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Variations on a theme of Runge: effective
determination of integral points on certain

varieties

par Aaron LEVIN

Résumé. Nous considérons quelques variations sur la méthode
classique de Runge pour déterminer effectivement les points en-
tiers sur certaines courbes. Nous prouvons d’abord une version du
théorème de Runge valide pour des variétés de dimension supérieu-
re, généralisant une version uniforme du théorème de Runge due
à Bombieri. Nous étudions alors comment la méthode de Runge
peut être étendue en utilisant certains revêtements. Nous prouvons
un résultat pour les courbes arbitraires et un résultat plus expli-
cite pour les courbes superelliptic. Comme application de notre
méthode, nous résolvons complètement certaines équations impli-
quant des carrés dans les produits des termes dans une progression
arithmétique.

Abstract. We consider some variations on the classical method
of Runge for effectively determining integral points on certain
curves. We first prove a version of Runge’s theorem valid for
higher-dimensional varieties, generalizing a uniform version of
Runge’s theorem due to Bombieri. We then take up the study
of how Runge’s method may be expanded by taking advantage of
certain coverings. We prove both a result for arbitrary curves and
a more explicit result for superelliptic curves. As an application
of our method, we completely solve certain equations involving
squares in products of terms in an arithmetic progression.

1. Introduction

A fundamental problem in number theory is to determine the set of so-
lutions over a number field K (or its ring of integers OK) to a system of
polynomial equations. Equivalently, in more geometric terms, we are in-
terested in determining the set of rational or integral points over K on
a variety X. Despite the existence of powerful conjectures on this topic
(e.g., Vojta’s conjectures), in general, it can be said that very little is
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known for arbitrary varieties X. When X = C is a curve, however, the
situation is much better, at least qualitatively. For integral points, we have
the classical theorem of Siegel which states that if an affine curve C has
infinitely many integral points, then C must be rational and have at most
two points at infinity. When the genus of C is at least two, Siegel’s theorem
is superseded by Faltings’ celebrated result that such a curve has in fact
only finitely many rational points over any number field. Unfortunately, at
present, both Siegel’s and Faltings’ theorems are ineffective. That is, given
a curve which is known to have only finitely many integral or rational points
by Siegel’s or Faltings’ theorems, there is in general no known algorithm
to provably find all of the finitely many integral or rational points on that
curve.

However, for certain classes of curves, over certain number fields K, there
do exist effective techniques for finding all integral or rational points. For
instance, when the rank of the group of K-rational points in the Jacobian
of C is smaller than the genus of C, the Chabauty-Coleman method [5]
frequently allows one to effectively determine C(K). For integral points, the
most general effective techniques come from the theory of linear forms in
logarithms [1]. Using this theory one can effectively determine, for example,
the finitely many S-integral solutions to the superelliptic equation yn =
f(x), where n > 1, f ∈ K[x] is n-th power free with at least three distinct
roots, and S is some finite set of places of K containing the archimedean
places. There are, essentially, only a handful of such effective techniques
known, and so it is useful to expand the domain of applicability of any
given method. From this point of view, we will study the old method of
Runge for effectively determining integral points on certain curves.

In 1887 Runge [19] proved the finiteness of the set of integral points on
certain curves. Although Runge did not state it, it is implicit in his proof
that his method is effective. In its most basic form, Runge proved:

Theorem 1.1 (Runge). Let f ∈ Q[x, y] be an absolutely irreducible poly-
nomial of total degree n. Let f0 denote the leading form of f , i.e., the sum
of the terms of total degree n in f . Suppose that f0 factors as f0 = g0h0,
where g0, h0 ∈ Q[x, y] are nonconstant relatively prime polynomials. Then
the set of solutions to

f(x, y) = 0, x, y ∈ Z,
is finite and can be effectively determined.

Explicit bounds for the solutions in Runge’s theorem (and its generaliza-
tions) have been given in [7] and [30]. A geometric formulation of Runge’s
theorem which is valid for arbitrary rings of S-integers is the following.

Theorem 1.2. Let C be a nonsingular projective curve defined over a
number field K. Let φ ∈ K(X) be a rational function on C. Let S be a
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finite set of places of K containing the archimedean places. Let (φ)∞ be the
divisor of poles of φ and let r be the number of irreducible components over
K of the support of (φ)∞. If r > |S| then the set {P ∈ C(K) | φ(P ) ∈ OK,S}
is finite and can be effectively determined.

Theorem 1.2 contains Theorem 1.1 as a special case. Indeed, under the
hypotheses of Theorem 1.1, let C be a projective closure of the affine plane
curve defined by f = 0 and let π : C ′ → C be a normalization. Set φ = x◦π,
K = Q, and S = {∞}. We can now apply Theorem 1.2, noting that the
factorization condition in Theorem 1.1 implies that the support of (φ)∞
has at least two components over Q.

Building on work of Sprindžuk [26], Bombieri [3] proved a uniform version
of Runge’s theorem, allowing the number field K and set of places S to vary.
We state the theorem using the same notation as in Theorem 1.2.

Theorem 1.3 (Bombieri, Sprindžuk). For L ⊃ K, let rL denote the num-
ber of irreducible components over L of the support of (φ)∞. Then the set
of points ⋃

L⊃K,SL
|SL|<rL

{P ∈ C(L) | φ(P ) ∈ OL,SL
}

is finite and can be effectively determined.

Here L ranges over all number fields and SL over sets of places of L
(containing the archimedean places).

The purpose of this paper is to expand the range of problems to which
Runge’s method can be applied and to give some explicit applications. In
the next section we prove a general version of Runge’s theorem, extending
Theorem 1.3 to higher-dimensional varieties. Following that, we show how
unramified coverings of curves can be advantageously used in conjunction
with Runge’s method. Roughly speaking, this allows Runge’s method to
be applied to curves which have large-rank rational torsion subgroups in
their Jacobian and not too many places of bad reduction. Natural exam-
ples of such curves are given by superelliptic curves yn = f(x), where f
splits into many factors over Q and the discriminant of f has relatively few
prime divisors. We study such superelliptic curves in Section 4. Finally, as
an application, we take up the well-studied problem of almost squares in
products of arithmetic progressions and give some new results.

2. Runge’s theorem in higher dimensions

Before stating our general formulation of Runge’s theorem, we introduce
some notation for integral points on arbitrary varieties. Let V be a variety
(not necessarily projective or affine) defined over a number field K. Let S
be a finite set of places of K (containing, as throughout this paper, the
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archimedean places). We call a set R ⊂ V (K) a set of S-integral points
on V if for every regular function φ ∈ K(V ) on V there exists a nonzero
constant c ∈ K∗ such that cφ(P ) ∈ OK,S for all P ∈ R. This definition
is, in general, slightly more inclusive than the notion of S-integral points
coming from Weil functions or integral models.

It will be convenient to give definitions which also allow the set of places
and the number field to vary. We call a set R ⊂ V (K) a set of s-integral
points on V if for every point P ∈ R there exists a set of places SP of K
with |SP | ≤ s, and for every regular function φ ∈ K(V ) on V there exists
a nonzero constant cφ ∈ K∗, independent of P , such that cφφ(P ) ∈ OK,SP

.
Thus, essentially, an s-integral set of points on V is a union of S-integral sets
where S varies over sets of places of K with cardinality at most s. Finally,
if s(L) is a function on number fields L ⊃ K, we call a set R ⊂ V (K) a
set of s(L)-integral points on V if for every point P ∈ R there exists a set
of places SP of K(P ) with |SP | ≤ s(K(P )), and for every regular function
φ ∈ K(V ) on V there exists a nonzero constant cφ ∈ K∗, independent of
P , such that |cφφ(P )|v ≤ 1 for all places v of K(P ) not in S (extending
each place v of K(P ) to K in some fixed way).

In order to state our theorem, it will also be necessary to recall the def-
inition of the Kodaira-Iitaka dimension κ(D) of a divisor D. Let D be a
divisor on a nonsingular projective variety X. For a nonzero rational func-
tion φ ∈ K(X), we let div(φ) denote the divisor associated to φ. Then we
let L(D) = {φ ∈ K(X) | div(φ)+D ≥ 0} and h0(D) = dimH0(X,O(D)) =
dimL(D). If h0(nD) = 0 for all n > 0 then we let κ(D) = −∞. Otherwise,
we define the dimension of D to be the integer κ(D) such that there exist
positive constants c1 and c2 with

c1n
κ(D) ≤ h0(nD) ≤ c2n

κ(D)

for all sufficiently divisible n > 0. We define a divisor D on X to be big if
κ(D) = dimX.

With the above notation, we generalize Bombieri’s version of Runge’s
theorem to higher dimensions as follows.

Theorem 2.1. Let X be a nonsingular projective variety defined over a
number field K. Let D =

∑r
i=1Di be an effective divisor on X defined over

K, with D1, . . . , Dr distinct prime divisors (defined over K). Suppose that
the intersection of any m + 1 of the supports of the divisors Di is empty.
Let r(L) be the number of irreducible components of the support of D over
L. Let s(L) be a function such that ms(L) < r(L).

(a) If κ(Di) > 0 for all i, then any set R of s(L)-integral points on
X \ D belongs to an effectively computable proper Zariski-closed
subset Z ⊂ X.
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(b) If Di is big for all i, then there exists an effectively computable
proper Zariski-closed subset Z ⊂ X such that for any set R of s(L)-
integral points on X \ D, the set R \ Z is finite (and effectively
computable).

(c) If Di is ample for all i, then all sets R of s(L)-integral points on
X \D are finite and effectively computable.

