeta function of a smooth projective variety X over Fq is
defined by the formal power series

Z(X/Fq;T ) = exp
(∑

n>1

|X(Fqn)|T
n

n

)
.

Thanks to Dwork’s theorem, or, more usefully for us, to the Grothendieck-
Lefschetz trace formula (see [8]), we know that this function is rational, and,
in the case where X is 2-dimensional:

Z(X/Fq;T ) =
P1P3

P0P2P4
,

where Pi = det(1−TFr∗|H i(X⊗Fq,Q`)), ` 6= p is a prime number and Fr∗

is induced on the `-adic cohomology groups by the geometric Frobenius on
X⊗Fq (base change corresponding to the extension of scalars to a separable
closure Fq of Fq).

For brevity the `-adic cohomology group H i(X⊗Fq,Q`) will be denoted
H i

X . For each of the two cases we consider, we need to compute the exact
value of the eigenvalues of Fr∗ acting on the spaces H i

X , for 0 6 i 6 4.
Indeed, to obtain an exact formula for B3(q) and σ3(q), it is not enough to
evaluate both the dimension of the H i

X and the modulus of the eigenvalues
(which we obtain directly by invoking Deligne’s Riemann Hypothesis for
varieties over finite fields).



The third moment of exponential sums 737

The particular structure of the surfaces appearing in our study will be
very helpful in order to obtain such a precise information. Let us recall
briefly a few facts about surfaces and more specifically about K3 surfaces
and smooth cubic surfaces.

The classification of algebraic surfaces is much more complex than for
algebraic curves. Lots of different invariants are involved and we will not
give definitions (but only references) for all of these objects as the precise
understanding of what they are is not required for the proof of the theorems
above. Let us first state a few facts about smooth cubic surfaces: they are
Del Pezzo surfaces of degree 3 (see [11, page 401]) and, in the Enriques-
Kodaira classification of surfaces (see [4, page 188]), they appear as surfaces
with “type 1”, that is to say rational minimal surfaces. In particular, the
Betti number b1 = dim H1(X,Z) is zero if X is a smooth cubic surface.

Moreover, it is a standard fact that on such a surface lie exactly 27 lines.
Computing equations for those lines will be a crucial step in evaluating
B3(q). Indeed, the cycle classes of these lines span the `-adic cohomology
space H2

X , which, concretely, corresponds to the fact that the Galois action
on those lines entirely determines |X(Fq)| (see [26]).

Now we turn to K3 surfaces (surfaces of type 7 in the Enriques-Kodaira
classification of [4, Table 10 page 188]), an instance of which will appear
explicitly when evaluating σ3(q). Such a surface is defined as a geometrically
connected surface with trivial canonical sheaf (see [11, page 180]) and Betti
number b1 equal to zero (notice the helpful common point with smooth
cubic surfaces). The arithmetic of such varieties is the object of many recent
studies, the fact that they can be seen as 2-dimensional analogues of elliptic
curves being quite motivating.

The few information we have just given are enough to give an a priori
form for the zeta function of X/Fq if X is either a smooth cubic surface
or a K3 surface. Indeed, in both cases, H1

X = 0, so, by Poincaré duality
(see [8]), we have H3

X = 0 as well. To obtain the expression of the factors
P0 and P4 of the denominator of Z(X/Fq;T ), we exploit the fact that, X
being geometrically irreducible, H0

X has dimension 1 with a trivial Galois
action. In other words H0

X ' Q` as a Galois module. By Poincaré duality
again, we deduce that H4

X ' Q`(−4): that is the standard notation for the
Tate twist. More generally, for d > 1, the Galois module Q`(−2d) denotes
a one-dimensional Q`-vector space on which the geometric Frobenius acts
by multiplication by qd. From these standard observations we get, for X a
smooth cubic surface or a K3 surface,

(1.1) Z(X/Fq;T ) =
1

(1− T )(1− q2T )P2(T )
,
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where the remaining crucial polynomial P2 satisfies P2(T ) ∈ Z[T ] and
P2(0) = 1.

To evaluate B3(q) and σ3(q) we will have to compute the action of Frobe-
nius on H2

X for a suitable surface X. To do so, we need to exhibit, in each
case, the surface involved. To begin with, we discuss the case of B3(q).

2. Evaluation of a Birch sum

Let us recall first the notations defined in the introduction above: p is
a prime number distinct from 2 and 3, q = pr for some integer r > 1 and
ϕ is an additive character of Fq. For simplicity, we consider the sum with
parameter a ∈ Fq:

S(a4, a2; q) =
∑

x∈Fq

ϕ(a4x3 + a2x) ;

but we keep in mind the fact that the couple of exponents (4, 2) could be
replaced by any (α, β) such that α− 1 = 3(β − 1).

The sum we wish to evaluate is the Birch sum

B3(q) =
∑

a∈Fq

S(a4, a2; q)3 .

To prove Theorem 1, the first step consists in making explicit the smooth
cubic surface related to B3(q). A straightforward calculation yields

B3(q) = q3 +
∑

a∈F×
q

∑
x,y,z∈Fq

ϕ(a(x3 + y3 + z3 + x + y + z)) .

That expression naturally leads us to consider the affine cubic surface S
defined by the equation:

S : f(x, y, z) = x3 + y3 + z3 + x + y + z = 0 .

Applying orthogonality relations, we deduce

B3(q) = q|S(Fq)| .

We are now reduced to determining the number of Fq-rational points on
the affine surface S. In order to feel as comfortable as possible with that
problem, we prefer to work with a smooth projective model of S. Indeed,
such a setting is particularly well-suited to use the properties of the `-
adic cohomology groups (where ` is a prime different from p) attached to
the variety (see the introduction). Also, working with a smooth projective
surface enables us to use the beautiful result of [26] in order to count Fq-
rational points.
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So let S̃ denote the projective compactification of S. In homogeneous
coordinates (x : y : z : w), an equation for S̃ can be given by:

S̃ : x3 + y3 + z3 + w2(x + y + z) = 0 .

A direct application of the Jacobi criterion shows that S̃ is smooth.
Hence, it suffices to evaluate the number of Fq-rational points on the smooth
projective cubic surface S̃ to obtain the value of B3(q). Indeed, the contri-
bution of points at infinity in S̃(Fq) can be explicitly described as follows:

Proposition 2.1. The Fq-rational points of the complement of the surface
S in its projective compactification S̃ are precisely the Fq-rational points of
the projective curve

C : x3 + y3 + z3 = 0 .