We note that the hypothesis ms(L) < r(L) in Theorem 2.1 is sharp, in
that there are examples with ms(L) = r(L) which violate the conclusions
of parts (a), (b), or (c) of the theorem. For instance, let X = P2 and let D
be a sum of 2m lines D1, . . . , D2m, defined over Q, with exactly D1, . . . , Dm

meeting at a point P and Dm+1, . . . , D2m meeting at a different point Q.
Let K be a number field with a set of places S, containing the archimedean
place(s), of cardinality |S| = 2. Then the line through P and Q will contain
an infinite set of S-integral points on X\D. It follows that a strict inequality
ms(L) < r(L) is necessary for part (c) to hold.

Given the geometric nature of the statement of our theorem, a few words
are perhaps in order on what is meant here by “effective". Since our focus
is on the arithmetic of varieties, we will take it as a given that one can
explicitly compute certain fundamental geometric objects associated to the
variety X and the divisors D1, . . . , Dr. For instance, we assume that we
can compute explicit projective equations for the variety X (and hence a
presentation of the function field of X) and Riemann-Roch bases associated
to the divisors Di and their linear combinations. Alternatively, one could
add the appropriate geometric data to the hypotheses of the theorem. We
also assume an effective version of the definition of a set of s(L)-integral
points for the set R. That is, given a regular function φ on X\D, we assume
that one can compute the constant c ∈ k∗ in the definition for the integral
point set R. Under the above assumptions, our proof gives, in principle, an
algorithm for computing the projective equations of the set Z (in parts (a)
and (b)) or the set R in part (c).

Theorem 2.1 will be proved using Lemma 2.1 below. Lemma 2.1 is a stan-
dard lemma which arises, for instance, in the construction of Weil functions.
However, in the interest of completeness, we provide a proof. Before stating
the lemma, we recall some relevant definitions. We denote by MK the set of
inequivalent absolute values of K. We normalize our absolute values so that
they extend the usual ones on Q: |p|v = 1

p if v corresponds to a prime ideal
p and p|p, and |x|v = |σ(x)| if v corresponds to an embedding σ : K ↪→ C.
For v ∈ MK , we denote by Kv the completion of K with respect to v. We
set ‖x‖v = |x|[Kv :Qv ]/[K:Q]

v . Thus, for α ∈ K, the absolute multiplicative
height is given by

H(α) =
∏

v∈MK

max{1, ‖α‖v}
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and the absolute logarithmic height by h(α) = logH(α). We define an MK-
constant to be a family of real numbers (γv)v∈MK

such that γv = 0 for all
but finitely many v.

Lemma 2.1. Let X be a nonsingular projective variety defined over a num-
ber field K. Extend each absolute value in MK in some way to K. Let
φ1, . . . , φm ∈ K(X) be rational functions on X without a common pole.
Then there exists an effectively computable MK-constant γ, independent of
the way each absolute value was extended, such that

min
1≤i≤m

log |φi(P )|v ≤ γv

for all v ∈MK and all P ∈ X(K).

Proof. Fix an embedding of X into projective space Pn such that X is not
contained in any hyperplane of Pn. For a point P ∈ Pn(K), let (x0(P ), . . . , xn(P ))
be some set of projective coordinates for P . Let

Ui = {P ∈ X | xi(P ) 6= 0}, i = 0, . . . , n.

Let (φj)0 be the divisor of zeroes of φj and let Ij be the associated ideal
sheaf on X. Let gi,j,1, . . . , gi,j,kij

∈ K[Ui] generate the sections of Ij over Ui.
Let φi,j = φj |Ui . Then for any i, j, k, we have gi,j,k

φi,j
∈ K[Ui]. Furthermore,

the functions gi,j,k

φi,j
, k = 1, . . . , kij , have a common zero only at the poles of

φi,j . Since φ1, . . . , φm have no common pole, it follows that for any i, the
functions gi,j,k

φi,j
, j = 1, . . . ,m, k = 1, . . . , kij , have no common zero on Ui.

By Hilbert’s Nullstellensatz, there exist functions hi,j,k ∈ K[Ui] such that

(2.1)
m∑

j=1

kij∑
k=1

gi,j,k

φi,j
hi,j,k = 1.

Furthermore, and this is the key point regarding effectivity, Hilbert’s Null-
stellensatz can be made effective (e.g., [14]). Let Fi,j,k = gi,j,khi,j,k. Let
fi,j = xj

xi
|Ui be the functions on Ui obtained by restriction of the rational

functions xj

xi
on Pn. Then fi,j , j = 0, . . . , n, generate K[Ui]. It follows that

each Fi,j,k is a polynomial in the fi,j . Let

Ei,v = {P ∈ X(K) | |xi(P )|v = max
j
|xj(P )|v}, i = 0, . . . , n.

Note that on Ei,v, |fi,j |v ≤ 1. Let Ci,j,k be the number of terms of Fi,j,k

and let |Fi,j,k|v be the maximum absolute value with respect to v of the
coefficients of Fi,j,k (as a polynomial in the fi,j). Let

δv =

{
1 if v is archimedean
0 if v is nonarchimedean.
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Then |Fi,j,k(P )|v ≤ Cδv
i,j,k|Fi,j,k|v for all P ∈ Ei,v, v ∈ MK . It follows from

(2.1) that for P ∈ Ei,v, m∑
j=1

kij

δv

max
j,k

Cδv
i,j,k|Fi,j,k|v max

j

∣∣∣∣∣ 1
φj

(P )

∣∣∣∣∣
v

≥ 1,

or equivalently,

min
j
|φj(P )|v ≤

 m∑
j=1

kij

δv

max
j,k

Cδv
i,j,k|Fi,j,k|v.

Note that for any v, the sets Ei,v, i = 0, . . . , n, cover X and that m∑
j=1

kij

δv

max
j,k

Cδv
i,j,k|Fi,j,k|v = 1

for all but finitely many v ∈ MK . Thus, the lemma holds with the MK-
constant

γv = log max
i

 m∑
j=1

kij

δv

max
j,k

Cδv
i,j,k|Fi,j,k|v.

�

Proof of Theorem 2.1. We first prove part (a). Let R be an s(L)-integral set
of points on X \D. Let L ⊃ K be a number field. Let D =

∑r(L)
i=1 Ei be the

decomposition of D into effective divisors over L. Let L′ ⊂ L be the minimal
field over which all the Ei are defined. Since κ(Di) > 0 for all i, and hence
κ(Ei) > 0 for all i, for i = 1, . . . , r(L), there exists a non-constant rational
function φi ∈ L′(X) such that the poles of φi lie in the support of Ei. From
the definition of R, after rescaling the φi (independent of L), we can assume
that for any i and any P ∈ R with K(P ) = L, φi(P ) ∈ OL,S for some set of
places S of L with |S| ≤ s(L). Let I be the set of subsets I ⊂ {1, . . . , r(L)}
such that the functions φi, i ∈ I, have no common pole. For I ∈ I, let γI

be the effectively computable ML′-constant from Lemma 2.1 for the set of
functions φi, i ∈ I. Let γ be the ML′-constant defined by γv = maxI∈I γI,v.
Since the intersection of the supports of any m + 1 distinct divisors Di is
empty, any m+1 distinct functions φi have no common pole. For w ∈ML,
let vw denote the place of L′ lying below w. It follows then from Lemma
2.1 and the above definitions that for any P ∈ X(L̄) and w ∈ ML, there
exist at most m functions φi, i ∈ {1, . . . , r(L)}, such that (extending w to
L̄ in some way)

(2.2) log |φi(P )|w > γvw .
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Let P ∈ R with K(P ) = L. Then for all i, φi(P ) ∈ OL,S for some set
of places S of L with |S| ≤ s(L). Since r(L) > m|S|, by the pigeon-
hole principle and (2.2), there exists some function φ = φi such that
log |φ(P )|w ≤ γvw for all w ∈ S. As φ(P ) ∈ OL,S , it follows immediately
that h(φ(P )) ≤

∑
w∈S max{0, γvw}. Let A be the maximum of the sum of

s(L) elements γv, v ∈ML′ (allowing repetitions). Then h(φ(P )) ≤ A. Thus
P belongs to one of the finitely many proper Zariski-closed subsets of X
defined by φi = α, where i ∈ {1, . . . , r(L)} and h(α) ≤ A. Note that the
constant A and the functions φi depended only on the decomposition of D
over L into the effective divisors Ei. There are only finitely many possible
such decompositions of D into effective divisors. Thus, going through the
above proof over all such possible decompositions, we see that R belongs
to the union of finitely many effectively determinable proper Zariski-closed
subsets of X.

The proofs of parts (b) and (c) are similar. Let L, L′, and Ei be as in
the proof of part (a). Instead of considering functions φ1, . . . , φr(L) with
φi ∈ L(miEi), for some mi > 0, we consider sets of functions that form
bases of the spaces L(miEi) for some sufficiently large mi. For instance,
in the case where Di, and hence Ei, is big for all i, let mi ∈ N be such
that the map ΦmiEi associated to L(miEi) is birational outside of a proper
Zariski-closed subset Zi ⊂ X. For each i, let φi,1, . . . , φi,l(miEi) ∈ L′(X)
be a basis for L(miEi). By scaling the functions, we can assume that they
take on appropriately integral values as before. Let I be the set of subsets
I ⊂ {(i, j) | i ∈ {1, . . . , r(L)}, j ∈ {1, . . . , l(miEi)}} such that the functions
φi,j , (i, j) ∈ I, have no common pole. Let γ be the ML′-constant defined
by γv = maxI∈I γI,v, where γI , I ∈ I, is defined as in the proof of part
(a). Define the constant A with respect to γ as before. Let P ∈ R with
K(P ) = L. Then for all i and j, φi,j(P ) ∈ OL,S for some set of places S of
L with |S| ≤ s(L). Note that any m+1 functions φi,j with distinct i-indices
have no pole in common. Since r(L) > m|S|, using Lemma 2.1 as before,
there exists some i such that for every function φi,j , j = 1, . . . , l(miEi), we
have log |φi,j(P )|w ≤ γvw for all w ∈ S. It follows that the point

ΦmiEi(P ) = (φi,1(P ), . . . , φi,l(miEi)(P )) ∈ Pl(miEi)−1

is bounded in absolute logarithmic height by the constant A. Since ΦmiEi

is birational outside of Zi, it follows that all points P ∈ R with K(P ) = L
are contained in ∪r

i=1Zi and a finite effectively determinable set of points.
As in part (a), this set actually depends not on L, but on the divisors Ei.
As there are only finitely many possibilities for the Ei, (b) follows. The
proof for ample divisors (c) is essentially the same, except that in this case
we can take Zi = ∅ for all i. �
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3. Coverings and Runge’s method

In this section we take up the problem of expanding Runge’s theorem
for curves by taking advantage of unramified coverings. Let C be a curve
defined over a number field K, S a finite set of places of K, φ ∈ K(C),
and R = {P ∈ C(K) | φ(P ) ∈ OK,S}. It can happen that a straightforward
application of Runge’s method fails to prove finiteness for the set R, but
that there is some unramified covering π : X → C such that Runge’s
method can be successfully applied to X, φ ◦ π, and π−1(R). For instance,
if φ has only a single pole, a straightforward application of Runge’s method
can never yield any information. However, even in this case, it is sometimes
possible to obtain nontrivial results by using coverings. Roughly speaking,
our reduction to a cover works if (1) there is a large-rank rational torsion
subgroup in the Jacobian of C and (2) if C has relatively few places of bad
reduction. Examples of such curves are given in the subsequent sections,
where we work out explicit bounds for integral points on certain families of
curves.

Before stating the main theorem, we introduce some more notation. We
let Jac(C) denote the Jacobian of C and Jac(C)tors its torsion subgroup.
For a divisor D on a variety X, we let suppD denote the support of D. For
a finite abelian group A and an integer m > 1, we let rkmA, the m-rank
of A, be the largest integer r such that (Z/mZ)r is a subgroup of A. We
denote the class group of the ring of S-integers of a number field K by
Cl(OK,S). If L is a finite extension of the number field K and S a finite
set of places of K, we will use OL,S to denote the ring of T -integers of L,
where T is the set of places of L lying above places of S. We let logp denote
the logarithm to the base p.

Theorem 3.1. Let C be a nonsingular projective curve of positive genus
defined over a number field K. Let φ ∈ K(C) be a rational function on C
such that every pole of φ is defined over K and let n∞ denote the number
of distinct poles of φ. Let p be a (rational) prime. Let T be the union of
the set of archimedean places of K, primes of OK dividing p, and primes
of bad reduction of Jac(C). Then the set of integral points⋃

L⊃K,S
logp |S|+rkp Cl(OL,T )+rkO∗L,T +1<rkp Jac(C)(K)tors+logp n∞

{P ∈ C(L) | φ(P ) ∈ OL,S}

is finite and can be effectively determined.

Remark. If a set of points ∪L,S{P ∈ C(L) | φ(P ) ∈ OL,S} is infinite, then
Theorem 3.1 implies that for some L,

rkp Cl(OL,T ) ≥ rkp Jac(C)(K)tors + logp n∞ − logp |S| − rkO∗
L,T − 1.
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Thus, Theorem 3.1 has the potential for being used to construct number
fields with a large-rank ideal class group. Indeed, this idea was pursued, in
a slightly different form, in [12] and [13]. The lemmas in this section are
essentially borrowed from [12].

Before proving Theorem 3.1, we prove some needed lemmas. Let r =
rkp Jac(C)(K)tors.

Lemma 3.1. Suppose that C(K) 6= ∅. Then there exist K-rational di-
visors D1, . . . , Dr, whose divisor classes generate a subgroup (Z/pZ)r ⊂
Jac(C)(K) and rational functions fj ∈ K(C), j = 1, . . . , r, such that
div(fj) = pDj and for all P ∈ C(K) such that P is not a pole of fj,

(3.1) fj(P )OK(P ),T = a
p
P,j

for some fractional OK(P ),T -ideal aP,j. If P ∈ supp div(fj), then there exists
a nonzero function hj ∈ K(C) such that P 6∈ supp div(fjh

p
j ) and

(3.2) fjh
p
j (P )OK(P ),T = a

p
P,j

for some fractional OK(P ),T -ideal aP,j.

Proof. Let c1, . . . , cr be generators for a subgroup (Z/pZ)r ⊂ Jac(C)(K).
Let Q ∈ C(K). Let ψ : C ↪→ J = Jac(C) be the K-rational embedding
given by P 7→ [P − Q]. Let Θ = ψ(C) + . . . + ψ(C) be the theta divisor
on J . Let Ej = Θ − t∗cj

Θ, where tcj denotes the translation-by-cj map on
J . By the theorem of the square, pEj is a principal divisor. Let fj ∈ K(J)
be such that div(fj) = pEj . Since [p]∗Ej ∼ pEj is principal, where [p] is
multiplication by p on J , let gj ∈ K(J) be such that div(gj) = [p]∗Ej . It
follows immediately that fj(px) = αjgj(x)p for some constant αj ∈ K∗. Re-
placing fj by fj/αj , we can assume that fj(px) = gj(x)p. Let x, y ∈ J(K)
with py = x. It is a standard fact that the extension K(y)/K(x) is un-
ramified outside of (places lying above) T . Since fj(x) = fj(py) = gj(y)p

and K(y)/K(x) is unramified outside of T , if x is not a pole of fj it fol-
lows that fj(x)OK(x),T = a

p
j for some fractional OK(x),T -ideal aj . Consider

fj |C , via the embedding ψ : C ↪→ J . Then in particular, for any P ∈
C(K) with P not a pole of fj |C , fj |C(P )OK(P ),T = a

p
j for some fractional

OK(P ),T -ideal aj . Let Dj = ψ∗(Θ − t∗cj
Θ). Then div(fj |C) = ψ∗(pEj) =

pψ∗(Θ − t∗cj
Θ) = pDj . We conclude the first part of the lemma by noting

that [ψ∗(Θ− t∗cj
Θ)] = cj [8, Th. A.8.2.1]. So [Dj ] = cj .

For the second part of the lemma, we note that by an elementary moving
lemma, for any j and any P ∈ J(K), there exists a K-rational divisor Ej′

such that Ej′ ∼ Ej and P 6∈ suppEj′ . Let hj ∈ K(J) with (hj) = Ej′ −Ej .
Then P 6∈ supp div(fjh

p
j ) and fj(x)hj(x)p = (gj(y)hj(x))p on J , with py =

x as before. So essentially the same proof as above gives the last assertion
of the lemma. �
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Let f1, . . . , fr be as in Lemma 3.1. Let X be the nonsingular projective
curve associated to the function field K(C)

(
p
√
f1, . . . ,

p
√
fr
)

and let π : X →
C be the natural morphism associated to this field extension of K(C). It is
easy to see that deg π = pr. This is equivalent to the following lemma.

Lemma 3.2. Let D1, . . . , Dr be divisors whose divisor classes generate a
subgroup (Z/pZ)r ⊂ Jac(C). Let f1, . . . , fr ∈ K(C) be rational functions
such that div(fj) = pDj for all j. Then[

K(C)
(

p
√
f1, . . . ,

p
√
fr

)
: K(C)

]
= pr.

Proof. By Kummer theory, this is equivalent to showing that f1, . . . , fr

generate a subgroup of cardinality pr in K(C)∗/K(C)p∗. Suppose that

(3.3) f i1
1 f

i2
2 · · · f ir

r = gp

for some g ∈ K(C)∗ and integers 0 ≤ i1, . . . , ir < p. Let div(g) = E,
the principal divisor associated to g. Then by (3.3), pE =

∑r
j=1 pijDj . So

E =
∑r

j=1 ijDj is a principal divisor. Since [D1], . . . , [Dr] are independent
p-torsion elements in Jac(C), it follows that ij = 0 for all j. �

Lemma 3.3. Let L ⊃ K be a number field. Let L′ be the compositum of
the number fields K(Q), where Q ranges over all points Q ∈ X(K) with
π(Q) ∈ C(L). Let ζ be a generator for the group of roots of unity in L.
Then

(3.4) [L′ : L] ≤ [L( p
√
ζ) : L]prkp Cl(OL,T )+rkO∗L,T .

Proof. We will work throughout with (fractional) OL,T -ideals. Let t =
rkp Cl(OL,T ). Let G = {[a] ∈ Cl(OL,T ) | [a]p = 1}, a subgroup of Cl(OL,T ).
Then G ∼= (Z/pZ)t. Let bj , j = 1, . . . , t, be (OL,T -)ideals whose ideal classes
generate G. Then for each j, b

p
j = (βj) for some βj ∈ L. Let t′ = rkO∗

L,T .
Let u1, . . . , ut′ , ζ be generators for O∗

L,T . Let

L′ = L( p
√
β1, . . . ,

p
√
βt, p

√
u1, . . . , p

√
ut′ ,

p
√
ζ).

Note that
[L′ : L] ≤ [L( p

√
ζ) : L]pt+t′ .