The curve C/Fq is an elliptic curve and the number of Fq-rational points
of C is given by

|C(Fq)| = q + 1− λr
1 − λr

2 ,

where λ1λ2 = p and
• if p ≡ 1 (mod 3), then Ap = −(λ1 + λ2) satisfies 4p = A2

p + 27B2
p

(for a certain integer Bp) and Ap ≡ 1 (mod 3),
• if p ≡ 2 (mod 3), then Ap = −(λ1 + λ2) = 0.

Proof. The curve C is a nonsingular cubic curve defined over Fq; (0 : −1 : 1)
being an Fq-rational point on C, we deduce that C/Fq is an elliptic curve.
The number of Fq-rational points on C is therefore given by (see [14, page
302]):

|C(Fq)| = q + 1− λr
1 − λr

2 ,

where λ1, λ2 are the reciprocal roots of the polynomial P (T ) = 1 + ApT +
pT 2, where Ap = 0 if p ≡ 2 (mod 3) and, if p ≡ 1 (mod 3), there exists an
integer Bp such that Ap is the unique integer being congruent to 1 modulo
3 and satisfying 4p = A2

p + 27B2
p (see [14, Chap. 8.3]). �

2.1. The zeta function of S̃/Fq. To begin with, let us recall briefly
the link between the set of lines on S̃ and the cohomology space H2

S̃
. We

refer the reader to [20, Chap. 4] for the general theory of cubic surfaces.
As mentioned in the introduction, smooth cubic surfaces are del Pezzo
surfaces of degree 3. In particular (see [20, Th. 24.4]) any such surface can
be realized as the blow up of the projective plane P2 in 6 points, provided
they do not all lie on the same conic and that no three of them lie on the
same straight line. The surface we obtain contains 27 so called exceptional
curves (one for each of the 6 points, one for each of the 15 lines joining two
of these points and one for each of the 6 conics passing through 5 of these 6
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points). These are precisely the 27 lines on the smooth cubic surface and the
cycle classes of these lines generate the Picard group of the surface (see [20,
Th. 26.2(i)]). Now, another standard fact about smooth cubic surfaces over
finite fields is that their geometric Picard group is isomorphic, as a Galois
module, to the `-adic cohomology space H2 attached to the surface once
the scalars are extended to a separable closure of the base field (this can be
seen as a way of stating Weil’s Theorem [20, Th. 23.1]). Moreover, from a
general formula (obtained, e.g. by combining Lemma 24.3.1 and Theorem
24.5 of [20]) valid for any del Pezzo surface we get that the rank of the
Picard group for a smooth cubic surface is 7.

In the present context, this implies that

|S̃(Fq)| = q2 +
( 7∑

i=1

ηi

)
q + 1 ,

where the ηi are roots of unity. The theorem of Swinnerton-Dyer ([26,
Table 1]) gives a correspondence between the value of

∑7
i=1 ηi and the type

of decomposition in Galois orbits of the 27 lines lying on S̃.

2.2. The twenty seven lines on S̃. In order to compute the Galois
action we need to describe explicitly the 27 lines on S̃. Some of them are
easy to find:

Dz : (t : −t : 0 : w), Dz,±i : (t : −t : ±i : w) ,

Dy : (t : 0 : −t : w), Dy,±i : (t : ±i : −t : w) ,

Dx : (0 : t : −t : w), Dx,±i : (±i : t : −t : w) ,

are examples of lines lying on S̃. However 18 of them remain to be found.
To do so, we exploit the method described in [23]. The key observation is
that if, by a change of coordinates, we succesively send Dx, Dy and Dz

on the z-axis and if we consider, after each transformation, the family of
planes with parameter λ, Pλ : y = λx, then the intersection of Pλ with S̃
is the union of the z-axis and a conic. That conic degenerates in two lines
when the parameter λ takes appropriate values. These values correspond
to roots of a polynomial Q with degree less than 5.

Applying that method after sending Dx on the z-axis, the polynomial we
get is

Q(λ) = (λ + 1)(4λ3 + 1) .
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The root λ = −1 gives us Dz and Dy; two lines which we have already
found. As λ runs over the roots of Qx(t) = 4t3 + 1, we get six new lines:

(λt :
1
2
(t− 2

√
−3λ + 3

3
w) :

1
2
(t +

2
√
−3λ + 3

3
w) : w) ,

(λt :
1
2
(t +

2
√
−3λ + 3

3
w) :

1
2
(t− 2

√
−3λ + 3

3
w) : w) .

Then sending Dy on the z-axis, the polynomial Q(λ) is given by

Q(λ) = λ(λ + 1)(λ3 + 4) .

For λ = −1 we recover Dx and Dz, and, for λ = 0, the lines Dy,±i.
However for each root λ of Qy(t) = t3 + 4, we find six new lines:

(t(λ +
2
λ2

)−
√

3
√

λ + 1
3

w) : t :
2
λ2

(−t +
√

3
√

λ + 1
3

w) : w) ,

(t(λ +
2
λ2

) +
√

3
√

λ + 1
3

w) : t :
2
λ2

(−t−
√

3
√

λ + 1
3

w) : w) .

Finally, sending Dz on the z-axis, we obtain

Q(λ) = λQz(λ) ,

where Qz(λ) = 3λ3− 12λ2 +12λ− 4. For λ = 0, we get the (already found)
lines Dz,±i. If λ runs over the set of roots of Qz, we obtain the six remaining
lines:

(t(1− 1
k(λ)

) +
iw

k(λ)
: (

1
k(λ)

+ λ− 1)t− i

k(λ)
w : (1− λ)t : w) ,

(t(1− 1
k(λ)

)− iw

k(λ)
: (

1
k(λ)

+ λ− 1)t +
i

k(λ)
w : (1− λ)t : w) ,

where k(λ) = 3λ + (3/2)λ2.

Remark 2.2. Seeing S̃ as a surface defined over Q, the computations we
have just performed show that the smallest Galois extension of Q over which
the 27 lines on S̃ are defined is Q(i, ω, 21/3), where i, ω, are respectively
complex roots of the Q-polynomials X2 + 1 and X2 + X + 1.