Let Q ∈ X(K) with P = π(Q) ∈ C(L). We now show that K(Q) ⊂ L′.
First assume that P is not a zero or pole of any fj . Then it follows from

the definitions of π and X that K(Q) = L(x1, . . . , xr) for some choice of xj

satisfying xp
j = fj(P ), j = 1, . . . , r. We need to show that xj ∈ L′ for all j.

By Lemma 3.1, (xp
j ) = (fj(P )) = a

p
j for some OL,T -ideal aj . Since [aj ] ∈ G,

aj = (α)
t∏

s=1

bcs
s
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for some integers cs and some element α ∈ L. Therefore,

(xp
j ) = a

p
j = (αp)

t∏
s=1

(βcs
s ) .

So xp
j = uαp∏t

s=1 β
cs
s for some unit u ∈ O∗

L,T . Therefore, xj =
α p
√
u
∏t

s=1
p
√
βcs

s for some choice of the p-th roots. So xj ∈ L′ for all j
as desired.

If P is a zero or pole of some fj then the proof is similar, except we use
the second part of Lemma 3.1 and the fact that K(Q) = L(x1, . . . , xr) for
some choice of xj satisfying xp

j = fjh
p
j (P ), j = 1, . . . , r. �

Proof of Theorem 3.1. We apply Runge’s method to the curve X and the
rational function φ ◦ π. It is easily seen that π is unramified. Thus, since π
has deg π = pr, φ ◦ π has prn∞ distinct poles over some number field K ′.
By Theorem 1.3, the set of points⋃

L′⊃K′,S
|S|<prn∞

{Q ∈ X(L′) | φ(π(Q)) ∈ OL′,S}

is finite and can be effectively determined.
Now consider L ⊃ K, S, and P ∈ C(L) with φ(P ) ∈ OL,S . Let Q ∈

π−1(P ). Then by Lemma 3.3 (using also that the poles of φ were all defined
over K ⊂ L),

[K ′(Q) : L] ≤ [L( p
√
ζ) : L]prkp Cl(OL,T )+rkO∗L,T .

For L′ ⊃ L, we let SL′ be the set of places of L′ lying above places of
S. Trivially, we have |SK′(Q)| ≤ |S|[K ′(Q) : L] and φ(π(Q)) ∈ OL,S ⊂
OK′(Q),S . So combining the above, we see that the set of points⋃

L⊃K,S

|S|[L( p
√

ζ):L]p
rkp Cl(OL,T )+rkO∗

L,T <prn∞

{P ∈ C(L) | φ(P ) ∈ OL,S}

is finite and can be effectively determined. �

4. Superelliptic curves

The extension of Runge’s theorem proven in the last section
(Theorem 3.1) is only useful for curves C which have a large-rank ratio-
nal torsion subgroup in Jac(C). A natural class of curves which have this
property are superelliptic curves C defined by

yp = f(x) =
r∏

i=1

fi(x), f1, . . . , fr ∈ K[x],
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where f1, . . . , fr are p-th power free, pairwise coprime, nonconstant polyno-
mials. Indeed, if p - deg f , it is easily shown that rkp Jac(C)(K)tors ≥ r− 1.
An explicit version of Theorem 3.1 for superelliptic curves is given in the
following result. For a polynomial f , we let Df be the discriminant of f ,
|f |v be the maximum absolute value of the coefficients of f with respect
to v, and H(f) be the absolute multiplicative height of the coefficients of
f as a point in projective space. For a number field K, we let DK be the
absolute discriminant of K. For an element α ∈ K∗, we let ωK(α) denote
the number of distinct prime ideals in the ideal factorization of αOK (set-
ting ω(n) = ωQ(n)). For a set of places S of K, we let S∞ denote the set
of archimedean places in S.

Theorem 4.1. Let p be a prime. Let f1, . . . , fr ∈ OK [x] be monic, pairwise
coprime, nonconstant polynomials. Suppose that each fi, i = 1, . . . , r, is an
nth power, (n, p) = 1, n ≥ 1, of a polynomial gi which has no repeated
roots. For a 6= 0, let Ca be the superelliptic affine plane curve defined by

ayp = f(x) =
r∏

i=1

fi(x).

Let d = deg f . Let ζp be a primitive p-th root of unity. Let ε = 0 if p divides
deg fi for i = 1, . . . , r, ε = 1 if (d, p) = 1, and ε = 2 if p divides d but p
doesn’t divide deg fi for some i. Then the set of integral points

R =
⋃

K′⊃K,S,a∈OK′,S
ωK′ (aDf )+|S∞|+logp |S|+rkp Cl(OK′ )+ε<r

{P ∈ Ca(OK′,S)}

is finite. Let d′ = deg
∏r

i=1 gi. Specifically, for each point P ∈ R, we have
the bound

(4.1) H(x(P )) ≤
∣∣∣DK(ζp)

∣∣∣d′p2r
(

4d′p3
r∏

i=1

H(gi)

)d′2p3r

.

Remark. The bound (4.1) is a somewhat crude estimate. For P ∈
Ca(OK′,S) such that r is large compared to ωK′(aDf ) + |S∞| + logp |S| +
rkp Cl(OK′), the inequality (4.1) can be improved. Such improved bounds
are easily calculated from Theorem 4.3 and an examination of the proof of
Theorem 4.1.

In many cases the bounds in Theorem 4.1 are small enough that, com-
bined with other techniques, it is practical to find all S-integral points on
certain superelliptic curves. This is illustrated in Section 5, where we com-
pute certain sets of S-integral points on some curves related to the problem
of squares in products of terms in an arithmetic progression.
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Theorem 4.2. Let p be a prime. Let f1, . . . , fr ∈ Z[x] be monic, pair-
wise coprime, nonconstant polynomials with no repeated roots. Let d =
deg

∏r
i=1 fi and H = maxiH(fi). Let pfree(n) denote the p-th-power-free

part of an integer n. Then for x ∈ Z,

(4.2) ω

(
r∏

i=1

pfree(fi(x))

)
≥ r − 1

if

|x| > (8dp3H)2d2pr+1
.

If p | deg fi, i = 1, . . . , r, then the same statement holds with (4.2) replaced
by

(4.3) ω

(
r∏

i=1

pfree(fi(x))

)
≥ r.

Again, a better, but more complicated estimate in Theorem 4.2 follows
from the proof and Theorem 4.3.

Remark. Inequalities (4.2) and (4.3) are likely to be sharp for infinitely
many values of x, at least for certain sets of polynomials. Indeed, if Schinzel’s
“Hypothesis H” [22] is true, most sets of polynomials {f2, . . . , fr} will take
prime values simultaneously at infinitely many points x = np. Thus, if we
take f1 = x, at such points the bound in inequality (4.2) will be achieved.
Similarly, in general, the bound in inequality (4.3) should also be attained
infinitely often.

Theorems 4.1 and 4.2, whose proofs we postpone until the end of the
section, will be a consequence of the following general result.

Theorem 4.3. Let p be a prime and ζp a primitive p-th root of unity. Let
K be a number field. Let f1, . . . , fr ∈ OK [x] be monic, pairwise coprime,
nonconstant polynomials with no repeated roots. Let K ′ ⊃ K be a number
field and S a finite set of places of K ′ containing the archimedean places.
Let α ∈ OK′,S. Let βi = p

√
fi(α), i = 1, . . . , r. Let L = K ′(β1, . . . , βr, ζp).

Let T be the set of places of L lying above places of S and let t = |T |. Let S∞
denote the set of archimedean places of S. Let di = deg fi and d =

∑r
i=1 di.
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Let

Hv = max
i
|fi|v, v ∈ S∞,

B =
∏

v∈S∞

(Hv + 1)[K
′
v :Qv ]/[K′:Q] ,

δ =

⌈
pr−1((p− 1)(d− 1)− 2) + t+ 2

pr−1 − t

⌉
,

δ′ =

⌈
pr−1((p− 1)(d− 2)− 2) + t+ 2

pr − t

⌉
,

m = pr−1
(
δ + 1− (p− 1)(d− 1)

2

)
,

m′ = pr−1
(
pδ′ + 1− (p− 1)(d− 2)

2

)
.

If p - di for some i and t < pr−1, then

H(α) ≤
∣∣∣DK(ζp)

∣∣∣mp/(2[K(ζp):Q])
2(δ+1)(δt+1)+2pp(δ+1)(t(2δ−p)+2)(4.4)

×mp((δ+1)t/2+1)Bδ(δ+1)t+2δ+1

<
∣∣∣DK(ζp)

∣∣∣dp2r

(2dp3B)d2p3r
.

If p | di for i = 1, . . . , r and t < pr, then

H(α) ≤
∣∣∣DK(ζp)

∣∣∣m′/(2[K(ζp):Q])
2(δ′+1)(δ′t+1)+1p(δ′+1)(t(2δ′−1)+2)(4.5)

×m′(δ′+1)t/2+1Bδ′(δ′+1)t+2δ′+1

<
∣∣∣DK(ζp)

∣∣∣dp2r

(2dp3B)d2p3r
.

Some of the arguments in our proof, particularly those involving Puiseux
series, follow arguments given in [7] and [30].

Proof. We will apply Runge’s method to the curve C ⊂ Ar+1 defined by
yp

i = fi(x), i = 1, . . . , r. We first collect some geometric facts about the
curve C, including the rational functions on C that we will be interested
in.