We can now compute the Galois action on the set of these 27 lines. We
note that it suffices, in the computation of the Galois action, to consider S̃
as a surface over the prime field Fp and to determine the eigenvalues of the
Frobenius acting on the `-adic cohomology of degree 2 of that surface. The
eigenvalues for the second cohomology group of S̃/Fpr are then obtained
by raising those corresponding to S̃/Fp to the r-th power.
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First, if we denote by σ∗ (following [26]) the restriction of the Frobenius
morphism to the set of 27 lines on S̃, then σ∗ fixes the three lines Dx, Dy

and Dz. Let us investigate the action of σ∗ on the other lines.
If p ≡ 2 (mod 3):
• either p ≡ 1 (mod 4) and then the 6 lines Dx,±i, Dy,±i and Dz,±i as

well as the 6 lines corresponding to the roots of Qz, are defined over
Fp. These 12 lines are exchanged pairwise. We deduce that σ∗ is an
element of the conjugacy class C16 of [26, Table 1].
• or p ≡ 3 (mod 4) and then the 6 lines Dx,±i, Dy,±i and Dz,±i form

3 couples of coplanar lines exchanged pairwise. Moreover, as in the
previous case, the roots of Qz give rise to a couple of coplanar lines
exchanged pairwise. The 12 remaining lines form 6 couples of skew
lines exchanged pairwise. We deduce that σ∗ is an element of the
conjugacy class denoted C17.

If p ≡ 1 (mod 3): either 4 is a cube modulo p and
• either p ≡ 1 (mod 4) and then the 27 lines are defined over Fp (and

so are all fixed by σ∗). Thus the permutation σ∗ is an element of
the class C1.
• or p ≡ 3 (mod 4) and the lines which are different from Dx, Dy and
Dz split in 12 couples of coplanar lines exchanged pairwise. Thus
σ∗ is an element of the class C3.

or 4 is not a cube modulo p and
• either p ≡ 1 (mod 4) and then the 6 lines Dx,±i, Dy,±i and Dz,±i are

defined over Fp. Each of the polynomials Qx, Qy and Qz gives rise
to 2 triples of cyclicly permuted lines. Thus, the permutation σ∗ is
an element of the class C6.
• or p ≡ 3 (mod 4) and then Dx,±i, Dy,±i and Dz,±i form 3 couples

of lines permuted pairwise and each of the polynomials Qx, Qy and
Qz corresponds to an orbit of 6 lines permuted cyclicly. We deduce
that σ∗ is an element of the class C7.

Remark 2.3. If X is a smooth cubic surface, it is a standard fact that the 27
lines on X can be described through a unique algebraic equation (see [12,
Chap. 4]). Seen over Q, such a polynomial has a splitting field with Galois
group isomorphic to W (E6), the Weyl group of the exceptional algebraic
group E6. In that context the results of Swinnerton-Dyer ([26]) give us
precise information about which subgroups of W (E6) can actually appear
as permutation groups of the 27 lines, when working over finite fields.

Notice now (see [14, page 119]) that if p ≡ 1 (mod 3), 4 is a cube modulo
p if and only if the coefficient Ap defined in Proposition 2.1 is even. The
different cases above can then be partly unified. Indeed the eigenvalues of
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the morphism induced on H2
S̃

by the global geometric Frobenius morphism

on S̃/Fq are:
• if p ≡ 2 (mod 3): 1 with multiplicity 4, (−1)r with multiplicity 1,

χq(−1) (where χq denotes the Legendre character of Fq) with mul-
tiplicity 2,
• if p ≡ 1 (mod 3): 1 with multiplicity 3, χq(−1) with multiplicity 2,

ζδr
6 with multiplicity 1 and ζ̄6

δr with multiplicity 1 (using the same
notations as in Theorem 1.1).

We deduce the number of Fq-rational points on S̃:
• if p ≡ 2 (mod 3):

|S̃(Fq)| = q2 + (4 + (−1)r + 2χq(−1))q + 1 ,

• if p ≡ 1 (mod 3):

|S̃(Fq)| = q2 + (3 + 2χq(−1) + ζδr
6 + ζ̄6

δr)q + 1 .

Combining that formula with Proposition 2.1 and the fact that B3(q) =
q|S(Fq)|, we finally deduce Theorem 1.1.

3. The third moment of Kloosterman sums

We work with the same notations and assumptions on q, p, and ϕ as in
Section 2. In this section, we are interested in the family of Kloosterman
sums with parameter λ defined in the introduction:

K(λ; q) =
∑

x∈F×
q

ϕ(x + λx−1) .

For µ ∈ F×q , we can define the additive character ϕµ via ϕµ(x) = ϕ(µx)
for x ∈ Fq. An easy calculation yields

K(λµ2; q) =
∑

x∈F×
q

ϕµ(x + λx−1) ,

so varying µ (i.e. the character) for fixed λ amounts to varying λ modulo
the nonzero squares of Fq. In the case where q = p we can also remark
that K(λ; p) and K(λµ2; p) are Galois conjugate in the cyclotomic field
Q(e2iπ/p). Thus two subfamilies of those sums naturally emerge. Denoting
by {1, η} a set of representatives of F×q modulo nonzero squares, these
subfamilies give rise to the moments (using notations of [18]):

σn(q) =
∑

ν∈Fq

(K(ν2; q))n and σ′n(q) =
∑

ν∈Fq

(K(ην2; q))n .
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We notice first that σn(q) + σ′n(q) = 2
∑

λ∈Fq
K(λ; q)n and, generalizing

Salié’s formulæ (see [22] and [15, Section 4.4]), we obtain (for p 6= 2)

σ1(q) = −σ′1(q) = χq(−1)q , σ2(q) = q2 − 2q , σ′2(q) = q2 ,

σ3(q) + σ′3(q) = 2(χq(−3)q2 + 2q)

where χq still denotes the Legendre character of Fq.
D. H. and E. Lehmer (see also [21] for a simplified proof involving the

same type of arguments) give, in [18], an explicit formula for σ3(p). Al-
though the elementary (but very clever) arguments they use would surely
yield the exact formula of Theorem 1.2 for any σ3(q) (q being a prime
power), most interesting in our method is the geometric interpretation
we give for the fact that the decomposition p = a2 + 3b2 (provided p ≡
1 (mod 3)) appears in the formula of [18]. That decompostion is indeed
strongly related to the so called ap coefficient of the CM elliptic curve E/Q
with Weierstrass model y2 = x3 + 1 (or a quadratic twist of that curve).

Remark 3.1. It is natural to ask for what can be done to evaluate the
fourth moment of Kloosterman sums σ4(q). The same easy calculation as
the one performed in the next section shows that this problem is equivalent
to determining the number of Fq-rational points on the threefold given by

Z : x + x−1 + y + y−1 + z + z−1 + t + t−1 = 0 .

In [27], the author, first resolving the singularities of that variety and then
using the Faltings-Serre criterion, shows that the number of Fp-rational
points on Z is explicitly related to the coefficient of the expansion of the
cusp form η4(2z)η4(4z).

In [1], the authors give an expression relating the number of Fp-rational
points of Z to the sum of the number of Fp-rational points on the Legendre
elliptic curves

Eλ2 : y2 = x(x− 1)(x− λ2) ,

where λ ∈ Fp \ {0,±1}.
Another point of view, in order to try and find the value of σn(q) for any

n greater than 3 would be to apply the standard techniques from algebraic
geometry we referred to in the introduction. A theorem of Deligne (see [17,
Th. 4.1.1]) asserts that there exists a lisse `-adic sheaf (on Gm) of rank 2
denoted Kl and called Kloosterman sheaf such that the action of the local
Frobenius (at any a ∈ Fq) on the fibre of Kl over a geometric point ā lying
over a satisfies

Tr(Fra,q | Klā) = −K(a; q) .

In our case, those sheaves can be seen as Galois representations over
the field of `-adic numbers Q`. If we want to use Galois representations to
express the moment σn(q) as well, and if we want those representations to
have a dimension that grows as slowly as possible with n, we just need to
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consider the elevation to the second power [2] : Gm → Gm and the n-th
symmetric power (an operation we denote τn) of the pullback [2]∗Kl. The
sheaf obtained has rank n + 1 and, from standard properties of such `-adic
sheaves (see e.g. [17, 2.3.3]), the value of σn(q) is explicitly related to the
trace of the global Frobenius acting on the cohomology space with compact
support H1

c (Gm × Fq, τn([2]∗Kl)). Instead of obtaining a precise value for
that trace, which seems very difficult, we only discuss the dimension of the
cohomology space involved. Such an information is enough to gain some
intuition about the level of difficulty of evaluating σn(q) as n grows.

In [10, proof of Th. 3.1], the decomposition of [2]∗τn(Kl) as a direct sum
of Lang sheaves is given. That enables us to see easily that the sheaves
τn([2]∗Kl) and [2]∗τn(Kl) are isomorphic (e.g. via a straightforward com-
putation of the eigenvalues of the local Frobenii acting on those sheaves).
The ramification argument given in [10, proof of Th. 3.1] combined with
the formula 1.13.1 of [17] yields

dim H1
c (Gm × Fq, τn([2]∗Kl)) =

{
n− 2b n

2pc , if n is even ,

n + 1− 2b n
2p + 1

2c otherwise .

so the dimension evaluated increases “almost” linearly with n (at least in
the range 1 6 n 6 p).

3.1. A surface related to σ3(q). We start by expanding the formula
defining σ3(q)

σ3(q) =
∑

ν∈Fq

( ∑
h∈F×

q

ϕ(h + ν2h−1)
)3

=
∑

ν∈Fq

( ∑
x,y,z∈F×

q

ϕ(x + y + z + ν2(x−1 + y−1 + z−1))
)

=
∑

x,y,z∈F×
q

ϕ(x + y + z)

+
∑

ν∈F×
q

( ∑
x,y,z∈F×

q

ϕ(x + y + z + ν2(x−1 + y−1 + z−1))
)

.

Using orthogonality relations and performing the change of variables
x′ = ν−1x, y′ = ν−1y, z′ = ν−1z, we obtain

σ3(q) = −1 +
∑

ν∈F×
q

( ∑
x′,y′,z′∈F×

q

ϕ(ν(x′ + y′ + z′ + x′−1 + y′−1 + z′−1))
)

.

This leads us to define a surface S0 in G3
m/Fq in the following way .

S0 : f(x, y, z) = x + y + z + x−1 + y−1 + z−1 = 0 .
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The link between σ3(q) and the number of Fq-rational points of S0 is
given by

σ3(q) = −1 +
∑

x,y,z∈F×
q

( ∑
ν∈F×

q

ϕ(νf(x, y, z))
)

(3.1)

= −1 +
∑

x,y,z∈F×
q

f(x,y,z) 6=0

(−1) +
∑

x,y,z∈F×
q

f(x,y,z)=0

(q − 1)

= −1− ((q − 1)3 − |S0(Fq)|) + (q − 1)|S0(Fq)|
= −(q − 1)3 + q|S0(Fq)| − 1 .

We are now going to see how S0 is closely related to the K3 surface called
C in the paper [5] 1.

First, the equation defining S0 is obviously equivalent to

xyz(x + y + z) + xy + yz + xz = 0 and xyz 6= 0 .

The surface S0 is a Zariski open dense subset of the projective surface
S1 ⊂ P3

Fq
(i.e. S1 is defined over Fq) with homogeneous equation in coor-

dinates (x : y : z : t)

S1 : xyz(x + y + z) + t2(xy + yz + xz) = 0 .

Precisely, S0 is the open set defined by xyzt 6= 0.
Fixing the value z = 1, we see then that S0 is isomorphic to the surface

S2/Fq with equation

S2 : xy(x + y + 1) + t2(xy + y + x) = 0 and xyt 6= 0 .

Finally, we define S3/Fq by

(3.2) S3 : s2 = −xy(x + y + 1)(xy + y + x) ,

and the Zariski open dense subset S∗3 ⊂ S3 by xys 6= 0.
Then the map

S∗3 → S2

(x, y, s) 7→ (x, y, t = xy(x + y + 1)s−1)

establishes an isomorphism between S∗3 and S2 \ (Dζ3 ∪Dζ2
3
), where ζ3 is a

primitive cube root of 1 in Fq and D = Dζ3 ∪ Dζ2
3

is a degenerate conic in
A3

Fq
with equation

x2 + x + 1 = 0 , y = −x− 1 , t 6= 0 ,

1The reference [5] was given by N. Katz via E. Kowalski.
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which happens to be, over Fq, the union of the two lines (minus a point)

Dζ3 = {(ζ3; ζ2
3 ; t)|t ∈ Fq \ {0}} ,

Dζ2
3

= {(ζ2
3 ; ζ3; t)|t ∈ Fq \ {0}} .

We observe that we have Dζ3(Fq) = Dζ2
3
(Fq) = ∅ when Fq contains no

primitive cube root of 1 (for instance if q = pr with p ≡ 2 (mod 3) and r
odd).

We have the following lemma relating Fq-rational points on S0 and S∗3 :

Lemma 3.2. • If ζ3 ∈ Fq then

|S0(Fq)| = |S∗3(Fq)|+ 2q − 2 .

• Otherwise

|S0(Fq)| = |S∗3(Fq)| .

Proof. What we have just observed and the fact that, in any case, Dζ3 ∩
Dζ2

3
= ∅ clearly imply Lemma 3.2 �

We are not going to focus on the computation of |S∗3(Fq)| but instead
of that we are going to perform one last transformation on the equation
defining S∗3 . In so doing the affine equation of the K3 surface C studied by
Beukers and Stienstra ([5]) clearly appears. Let us define

(3.3) S4 : s2 = xy(x + y + 1)(xy + y + x) .