Consider the function field of C, K(C) = K(x, y1, . . . , yr). It follows from
the fact that f1, . . . , fr are p-th power free, pairwise coprime polynomials
that [K(C) : K(x)] = pr and a basis for K(C) over K(x) is given by the
elements yi1

1 · · · yir
r , 0 ≤ i1, . . . , ir ≤ p− 1. Let

M(δ) =

{
xi0yi1

1 · · · y
ir
r | (i0, i1, . . . , ir) ∈ N×{0, . . . , p− 1}r,

r∑
k=0

ikdk ≤ δ

}
,

m(δ) = #M(δ),



400 Aaron Levin

where we have also set d0 = p. It follows easily from the definitions that
the generating function for m(i), i ∈ N, is given by

∞∑
i=0

m(i)xi =
∏r

i=1

∑p−1
j=0 x

jdi

(1− x)(1− xp)
.

We first prove the theorem in the case that for some i0, p - di0 . Under this
assumption,

∑p−1
j=0 x

j divides
∑p−1

j=0 x
jdi0 . So∏r

i=1

∑p−1
j=0 x

jdi

(1− x)(1− xp)
=

1
(1− x)2

∏r
i=1

∑p−1
j=0 x

jdi∑p−1
j=0 x

j
=

g(x)
(1− x)2

,

where g(x) is a polynomial of degree (p−1)
∑r

i=1 di−(p−1) = (p−1)(d−1).
So ∏r

i=1

∑p−1
j=0 x

jdi

(1− x)(1− xp)
=

g(1)
(1− x)2

− g′(1)
1− x

+ h(x),

where deg h = (p − 1)(d − 1) − 2. It is easily calculated that g(1) = pr−1

and g′(1) = pr−1(p−1)(d−1)
2 . Thus, it follows that for δ ≥ (p− 1)(d− 1)− 1,

m(δ) = (δ+ 1)pr−1 − pr−1(p− 1)(d− 1)
2

= pr−1
(
δ + 1− (p− 1)(d− 1)

2

)
.

Let C ′ be a projective closure of C in Pr+1 and let π : C̃ → C ′ be the
normalization of C ′. Since yp

i0
= fi0(x), we have p · (yi0)∞ = di0 · (x)∞

(viewing x and yi0 as rational functions on C̃). As p - di0 , it follows that
(x)∞ = pD∞ for some effective divisor D∞.

Lemma 4.1. The genus of C̃ is

(4.6) g(C̃) = pr−1
(

(p− 1)(d− 1)
2

− 1
)

+ 1.

For δ ≥ (p− 1)(d− 1)− 1, the elements of M(δ) form a basis for L(δD∞).
Furthermore, D∞ is the sum of pr−1 distinct points of C̃.

Proof. Consider the morphism φ : C̃ → P1 obtained from the rational
function x ◦ π on C̃. Note that deg φ = pr. If x(π(Q)) is a root of fi for
some i, then φ has ramification index p at Q. This gives dpr−1 points of C̃
with ramification index p with respect to φ. Since (x)∞ = pD∞, every point
of C̃ above ∞ ∈ P1 has ramification index divisible by p. Alternatively, we
can see this as follows. Let Ỹ be the nonsingular projective model of the
affine plane curve Y defined by yp = fi0(x). Since p - di0 , it is easily seen
that Y has a unique point Q at infinity, and the map Ỹ → P1 induced by
the projection map (x, y) 7→ x has ramification index p at Q. Since the map
φ factors through this map, it follows that every point above ∞ ∈ P1 on
C̃ has ramification index divisible by p. Let n be the number of distinct
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points in D∞. Note that n ≤ pr−1. Then by the Riemann-Hurwitz formula
applied to φ, we conclude that

2g(C̃)− 2 ≥ −2pr + d(p− 1)pr−1 + pr − n,

or g(C̃) ≥ pr−1(dp−d−p)−n
2 + 1 ≥ pr−1

(
(p−1)(d−1)

2 − 1
)

+ 1.
On the other hand, since (x)∞ = pD∞ and (yi)∞ = diD∞, we see

that M(δ) ⊂ L(δD∞). Since the elements of M(δ) are linearly inde-
pendent, for δ ≥ (p − 1)(d − 1) − 1 we have dimL(δD∞) = l(δD∞) ≥
m(δ) = pr−1

(
δ + 1− (p−1)(d−1)

2

)
. Note also that degD∞ = pr−1. Thus, by

Riemann-Roch, for δpr−1 ≥ 2g(C̃)−1, we have l(δD∞) = δpr−1 +1−g(C̃).
It follows that g(C̃) ≤ pr−1

(
(p−1)(d−1)

2 − 1
)

+ 1. This proves (4.6). Thus,
for δ ≥ (p− 1)(d− 1)− 1, l(δD∞) = m(δ), and the elements of M(δ) form
a basis for L(δD∞). Additionally, we see that we must have n = pr−1, and
so D∞ is the sum of exactly pr−1 distinct points of C̃. �

We now work out some facts about the Puiseux expansions of the al-
gebraic functions yi. For each i, yp

i − fi(x) can be factored using Puiseux
series as

(4.7) yp
i − fi(x) =

p−1∏
j=0

yi − yi,j(x).

Explicitly, if fi = xdi +
∑di−1

j=0 ai,jx
j , then writing

f
1
p

i = x
di
p

1 +
di−1∑
j=0

ai,jx
j−di

 1
p

and using the Taylor series for z = (1+ t)
1
p about z0 = 1, we see that (after

possibly reindexing),
(4.8)

yi,j =
∞∑

k=0

ci,j,kx
di
p
−k = ζj

px
di
p

∞∑
k=0

(
1/p
k

)di−1∑
l=0

ai,lx
l−di

k

, j = 0, . . . , p− 1.

Expanding out the right-hand side of (4.8) appropriately then explicitly
gives the coefficients ci,j,k and the p Puiseux expansions yi,j(x), j = 0, . . . ,
p − 1. When evaluating the Puiseux series (4.8) at a point x, we assume
the choice of some fixed branch of x

1
p .

Lemma 4.2. Let yi,j(x) be the Puiseux expansions in (4.8). Then

(4.9) p2k−1ci,j,k ∈ OK [ζp], k ≥ 1.
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Extend each place v ∈ ML to L̄ in some way. For v ∈ ML and x ∈ L̄,
yi,j(x) converges v-adically if

|x|v ≥ |fi|v + 1, if v is archimedean,

|x|v >
1
|p|2v

, if v is nonarchimedean.

Proof. Each coefficient ci,j,k is an OK [ζp]-integral linear combination of
numbers

(1/p
l

)
, 0 ≤ l ≤ k. Since p2l−1

(1/p
l

)
∈ Z for all l ≥ 1, (4.9) fol-

lows. We now prove the assertions about convergence. If v is archimedean
and |x|v ≥ |fi|v + 1, then we note that

(4.10)

∣∣∣∣∣∣
di−1∑
j=0

ai,jx
j−di

∣∣∣∣∣∣
v

≤ |fi|v
di−1∑
j=0

|x|j−di
v <

|fi|v
|x|v − 1

≤ 1.

It now follows easily from (4.8) that yi,j(x) converges. For nonarchimedean

v, yi,j(x) converges if and only if limk→∞ |ci,j,kx
di
p
−k|v = 0. By (4.9),

|ci,j,k|v ≤ 1
|p|2k−1

v
. Thus, in this case, it is clear that yi,j(x) converges v-

adically if |x|v > 1
|p|2v

. �

Let T ′ ⊂ T be the set of places v ∈ T such that

|α|v > Hv + 1, if v is archimedean,

|α|v >
1
|p|2v

, if v is nonarchimedean.

By (4.7) and Lemma 4.2, we have that for any i ∈ {1, . . . , r} and any v ∈
T ′, there exists ji,v ∈ {0, . . . , p− 1} such that yi,ji,v(α) converges v-adically
to βi. As |x|v → ∞, the point on C defined by yi = yi,ji,v(x), i = 1, . . . , r,
converges v-adically to some point Pv at infinity. More precisely, using the
map π to pull back points to C̃, we can view Pv ∈ suppD∞ ⊂ C̃. By
Lemma 4.1, since #(suppD∞) = pr−1, there are pr−1 possibilities for the
point Pv. Let E be the divisor on C̃ given by E =

∑
P∈{Pv |v∈T ′} P . We want

to find functions g ∈ L(δD∞) such that g vanishes at every point Pv, v ∈ T ′.
In other words, we want functions g ∈ L(δ(D∞−E)−E). By assumption,
degE ≤ |T ′| ≤ |T | < pr−1 = degD∞, and so L(δ(D∞ − E) − E) 6= 0 for
δ � 0. A function g vanishing at all points Pv, v ∈ T ′, will be v-adically
small at the point (x, y1, . . . , yr) = (α, β1, . . . , βr) for v ∈ T ′. More precisely:

Lemma 4.3. Let δ ≥ (p − 1)(d − 1) − 1 be a positive integer such that
(δ+ 1) degE < m(δ) = l(δD∞). Let N = l(δ(D∞−E)−E) ≥ m(δ)− (δ+
1) degE. Then there exist polynomials g1, . . . , gN ∈ OK [ζp][x0, . . . , xr] such
that g1(x, y1, . . . , yr), . . . , gN (x, y1, . . . , yr) form a basis for L(δ(D∞−E)−
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E),
(4.11)

H(gi) ≤
∣∣∣DK(ζp)

∣∣∣ N
2[K(ζp):Q]

(√
m(δ)(2p2B)δ/p

p

)m(δ)−N

, i = 1, . . . , N,

and for all v ∈ T ′, i = 1, . . . , N ,
(4.12)

|gi (α, β1, . . . , βr)|v ≤


m(δ)|gi|v(2Hv+2)(δ+1)/p

21/p|α|1/p
v

(
1−Hv+1

|α|v

) if v is archimedean,

|gi|v
|α|1/p

v |p|2(δ+1)/p−1
v

if v is nonarchimedean.