From a geometric point of view (i.e. looking at the different varieties
as defined over a separable closure Fq of Fq) the surfaces S and S3 are
isomorphic:

S3 ⊗ Fq ' S4 ⊗ Fq

(x; y; s) 7→ (x; y; is)

where i denotes a square root of −1 in Fq.
The link between the arithmetic properties of S4 and S3 can easily be

made explicit:

Lemma 3.3. We have, for all q,

|S3(Fq)| − q2 = χq(−1)(|S(Fq)| − q2) .
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Proof. We compute:

|S3(Fq)| =
∑

x,y∈Fq

(1 + χq(−xy(x + y + 1)(xy + y + x)))

= q2 +
∑

x,y∈Fq

χq(−xy(x + y + 1)(xy + y + x))

= q2 + χq(−1)
∑

x,y∈Fq

χq(xy(x + y + 1)(xy + y + x))

= q2 + χq(−1)(|S4(Fq)| − q2) .

�

We summarize the connections between the different surfaces involved
in the following diagram where all the arrows are defined over Fq:

S0 ↪→ S1 ' S2 ←↩ S∗3 ↪→ S3 .

We also have the following isomorphism defined over Fq

S3 ⊗ Fq ' S4 ⊗ Fq .

We have just explained why the problem of evaluating σ3(q) can be
reduced to determining the number of Fq-rational points on S4. As in the
previous case, we construct the smooth projective model of S4 and study
its zeta function.

3.2. Resolving the singularities of S4. In the following geometric study,
all the varieties will implicitly be defined over Fp (for instance the n-
projective space Pn

Fp
will simply be denoted by Pn). However, for the

arithmetic application we have in mind, we will keep track of the fields
of definition whenever needed.

We are now going to describe briefly the construction of the minimal
smooth projective model of S following [5].

We consider the sextic curve in P2:

C : XY Z(X + Y + Z)(XY + Y Z + XZ) = 0 .

We want to construct the smooth model of the double covering of P2

ramified over C, an open subset of which will happen to be the surface S4.
The singularities of C are all double or triple points coming from the

intersections between the following rational curves:

Dx : X = 0 , Dy : Y = 0 , Dz : Z = 0 ,

Dx,y,z :X + Y + Z = 0 , C : XY + XZ + Y Z = 0 .

The set of singular points of C consists in:
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• 3 triple points:

Dx ∩ Dy ∩ C = (0 : 0 : 1) ,

Dx ∩ Dz ∩ C = (0 : 1 : 0) ,

Dy ∩ Dz ∩ C = (1 : 0 : 0) .

• 5 double points:

Dx ∩ Dx,y,z = (0 : 1 : −1) ,

Dy ∩ Dx,y,z = (1 : 0 : −1) ,

Dz ∩ Dx,y,z = (1 : −1 : 0) ,

Dx,y,z ∩ C = {(ζ3 : ζ2
3 : 1); (ζ2

3 : ζ3 : 1)} .

We notice once more that whenever ζ3 6∈ Fq, we have Dx,y,z(Fq)∩C(Fq) =
∅.

One constructs the smooth model of the double cover of P2 ramified over
C as follows: first we blow up P2 at the triple points of C. This gives rise
to three exceptional curves which are irreducible components of the total
transform of the branch locus C in the blown-up P2 (the other irreducible
components being nothing but the strict transform of the irreducible com-
ponents of C).

The only singularities of the pre-image of the branch locus in the blown-
up P2 are now double points (either coming from the original branch locus
C, or from the intersections between the three exceptional curves and the
other irreducible components of the pre-image of C). However these double
points come from intersections between components of odd multiplicity as
summand of the divisor attached to the pre-image of the branch locus, so,
as explained in [7], we now have to blow up the pre-image of P2 in the
double points of the pre-image of C.

This gives rise to 14 exceptional curves having all even multiplicity. The
only remaining singularities are double points coming from intersections
between components of odd and even multiplicity of the total transform of
the branch locus. Taking the double cover of the pre-image of P2 ramified
over the components of odd multiplicity of the image of C, we then obtain
a smooth surface.

We denote by K4 (adding Kloosterman’s name to those of Kähler, Ko-
daira and Kummer seems fair) the smooth surface we have just constructed
(it is the surface called C in [5]). The resolution graphs corresponding to
the resolution of singularities we have performed are the following

On the two dual graphs above, the “full points” represent components
of odd multiplicity whereas “empty points” represent components of even
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multiplicity of the total transform of the branch locus (these are all excep-
tional curves coming from blowing up at the double points of the image of
C).

Figure 1 describes the relation existing between the irreducible compo-
nents of the total transform of the branch locus seen as rational curves over
Fp. As we mentioned before, it might happen that Dx,y,z(Fq) ∩ C(Fq) = ∅.
Figure 2 usefully describes the relations between the irreducible compo-
nents of the image of the branch locus seen as curves defined over such
fields Fq (that is to say fields containing no primitive cubic root of 1).

The surface K4 is smooth and projective. The following criterion tells
us that K4 is a K3 surface (see e.g. [4] page 189 for the proof of a slightly
stronger statement):

Proposition 3.4. A surface constructed as the smooth model of the double
cover of P2 ramified over a sextic curve having only double points or triple
points as singularities is a K3 surface.

From what we saw in the introduction the major part of the work consists
in determining the polynomial P2 of (1.1). As K4 is a K3 surface, we
know that P2 has degree 22 (see [13, (6.7), proof of Th. 6]). The problem
of determining P2 happens to be easier to handle when ζ3 ∈ Fq; as a
consequence we are first going to evaluate |K4(Fq)| when ζ3 ∈ Fq.

3.3. Computing the zeta function of K4 over finite fields con-
taining ζ3. We fix a finite field F of characteristic p such that ζ3 ∈ F. We
exploit the proof of Theorem 6 in [13]. The morphism of P2 given by

U = ζ3Y Z + ζ3XZ − ζ2
3XZ − ζ2

3XY

V = ζ3Y Z + ζ3Y
2 − ζ2

3Y 2 − ζ2
3XY

W = −Y Z + ζ2
3XY
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transforms the curve C : XY Z(X + Y + Z)(XY + Y Z + XZ) = 0 into
the curve of equation (U3 + W 3)(V 3 + W 3) = 0. As ζ3 ∈ F, the above
morphism is defined over F.

As a consequence, K4 is, over F, the smooth model of the double cover
of P2 ramified over the curve (U3 + W 3)(V 3 + W 3) = 0. That is to say,
K4 is isomorphic over F to the Kummer surface Km(E ×E) associated to
E × E, where we recall that E has Weierstrass model y2 = x3 + 1.

We can now exploit the fact that the `-adic cohomology of K4 is closely
related to that of E. The `-adic cohomology of E is well known and it
is proved in [13] that, since Km(E × E) is obtained from E × E by first
blowing up its sixteen points of order at most 2 (then quotienting by the
involution induced), for some extension Fq of F, we have

(3.4) P2(K4/Fq;T ) = (1− qT )16 det(1− TFr∗|H2
E×E)

The Künneth formula (see [8]) gives

H2
E×E ' H2

E ⊗H0
E ⊕H1

E ⊗H1
E ⊕H0

E ⊗H2
E

First H2
E ⊗H0

E ' H0
E ⊗H2

E ' H2
E = Q`(−2) so

det(1− TFr∗|H2
E ⊗H0

E ⊕H0
E ⊗H2

E) = (1− qT )2 .

What’s more, we know (see [14, page 301 and 304]) that the zeta function
of E over Fq is given by

Z(E/Fq;T ) =
(1− πrT )(1− π̄rT )

(1− T )(1− qT )
,

where r is the integer such that q = pr and π is an algebraic integer satis-
fying ππ̄ = p and |π| = √p. An easy calculation then yields

det(1− TFr∗|H1
E ⊗H1

E) = (1− qT )2(1− π2rT )(1− π̄2rT ) .

Gathering these equalities we eventually obtain

det(1− TFr∗|H2
E×E) = (1− qT )4(1− π2rT )(1− π̄2rT ) ,

thus

(3.5) P2(K4/Fq;T ) = (1− qT )20(1− π2rT )(1− π̄2rT ) .

Let
P21(K4/Fpr ;T ) = (1− π2rT )(1− π̄2rT )

The reciprocal roots λ1 and λ2 of the polynomial P21(K4/Fp;T ) ∈ Z[T ]
satisfy

(3.6) λr
1 = π2r and λr

2 = π̄2r .
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Exploiting (3.5) and (3.6), we get the following expression for the zeta
function of K4 over Fq = Fpr

Z(K4/Fq;T ) =
1

(1− T )(1− q2T )(1− qT )20(1− λr
1T )(1− λr

2T )
,

which immediately yields

(3.7) |K4(Fq)| = 1 + q2 + 20q + λr
1 + λr

2 .

However, the algebraic integer π is not entirely determined by the con-
ditions ππ̄ = p, |π| = √p. This means that the expression (3.7), involving
λ1 and λ2, is not completely satisfactory. We are now going to evaluate
precisely λ1 and λ2 by computing both λ1λ2 and λ1 + λ2.

As the elliptic curve E/Q has complex multiplication by the ring of
integers OK of the quadratic field K = Q(

√
−3), we know that π ∈ OK .

Following [5], we focus our attention on whether the prime p splits in OK

or not. Indeed, writing π = a+b
√
−3, a, b ∈ Z, Beukers and Stienstra show

in [5] that, provided p 6= 2, 3,
• either p splits in OK in which case{
λ1λ2 = p2

λ1 + λ2 ∈ {±2(a2 − 3b2), ±(a2 + 6ab− 3b2), ±(a2 − 6ab− 3b2)}
• or {

λ1λ2 = ±p2

λ1 + λ2 ∈ {0, ±2p}

Remark 3.5. Recall that a prime number p is ramified in Q(
√
−3) if and

only if −3 is a square in Z/pZ. Using quadratic reciprocity, this is equiv-
alent, for a prime p > 5, to p ≡ 1 (mod 3) (1 is the only nonzero square
modulo 3) and thus to p ≡ 1 (mod 6).

Though more precise, the expressions we have obtained for λ1 and λ2

remain ambiguous. We are first going to deal with the case p ≡ 1 (mod 6)
(i.e. when p splits in OK). As sketched in [5], we consider the action of a
group of order 6 on K4/Fq, q being a power of a prime p ≡ 1 (mod 6).

Let G be the finite group generated by the automorphism γ1 exchanging
the two sheets of the double cover involved in the construction of S̃ and by
the automorphism γ2 induced on K4 by the 3-cycle

(X : Y : Z) ∈ P2 7→ (Y : Z : X) ∈ P2 .

γ1 and γ2 are of respective order 2 and 3, so |G| = 6.
The fixed points of γ1 are the ramification points of K4. Figure 1 de-

scribes how many of these points are Fq-rational. Indeed, as ζ3 ∈ Fq = Fpr ,
all the ramification points of K4 have coordinates in Fq. Each vertex of that
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dual graph represents a rational curve and, as the “empty points” have de-
gree 2 with a distinct couple of “full points” as neighbors, the number of
ramification points of K4 over Fq is

8(q + 1) + 14(q − 1) .

Notice that the other Fq-rational points of K4 have a trivial stabilizer
under the action of G.

The fixed points of γ2 are the elements of the inverse image of {(ξ : ξ2 :
1)|ξ3 = 1} by the final double cover. If ξ = ζ3 or ξ = ζ2

3 , we obtain the two
branch points of C ∩ Dx,y,z which are also fixed points for γ1. If ξ = 1, we
obtain the two points (x, y, s) = (1, 1,±3) (provided p 6= 2, 3) on the affine
part S4 of K4.

Exploiting (3.7), we finally deduce, in the case where q = p ≡ 1 (mod 6),

1 + p2 + 20p + λ1 + λ2 ≡ 8(p + 1) + 14(p− 1) + 2 (mod 6)

thus λ1 + λ2 ≡ 2 (mod 6). Looking back at the possible values we obtained
for the sum and the product of λ1 and λ2, this yields

λ1 + λ2 = 2(a2 − 3b2) and λ1λ2 = p2 .

As p = ππ̄ = a2 +3b2, we can also write λ1 +λ2 = 4a2− 2p. We can now
give the explicit form of the polynomial P21:

P21(K4/Fp;T ) = p2T 2 − (4a2 − 2p)T + 1 .

What’s more, if Fq = Fpr with p ≡ 1 (mod 6), (3.7) is now an entirely
satisfactory expression for |K4(Fq)|.

To conclude with the case ζ3 ∈ Fq, we must find the value of |K4(Fq)|
when Fq is an extension of even degree of Fp with p ≡ −1 (mod 6), say
q = p2f , f > 1. For that purpose we consider the general situation where
X is a smooth projective surface defined over Fq and we denote by Div(X)
the abelian group of divisors on X. It is well known that the so called cycle
class map once extended to the Q`-linear injective map

(3.8) Div(X)⊗Z Q` → H2(X ⊗ Fq,Q`(1))Fr−1 nilpotent

is of great importance. For instance, if we denote by mX(1; q) the multi-
plicity of 1 as eigenvalue of Frobenius acting on H2(X ⊗Fq,Q`(1)) (which
can also be seen as the multiplicity of q as eigenvalue of Fr∗ acting on H2

X)
and by ρ(X|Fq) the Picard number of X (i.e. the rank of the Néron-Severi
group of X (see [4] page 120), Tate’s conjecture, in the case of finite fields
(see e.g. [16]), predicts that

(3.9) ρ(X|Fq) = mX(1; q) .