Proof. We construct the basis g1, . . . , gN by looking at the Puiseux ex-
pansions of functions in L(δD∞). A nonzero polynomial g(x, y1, . . . , yr)
vanishes at Pv if and only if in the Puiseux expansion g(x, y1,j1,v(x), . . . ,
yr,jr,v(x)), we have

ordx g
(
x, y1,j1,v(x), . . . , yr,jr,v(x)

)
< 0.

Let v1, . . . , ve be a minimal set of places in T ′ such that {Pv1 , . . . , Pve} =
{Pv | v ∈ T ′}. Since, by Lemma 4.1, M(δ) is a basis for L(δD∞), explicitly
determining the vector space L(δ(D∞ − E) − E) ⊂ L(δD∞) is equivalent
to solving the system of equations:
(4.13)

ordx

∑
i=(i0,...,ir)∈I(δ)

cix
i0y1,j1,vl

(x)i1 · · · yr,jr,vl
(x)ir < 0, l = 1, . . . , e,

where I(δ) = {(i0, . . . , ir) ∈ Nr+1 | xi0yi1
1 · · · yir

r ∈ M(δ)}. The only mono-
mials which appear on the left-hand side of (4.13) with nonnegative degree
are xi/p, i = 0, . . . , δ. So (4.13) yields a system of (δ + 1)e equations in
m(δ) variables. Let A be the corresponding (δ+1)e×m(δ) matrix. We now
bound the height of the matrix A.

Let (i0, . . . , ir) ∈ I(δ). Then, by (4.8), we have

(4.14) xi0y1,j1,v(x)
i1 · · · yr,jr,v(x)

ir = ζx
∑r

l=0
ildl/p

∞∑
k=0

akx
−k,

for some p-th root of unity ζ and ak ∈ K, k ∈ N. Explicitly, ak can be

computed from the Taylor series for
(∏r

j=1 x
ijdjfj(1/x)ij

)1/p
at x = 0:

F (x) =

 r∏
j=1

xijdjfj(1/x)ij

1/p

=
∞∑

k=0

akx
k,
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with a0 = 1. As before, this immediately implies that

(4.15) p2k−1ak ∈ OK , k ≥ 1.

We now estimate the size of ak. Let v ∈ T∞, where T∞ is the set of
archimedean places in T . Since F (z) is analytic in Cv for |z|v ≤
mini

1
|fi|v+1 = 1

Hv+1 , we have

|ak|v =

∣∣∣∣∣ 1
2πi

∫
|z|v= 1

Hv+1

F (z)
zk+1

dz

∣∣∣∣∣
v

≤ (Hv + 1)k max
|z|v= 1

Hv+1

|F (z)|v.

By calculations similar to (4.10), for |z|v = 1
Hv+1 we have

|F (z)|v =

∣∣∣∣∣∣∣
 r∏

j=1

zijdjf(1/z)ij

1/p
∣∣∣∣∣∣∣
v

<
r∏

j=1

(
1 +

|z|vHv

1− |z|v

)ij/p

≤ 2δ/p.

So

(4.16) |ak|v < 2δ/p(Hv + 1)k, k ∈ N.

By (4.14), each entry in A is ζak for some p-th root of unity ζ and some
k ≤ δ

p . Now by (4.15) and (4.16),

H(A) ≤ 1
p

2p2
∏

v∈T∞

(Hv + 1)[Lv :Qv ]/[L:Q]

δ/p

=
(2p2B)δ/p

p
,

where H(A) is the absolute multiplicative height of A as a point of
P(δ+1)em(δ)−1.

Note that A is a matrix over K(ζp) of rank m(δ) − N . We now ap-
ply an appropriate version of Siegel’s lemma, due to Bombieri and Vaaler
[4, Cor. 2.9.9].

Lemma 4.4 (Bombieri-Vaaler ). Let A be an m× n matrix of rank r with
entries in a number field L. Then the L-vector space of solutions of Ax = 0
has a basis x1, . . . ,xn−r ∈ On

K such that

n−r∏
i=1

H(xi) ≤ |DL|
n−r

2[L:Q]
(√
nH(A)

)r
.

Thus, there exists a basis b1, . . . ,bN ∈ Om(δ)
K(ζp) of the nullspace of A with

(4.17)

H(bi) ≤
N∏

j=1

H(bj) ≤
∣∣∣DK(ζp)

∣∣∣ N
2[K(ζp):Q]

(√
m(δ)(2p2B)δ/p

p

)m(δ)−N

,
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for i = 1, . . . , N . Let gj , j = 1, . . . , N , be the polynomials

gj(x0, . . . , xr) =
∑

i=(i0,...,ir)∈I(δ)

ci,jx
i0
0 x

i1
1 · · ·x

ir
r ,

where ci,j , i ∈ I(δ), is the solution to (4.13) corresponding to bj . It follows
from our discussion above that g1(x, y1, . . . , yr), . . . , gN (x, y1, . . . , yr) form
a basis for L(δ(D∞−E)−E). Furthermore, (4.11) now follows from (4.17).

We now prove (4.12). Let j ∈ {1, . . . , N}. Let M be a monomial (in
x, y1,j1,v , . . . , yr,jr,v) of gj

(
x, y1,j1,v , . . . , yr,jr,v

)
. Since ordx gj(x, y1,j1,v(x),

. . . , yr,jr,v(x)) < 0, it will suffice to consider only the principal part of
the Puiseux expansion of M(x). So let M<0 denote the principal part of
the Puiseux expansion of M . In the notation of (4.14),

M<0(x) = ζx
∑r

l=0
ildl/p

∞∑
k=b
∑r

l=0
ildl/pc+1

akx
−k

for some (i0, . . . , ir) ∈ I(δ) with
∑r

l=0
ildl
p ≤ δ

p . Let v ∈ T ′ be an archimed-
ean absolute value. Using (4.16), an easy estimate gives

|M<0(α)|v < |α|−1/p
v

1
21/p

(2Hv + 2)(δ+1)/p
∞∑

k=0

(
Hv + 1
|α|v

)k

=
(2Hv + 2)(δ+1)/p

21/p|α|1/p
v

(
1− Hv+1

|α|v

) .
Since gj is a sum of at most m(δ) such monomials, it follows that

|gj
(
α, y1,j1,v(α), . . . , yr,jr,v(α)

)
|v = |gj (α, β1, . . . , βr) |v

<
m(δ)|gj |v(2Hv + 2)(δ+1)/p

21/p|α|1/p
v

(
1− Hv+1

|α|v

) .

Now suppose that v ∈ T ′ is nonarchimedean. Then |α|v > 1
|p|2v

and by an
argument similar to the above, using (4.15),

|gj (α, β1, . . . , βr) |v ≤
|gj |v

|α|1/p
v |p|2(δ+1)/p−1

v

�

We now finish the proof of Theorem 4.3. Let

δ =

⌈
pr−1((p− 1)(d− 1)− 2) + t+ 2

pr−1 − t

⌉
.

Then it is easily checked that δ ≥ (p−1)(d−1)−1 and (δ+1) degE < m(δ).
Let g1, . . . , gN ∈ K[ζp][x0, . . . , xr] be the polynomials from Lemma 4.3.
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Then g1(x, y1, . . . , yr), . . . , gN (x, y1, . . . , yr) form a basis for L(δ(D∞−E)−
E). The quantity δ was chosen precisely so that

deg δ(D∞ − E)− E ≥ δ(pr−1 − t)− t ≥ 2g(C̃).

It is a standard fact then that the linear system |δ(D∞ − E)− E| is base-
point free. Thus, for some i, gi(α, β1, . . . , βr) 6= 0.

Let v ∈ T be an archimedean absolute value. Then |fj(α)|v ≤ |fj |v ×
(|α|v + 1)dj . It follows that each monomial M of gi(α, β1, . . . , βr) satisfies
|M(α, β1, . . . , βr)|v ≤ (Hv(|α|v + 1))δ/p. Thus

|gi(α, β1, . . . , βr)|v ≤ |gi|vm(δ)(Hv(|α|v + 1))δ/p.

In particular, if |α|v ≤ 2Hv + 1,

|gi(α, β1, . . . , βr)|v ≤ |gi|vm(δ)(Hv(2Hv + 2))δ/p

<
|gi|vm(δ)2(δ+1)/p(Hv + 1)(2δ+1)/p

max
{
1, |α|1/p

v

} .

If |α|v > 2Hv +1 then v ∈ T ′, and so by (4.12) and the fact that Hv+1
2Hv+1 ≤

2
3 ,

|gi (α, β1, . . . , βr)|v ≤
3m(δ)|gi|v(2Hv + 2)(δ+1)/p

21/p|α|1/p
v

.

Thus, in all cases, for v ∈ T∞,

|gi(α, β1, . . . , βr)|v <
4|gi|vm(δ)2(δ+1)/p(Hv + 1)(2δ+1)/p

max
{
1, |α|1/p

v

} .

Now suppose that v ∈ T is nonarchimedean. Then since fi ∈ OK [x],

|gi(α, β1, . . . , βr)|v ≤ |gi|v max
{
1, |α|δ/p

v

}
.

If |α|v > 1
|p|2v

, then we have (4.12). Thus,

|gi(α, β1, . . . , βr)|v ≤
|gi|v

max
{
1, |α|1/p

v

}
|p|2(δ+1)/p

v

.