Notice that this statement is equivalent to the surjectivity of (3.8) (as it
is injective).
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However, dealing with the present situation, it is sufficient to exploit the
injectivity of (3.8). As assumed earlier, Fq is an extension of even degree
of Fp with p ≡ −1 (mod 6), so ζ3 ∈ Fq and the preceding study shows that
we have an isomorphism K4 ' Km(E ×E) defined over Fq. As mentioned
before, p ≡ −1 (mod 6) implies that p does not split in OK . Thus (see,
e.g. [25, exercice 2.30 page 184]) we conclude that the elliptic curve E/Fp

is supersingular (see [24, page 137]). Moreover we know, by a result of
Shioda (see e.g. [2]), that if charFq 6= 2, the Picard number of Km(C ×C)
is 22 provided the elliptic curve C/Fq is supersingular. In the present case,
we get

ρ(K4|Fq) = ρ(Km(E × E)|Fq) = 22 .

Thus, the injectivity of (3.8) and the fact that dimQ`
H2

K4 = 22 enables
us to obtain

mK4(1; q) = 22 ,

hence the following expressions for the polynomial P2(K4/Fp2f ;T ) and for
the zeta function of K4 over Fp2f :

P2(K4/Fp2f ;T ) = (1− p2fT )22 ,

Z(K4/Fp2f ;T ) =
1

(1− T )(1− p4fT )(1− p2fT )22
.

This immediately yields

|K4(Fp2f )| = 1 + p4f + 22p2f .

3.4. An elliptic pencil on K4. Now we turn to the case where Fq does
not necessarily contain any primitive cube root of 1. In that case there is no
guarantee that K4/Fq is a Kummer surface. Following [5], we notice that
an elliptic fibration on K4 can be made explicit. Indeed, let us consider the
family of cubics of P2 parametrized by τ :

Eτ : XY Z − τ(X + Y + Z)(XY + Y Z + XZ) = 0 .

The discriminant of the generic fibre Eτ is

∆(τ) =
1
16

τ9(9τ − 1)(τ − 1)3 .

We deduce that the singular fibres correspond to τ ∈ {∞, 0, 1
9 , 1}. With

the same notations as in Section 3.2, the base points of the family {Eτ}τ
are

Dx ∩ Dy ∩ C = (0 : 0 : 1) Dx ∩ Dz ∩ C = (0 : 1 : 0)

Dy ∩ Dz ∩ C = (1 : 0 : 0) Dx ∩ Dx,y,z = (0 : −1 : 1)

Dy ∩ Dx,y,z = (−1 : 0 : 1) Dz ∩ Dx,y,z = (−1 : 1 : 0) .

These are all singular points for the sextic curve C. As noticed by the
authors in [5], each curve Eτ intersects the branch locus C of K4 exactly
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in the points at which a blowing up is performed for the construction of
K4 (apart from the elements of C ∩Dx,y,z). So, when blowing up P2 at the
base points of {Eτ}τ , the strict transform of the generic cubic intersects no
components of odd multiplicity of the total transform of the branch locus.

After blowing up P2 at the base points, we get an elliptic pencil on a
rational surface which gives rise, after double cover ramified over the union
of the singular cubics E0 and E∞ (exactly corresponding to the branch
locus C), to the surface K4. We denote by ϕ the corresponding elliptic
fibration.

One notices that, taking the final double cover can be interpreted as
performing, in the equation defining Eτ the change of variable τ = t2 so
that the generic fibre of the elliptic pencil on K4 can be given by

(3.10) XY Z − t2(X + Y + Z)(XY + Y Z + XZ) = 0 .

In [5], Beukers and Stienstra, determining the singular fibre combination
of the elliptic fibration on K4 given by (3.10), prove, using a theorem of
Shioda

P2(K4/Fq;T ) = (1− qT )19(1− εrqT )P21(K4/Fq;T ) ,

where q = pr, ε = −1 if p ≡ −1 (mod 3), ε = 1 otherwise. Moreover
P21(K4/Fq;T ) ∈ Z[T ], P21(K4/Fq; 0) = 1 and deg P21(K4/Fq) = 2.

From Section 3.3, for Fq2 = Fq(ζ3), we know that

(3.11) P21(K4/Fq2 ;T ) = P21(Km(E × E)/Fq2 ;T ) ,

where we recall that E is the CM elliptic curve given by

y2 = x3 + 1 .

So, there exist conjugate complex numbers λ1 and λ2 such that

Z(K4/Fq;T ) =
1

(1− T )(1− q2T )(1− qT )19(1− εrqT )(1− λr
1T )(1− λr

2T )
.

From that formula we immediately deduce

(3.12) |K4(Fq)| = 1 + q2 + 19q + εrq + λr
1 + λr

2 ,

where the explicit values of λ1 and λ2 are given by the following proposition

Proposition 3.6. • If p ≡ 1 (mod 6), there exist a, b ∈ Z such that
p = a2 + 3b2 and λ1, λ2 are the reciprocal roots of

P21(K4/Fp;T ) = p2T 2 − (4a2 − 2p)T + 1 .

• If p ≡ −1 (mod 6) then λ1, λ2 are the reciprocal roots of

P21(K4/Fp;T ) = −p2T 2 + 1 ,

that is to say, λ1 = p and λ2 = −p.
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Proof. The case p ≡ 1 (mod 3) has been treated in Section 3.3.
If p ≡ −1 (mod 6) we consider, as in Section 3.3, the action of the group

G = 〈γ1, γ2〉 on K4 seen as a surface defined over a field Fq such that
ζ3 6∈ Fq. Exploiting figure 2, we see that the number of ramification points
of K4/Fq is

8(q + 1) + 12(q − 1) .

In the case where q = p ≡ −1 (mod 6), we get from (3.12) and the
counting of the number of stabilized points on K4 under the action of G
performed in Section 3.3:

1 + p2 + 18p + λ1 + λ2 ≡ 8(p + 1) + 12(p− 1) + 2 (mod 6) .

Hence λ1 + λ2 ≡ 0 (mod 6). As p is inert in K = Q(
√
−3), Section 3.3

yields
λ1 + λ2 = 0 and λ1λ2 = ±p2 .