For v 6∈ T , since α ∈ OL,T , |gi(α, β1, . . . , βr)|v ≤ |gi|v.
So, since gi(α, β1, . . . , βr) 6= 0, by the product formula,

∏
v∈ML

‖gi(α, β1, . . . , βr)‖v = 1 ≤
4H(gi)m(δ)

(
p2(δ+1)2δ+1B2δ+1

)1/p

H(α)1/p
.

Therefore,
H(α) ≤ H(gi)pm(δ)pp2(δ+1)2δ+2p+1B2δ+1.

Using (4.11) and 0 < m(δ)−N ≤ (δ + 1)t, this proves (4.4).
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We now consider the case where p | di for i = 1, . . . , r. The proof in
this case is similar to the above, so we will only state, without proof, the
important differences. In this case, we have

m(δ) = pr−1
(
p

⌊
δ

p

⌋
+ 1− (p− 1)(d− 2)

2

)
, p

⌊
δ

p

⌋
≥ (p− 1)(d− 2)− 1,

g(C̃) = pr−1
(

(p− 1)(d− 2)
2

− 1
)

+ 1.

Let (x)∞ = D∞. Then degD∞ = pr and D∞ is a sum of exactly pr distinct
points of C̃. Furthermore, M(δ) is a basis for L

(⌊
δ
p

⌋
D∞

)
. Note that in

the present case, in the Puiseux expansions of the functions yi(x), all of the
exponents are integers. This changes some of the calculations, particularly
in Lemma 4.3. For instance, one consequence is that the matrix A in the
proof of that lemma can be taken to have dimensions

(⌊
δ
p

⌋
+ 1

)
degE ×

m(δ). Clearly, it is more convenient to work with the quantity δ′ =
⌊

δ
p

⌋
.

Let M′(δ′) = M(pδ′) and m′(δ′) = m(pδ′). Let

δ′ =

⌈
pr−1((p− 1)(d− 2)− 2) + t+ 2

pr − t

⌉
.

This δ′ is chosen precisely so that the linear system |δ′(D∞ −E)−E| will
be basepoint free. Now calculations similar to the first case proved above
give the result. �

We now complete the proofs of Theorems 4.1 and 4.2.

Proof of Theorem 4.1. We apply Theorem 4.3 to g1, . . . , gr, and α ∈ OK′,S

satisfying aβp =
∏r

i=1 fi(α) for some β ∈ OK′,S . Let S′ be the union
of S∞ and the set of places v of K ′ for which |aDf |v 6= 1. Let L =
K ′( p

√
g1(α), . . . , p

√
gr(α), ζp).

Suppose first that either ε = 0 or ε = 1. In either case, it is easily seen
that for all i, (gi(α)) = a

p
i for some (fractional) ideal ai of OK′,S′ . Then the

same proof as Lemma 3.3 shows that [L : K ′] ≤ p
rkp Cl(OK′,S′ )+rkO∗

K′,S′+1.
We have rkp Cl(OK′,S′) ≤ rkp Cl(OK′) and rkO∗

K′,S′ ≤ |S∞|+ωK′(aDf )−1.
Let T be the set of places of L lying above places of S. Then

t = |T | ≤ |S|[L : K ′] ≤ |S|pωK′ (aDf )+|S∞|+rkp Cl(OK′ ).

By Theorem 4.3, H(α) is effectively bounded if t < pr−ε. Explicitly, we
obtain the bound (4.1) (using the trivial estimate B ≤ 2

∏r
i=1H(gi)).

Now suppose that ε = 2. After reindexing, we can assume that p doesn’t
divide deg gr. In this case, it is not necessarily true that (gi(α)) = a

p
i for

some fractional ideal ai of OK′,S′ (this would be true if we enlarged S′

to contain all of S). However, for i = 1, . . . , r, it is easy to check that
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gdeg gr

i (α)

g
deg gi
r (α)

)
= a

p
i for some (fractional) ideal ai of OK′,S′ . Note that, since

p - deg gr,

L = K ′

 p

√√√√gdeg gr
1 (α)

gdeg g1
r (α)

, . . . , p

√√√√ gdeg gr
r−1 (α)

g
deg gr−1
r (α)

, p

√
gr(α), ζp

 .
Thus, similar to the ε = 0, 1 cases, we have

[L : K ′] ≤ p
rkp Cl(OK′,S′ )+rkO∗

K′,S′+2

and
t = |T | ≤ |S|[L : K ′] ≤ |S|pωK′ (aDf )+|S∞|+rkp Cl(OK′ )+1.

By Theorem 4.3, H(α) is effectively bounded if t < pr−1. Explicitly, we
obtain the bound (4.1). �

Proof of Theorem 4.2. We apply Theorem 4.3 to f1, . . . , fr with K = K ′ =
Q and S = {∞}, the archimedean prime of Q. Suppose that p - deg fi for
some i. Let α ∈ Z. Let ω = ω (

∏r
i=1 pfree(fi(α))). Suppose ω ≤ r − 2. Let

q1, . . . , qω be the primes dividing
∏r

i=1 pfree(fi(α)). Then, in the notation
of Theorem 4.3, we have L ⊂ Q

(
p
√
q1, . . . , p

√
qω, ζ2p

)
. If t is the number of

archimedean places of L, it follows that t ≤ 1
2p

ωφ(2p) ≤ 1
2p

r−2φ(2p). Thus,

t ≤
{

1
2p

r−2(p− 1) if p 6= 2,
2r−2 if p = 2.

Note that B = H+1 ≤ 2H, |DQ(ζp)| = pp−2, r ≤ d, and [Q(ζp) : Q] = p−1.
A computation shows that δ ≤ 2(p− 1)(d− 1)− 1. Substituting everything
into Theorem 4.3 gives the first part of the theorem. The case where p |
deg fi for all i is similar. �

5. Perfect powers in products of terms in an arithmetic
progression

The study of perfect powers in arithmetic progressions goes back to at
least Fermat, who proved that there are no four squares in arithmetic pro-
gression. This was generalized by Euler, who showed that a product of four
terms in arithmetic progression is never a square. In more modern times,
we have, for instance, the celebrated result of Erdős and Selfridge [6] that a
product of two or more consecutive integers can never be a perfect power.
For a survey of these and other related results, see [23] and [25].

We will consider a general form of the problem. Let p be a prime number,
k a positive integer, and γ1, . . . , γr distinct integers with 0 ≤ γi < k, i =
1, . . . , r. We consider the equation

(5.1) byp = (x+ γ1d) · · · (x+ γrd), (x, d) = 1,
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with b, d, x, y ∈ Z. We have the following general result.
Theorem 5.1. The set of solutions to the equation

byp = (x+ γ1d) · · · (x+ γrd), (x, d) = 1,

in b, d, x, y ∈ Z with

(5.2) ω((k − 1)!b) + 1 + logp φ(2p)
(
p

2
+ ω(d)

)
< r,

is finite. In particular, each such solution satisfies

max{|x|, |d|} < (2kp4r)p3rr2
.

Proof. Let b, d, x = x0, y = y0 ∈ Z satisfy (5.1) and (5.2). We apply Theo-
rem 4.3 to the polynomials fi = x + γi, i = 1, . . . , r, at the point α = x0

d ,
with K ′ = K = Q and S consisting of the set of primes dividing d and
the infinite place. Note that α ∈ OQ,S , as required. Let S′ be the union of
the infinite place, the set of primes dividing b, and the set of primes less
than k. Then (5.1) easily implies that for all i, (dfi(α)) = a

p
i for some ideal

ai of OQ,S′ . Let ω0 = ω((k − 1)!b), L = Q( p
√
f1(α), . . . , p

√
fr(α), ζp), and

L′ = Q( p
√
q1, . . . , p

√
qω0 ,

p
√
d, ζ2p), where q1, . . . , qω0 are the distinct primes

dividing (k − 1)!b. Then the same proof as Lemma 3.3 (even easier in this
case) shows that L ⊂ L′. Let T and T ′ be the set of places of L and L′,
respectively, lying above places of S. Note that [L′ : Q] ≤ φ(2p)pω0+1 and
that L′ is totally imaginary since it contains ζ2p. Thus, T ′ contains at most
φ(2p)

2 pω0+1 archimedean places. Furthermore, it’s clear that each of the ω(d)
finite places of S ramifies to at least degree p in L′. Thus, T ′ contains at
most φ(2p)pω0ω(d) nonarchimedean places. So

t = |T | ≤ |T ′| ≤ φ(2p)pω0

(
p

2
+ ω(d)

)
.

By Theorem 4.3, H(α) is effectively bounded if t < pr−1. So H(α) is ef-
fectively bounded if (5.2) holds. Explicitly, substituting appropriately into
Theorem 4.3 gives the bound in the theorem. �

Of course, it is possible to prove similar theorems over other number
fields. For example, for p = 2, we prove a variant of Theorem 5.1, valid for
a certain class of quadratic fields.
Theorem 5.2. Every solution to the equation

(5.3) by2 = (x+ γ1d) · · · (x+ γrd),

with b, d, x, y ∈ OL, L = Q(
√
m), and

(5.4) ωL((k − 1)!b) + ω(m) + log2(ωL(d) + 2) + 4 < r,

satisfies

H

(
x

d

)
< (16kr)2

3rr2
.
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Proof. The proof is similar to the proof of Theorem 5.1. Let L = Q(
√
m)

and b, d, x = x0, y = y0 ∈ OL satisfy (5.3) and (5.4). We apply Theorem 4.3
to the polynomials fi = x + γi, i = 1, . . . , r, at the point α = x0

d , with
K ′ = L, K = Q, and S consisting of the union of the set of primes of L
dividing d and the set of archimedean places of L. Let S′ be the union of
S∞, the set of primes of L dividing b, and the set of primes of L dividing
an integer less than k. Then (5.3) implies that for all i,

(
fi(α)
fr(α)

)
= a2

i for
some ideal ai of OL,S′ . Let

L′ = L

(√
f1(α), . . . ,

√
fr(α)

)
= L

(√
f1(α)
fr(α)

, . . . ,

√
fr−1(α)
fr(α)

,
√
fr(α)

)
.