Now, as ζ3 ∈ Fp2 , the calculation we have just done applied to K4/Fp2

yields

|K4(Fp2)| = 1 + p4 + 20p2 + λ2
1 + λ2

2 ≡ 8(p2 + 1) + 14(p2 − 1) + 2 (mod 6) .

Hence λ2
1 + λ2

2 ≡ 2 (mod 6) so λ1λ2 ≡ −p2 (mod 6). We conclude that
λ1λ2 = −p2 and the proof is complete. �

Remark 3.7. In the context of the Inose-Shioda correspondence (see [13]),
equation (3.11) means that the matrix corresponding to the 2-dimensional
lattice of transcendental cycles on K4 is(

4
2

2
4

)
.

By [13, 1.3], this implies that the group of sections of the elliptic fibration
on K4 is of order 6. Indeed (3.10) can be written in Weierstrass form as
follows (see [5]):

V 2W + (1− 3t)UV W − t4(t2 − 1)V W 2 = U3 .

We see immediately that (0 : 0 : 1) is a point of order 3 on the generic
fibre. Moreover, the affine part Z = 1 of the generic cubic Et can be written,
after a suitable change of variables (using, for instance, a computer algebra
system) V 2 = f(U) where

f(U) = U3 + A(T )U + B(T ) ,

A(T ) =
1
4
(−3

4
T 8 + T 6 − 5

2
T 4 + T 2 − 1

12
) ,

B(T ) =
1
8
(−1

4
T 12 +

1
2
T 10 +

5
4
T 8 − 5

3
T 6 +

11
12

T 4 − 1
6
T 2 +

1
108

) .
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In order to find an element of order 2 on each fibre, it is sufficient to find
a root of f in the function field Fq(t). The polynomial

r(T ) =
1
2
(−1

2
T 4 − T 2 +

1
6
)

fulfills this condition.

We are now ready to prove Theorem 1.2; it suffices to recover the number
of Fq-rational points on the surface S0 attached to σ3(q) from the knowledge
of the quantity |K4(Fq)|.

3.5. End of the proof of Theorem 1.2. We want to obtain an explicit
value for σ3(q); we first determine the number of Fq-rational points on the
affine surface S4 defined by (3.3).

Lemma 3.8. We have

|S4(Fq)| = q2 + 2q + λr
1 + λr

2 ,

where q = pr and λ1, λ2 are defined by Proposition 3.6.

Proof. From the construction of the surface K4 detailed in Section 3.2, we
have:

|K4(Fq)| = |S4(Fq) \ {(x, y, s)|s = 0}|+ |{ramification points of K4/Fq}|

Moreover, we claim that

|{(x, y, s) ∈ S4(Fq)|s = 0}| =
{

4q − 7 if ζ3 ∈ Fq ,
4q − 5 otherwise .

Indeed, the cardinality of the left hand side set in the above equality
is the number of Fq-rational points on the union of rational affine curves:
Dx ∪ Dy ∪ Dx,y ∪ Cx,y, where

Dx : x = 0 Dy : y = 0
Dx,y : x + y + 1 = 0 Cx,y : xy + y + x = 0

The number of Fq-rational points of each of the 3 lines Dx,y, Dx and Dy

is q . What’s more, we can give the following parametrization: Cx,y(Fq) =
{(λ; −λ

λ+1)|λ ∈ Fq \ {−1}}. Hence |Cx,y(Fq)| = q − 1. We also have

Cx,y(Fq) ∩ Dx(Fq)∩Dy(Fq) = (0; 0)

Dx(Fq) ∩ Dx,y(Fq) = (0;−1) , Dy(Fq) ∩ Dx,y(Fq) = (−1; 0)

Dx,y(Fq) ∩ Cx,y(Fq) =
{
{(ζ3; ζ2

3 ), (ζ2
3 ; ζ3)} if ζ3 ∈ Fq ,

∅ otherwise .

The claim follows from putting these pieces of information together.
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Thanks to the calculation of the number of ramification points on K4/Fq

performed in the proof of Proposition 3.6 (when ζ3 6∈ Fq) and in Section 3.3
(when ζ3 ∈ Fq), we deduce

|K4(Fq)| =
{
|S4(Fq)| − (4q − 7) + 8(q + 1) + 14(q − 1) if ζ3 ∈ Fq ,
|S4(Fq)| − (4q − 5) + 8(q + 1) + 12(q − 1) otherwise .

=
{
|S4(Fq)|+ 18q + 1 if ζ3 ∈ Fq ,
|S4(Fq)|+ 16q + 1 otherwise .

Exploiting (3.12) and noticing that εr = 1 if and only if ζ3 ∈ Fq = Fpr ,
we see that the proof is complete �

Combining Lemmas 3.3 and 3.8, we get

|S3(Fq)| = q2 + χq(−1)(|S4(Fq)| − q2)

= q2 + χq(−1)(2q + λr
1 + λr

2) .

To apply Lemma 3.2 and deduce |S0(Fq)| we must exhibit the relation
between |S3(Fq)| and |S∗3(Fq)|. Reasoning as in the proof of Lemma 3.8
where we deduced |S4(Fq)| from the computation of |{(x, y, s) ∈ S4(Fq)|s 6=
0}|, we obtain

|S∗3(Fq)| =
{
|S3(Fq)| − (4q − 7) if ζ3 ∈ Fq ,
|S3(Fq)| − (4q − 5) otherwise .

Hence

|S∗3(Fq)| =
{

q2 + χq(−1)(2q + λr
1 + λr

2)− 4q + 7 if ζ3 ∈ Fq ,
q2 + χq(−1)(2q + λr

1 + λr
2)− 4q + 5 otherwise .

We can now apply Lemma 3.2; this yields

|S0(Fq)| =
{

q2 + χq(−1)(2q + λr
1 + λr

2)− 2q + 5 if ζ3 ∈ Fq ,
q2 + χq(−1)(2q + λr

1 + λr
2)− 4q + 5 otherwise .

=
{

q2 + 2q(χq(−1)− 1) + χq(−1)(λr
1 + λr

2) + 5 if ζ3 ∈ Fq ,
q2 + 2q(χq(−1)− 2) + χq(−1)(λr

1 + λr
2) + 5 otherwise .

Moreover, we get from (3.1)

σ3(q) = −q3 + 3q2 − 3q + q|S0(Fq)| .

We finally obtain the following value for σ3(q), so that the proof of The-
orem 1.2 is complete:

σ3(q) =
{

q2 + q(2qχq(−1) + χq(−1)(λr
1 + λr

2) + 2) if ζ3 ∈ Fq ,
−q2 + q(2qχq(−1) + χq(−1)(λr

1 + λr
2) + 2) otherwise .
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