Then as in Lemma 3.3, if ζ generates the roots of unity in L, we have
[L′ : L] ≤ [L(

√
ζ) : L]2rk2 Cl(OL,S′ )+rkO∗

L,S′+1. Note that [L(
√
ζ) : L] = 2

and rkO∗
L,S′ = |S′| − 1 ≤ ωL((k − 1)!b) + 1. From genus theory, we have

an exact formula for rk2 Cl(OL), depending on the primes dividing the
discriminant of L. We will only use the inequality rk2 Cl(OL) ≤ ω(m). So
[L′ : L] ≤ 2ωL((k−1)!b)+ω(m)+3. Let T be the set of places of L′ lying above
places of S. Since |S| ≤ ωL(d) + 2,

t = |T | ≤ (ωL(d) + 2)2ωL((k−1)!b)+ω(m)+3.

By Theorem 4.3, H(α) is effectively bounded if t < 2r−1. Thus, H(α) is
effectively bounded if (5.4) holds. Substituting appropriately into Theo-
rem 4.3 gives the bound in the theorem. �

For an integer n > 1, we let P (n) denote the largest prime divisor of n.
We set P (1) = 1. As usual, we let π(n) denote the number of primes up to
(and including) n. We now take up the task of using our effective bounds
to completely solve some cases of Theorem 5.1 for p = 2. Namely, we prove:

Theorem 5.3. Let 8 ≤ k ≤ 17 and γ1, . . . , γr be distinct integers with
0 ≤ γi < k, i = 1, . . . , r, and γ1 = 0. Let εd,k = 0 if the squarefree part of d
has no prime divisor larger than k − 1 and εd,k = 1 otherwise. Then every
solution to

(5.5) by2 = (x+ γ1d) · · · (x+ γrd), (x, d) = 1, P (b) < k,

with b, d, x, y positive integers and

(5.6) ω(d) < 2r−π(k−1)−εd,k − 2
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satisfies one of the following:

d = 1, x ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24,
25, 26, 27, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 49, 50, 52,
54, 55, 56, 60, 63, 64, 65, 66, 70, 72, 75, 77, 84, 88, 90, 96, 98, 117,

120},
d = 2, x ∈ {1, 3, 5, 7, 9, 11, 13, 15, 21, 25, 33},
d = 3, x ∈ {1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 20, 22, 25, 32},
d = 4, x ∈ {1, 3, 5, 7, 9, 11, 13, 21},
d = 5, x ∈ {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 18, 21, 24, 28, 39},
d = 7, x ∈ {1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 20, 26, 30, 44},
d = 8, x ∈ {1, 9},
d = 9, x ∈ {4, 8},
d = 11, x ∈ {3, 4, 6, 10, 15, 26, 48},
d = 13, x ∈ {1, 7},
d = 17, x ∈ {5, 22},
d = 19, x = 4,
d = 23, x = 16.

In particular, we solve (5.5) in positive integers for the values of ψ = k−r,
k, and ω(d) given in Table 1. Note that the theorem for 8 ≤ k ≤ 17 is
implied by the special cases of the theorem where k is prime (k = 11, 13, 17).
Thus, it suffices to list only these values of k in Table 1. We can also prove
results for k < 8, but these turn out to be covered by previous results,
which we now discuss.

Suppose that ψ = k−r = 0. Equation (5.5) has infinitely many solutions
for k = 2, 3, b = 1 and k = 4, b = 6. Erdős and Selfridge [6] proved that
(5.5) has no solution with d = 1, as long as the right-hand side of (5.5) is
divisible by a prime greater than or equal to k. As mentioned earlier, Euler
proved the nonexistence of solutions in the case k = 4, b = 1. When k = 5,
Obláth [18] proved that (5.5) does not hold if b = 1 and Mukhopadhyay and
Shorey [15] handled the general case P (b) < k. When 6 ≤ k ≤ 11, P (b) ≤ 5,
Bennett, Bruin, Győry, and Hajdu [2] showed that the only solution to (5.5)
is k = 6, d = 1, x = 1. When 8 ≤ k ≤ 100, d > 1, Hirata-Kohno, Laishram,
Shorey, and Tĳdeman [9] showed that (5.5) does not hold except possibly
in a small number of exceptional cases. These remaining exceptional cases
were handled by Tengely [28]. Thus, in short, we have nothing new to add
in the case ψ = 0.
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Table 1. Table of values ψ = k − r, k prime, and ω(d)
for which Theorem 5.3 gives a complete solution in positive
integers to (5.5).

ψ (k = 11) (k = 13) (k = 17)
ω(d) ≤ ω(d) ≤ ω(d) ≤

0 61 125 1021
1 29 61 509
2 13 29 253
3 5 13 125
4 1 5 61
5 0 1 29
6 0 13
7 5
8 1
9 0

Suppose that ψ = 1. Then Saradha and Shorey [20] showed that (5.5)
with d = 1, b = 1, k ≥ 3 has only the solutions 6!

5 = (12)2, 10!
7 = (720)2,

and that (5.5) with d = 1, k ≥ 4, x > k2 has only the solution with k = 4,
x = 24. In another paper, Saradha and Shorey [21] showed that (5.5) does
not hold with ω(d) = 1, k ≥ 30. Mukhopadhyay and Shorey [16] improved
this to ω(d) = 1, k ≥ 9, and Laishram, Shorey, and Tengely [11] improved
this to ω(d) = 1, k ≥ 7. Shorey [24] has also proved the case ω(d) = 1,
b = 1, 6 ≤ k ≤ 8. Theorem 5.3 gives some new results when ψ = 1. For
instance, that (5.5) does not hold for 2 ≤ ω(d) ≤ 5, 9 ≤ k ≤ 17.

Suppose that ψ = 2. If k ≥ 4, d = 1, b = 1, Mukhopadhyay and Shorey
[17] give the finitely many solutions to (5.5). Under the assumption that
the right-hand side of (5.5) is divisible by a prime larger than k, Laishram
and Shorey [10] completely solved (5.5) for k ≥ 5, d = 1. Furthermore, they
also showed [10] that (5.5) does not hold with k ≥ 15, ω(d) = 1. Using this
result and Theorem 5.3, we obtain the improvement that (5.5) does not
hold for k ≥ 9, ω(d) = 1.

For 3 ≤ ψ ≤ 7, Mukhopadhyay and Shorey [17] completely solved (5.5)
for d = 1, b = 1, k ≥ ψ + 2, and x > k2. There do not seem to be other
previous general results for ψ > 2.

As an immediate corollary to Theorem 5.3 we obtain:

Corollary 5.1. Let 8 ≤ k ≤ 17. Let εd,k be as in Theorem 5.3. Let x and
d be positive integers not among the explicit values given in Theorem 5.3.
Then there are at least

k − π(k − 1)− εd,k − blog2 (ω(d) + 2)c
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prime divisors larger than k − 1 dividing

x(x+ d) · · · (x+ (k − 1)d)

to an odd power.

We now discuss the proof of Theorem 5.3. To compute an effective bound
for x and d, we follow the proof of Theorem 5.1. We note that there is a
slight improvement in (5.6) as compared to (5.2) at p = 2. Firstly, an
examination of the proof of Theorem 5.1 yields an expression with the
more precise quantity εd,k. Secondly, since we are only considering positive
solutions x and d, we can avoid adjoining

√
−1 to the relevant field in the

proof of Theorem 5.1, giving a minor improvement over (5.2). Now, using
the proof of Theorem 5.1, we easily calculate using Theorem 4.3 that any
solution in Theorem 5.3 satisfies max{log x, log d} < 1014. Obviously, it is
infeasible to naively search for solutions within this bound. The key point
that will allow us to effectively search this space is that for any solution to
by2 = (x+γ1d) · · · (x+γrd), we can find many distinct elliptic curves of the
form b′Y 2 = (X + γi1) · · · (X + γi4), where i1, . . . , i4 ∈ {1, . . . , r}, b′ ∈ Z,
and X = x

d is the X-coordinate of a rational point on the curve. Then using
the group structure on such curves combined with congruence conditions,
we will arrive at an efficient way of searching the potential solution space.
The details are as follows.

Let k, γ1, . . . , γr be as in Theorem 5.3. Let b, d, x, y be positive integers
satisfying (5.5) and (5.6). Since P (b) < k and (x, d) = 1, it follows that for
each i,

x+ γid = aiz
2
i ,

for some integer zi and some positive square-free integer ai satisfying
P (ai) < k. Theorem 5.3 is vacuous for 8 ≤ k ≤ 13 if r ≤ 5 and for
14 ≤ k ≤ 17 if r ≤ 7. So we can assume that r ≥ 6 if 8 ≤ k ≤ 13 and r ≥ 8
if 14 ≤ k ≤ 17. In either case, we can find six terms x+ γijd, j = 1, . . . , 6,
such that P (aij ) ≤ 11, j = 1, . . . , 6. If 14 ≤ k ≤ 17, this follows since r ≥ 8
and 13 can divide at most two terms x + γid. From the solution b, d, x, y,
we obtain a point with X = x

d on each of the
(6
4

)
= 15 elliptic curves

(5.7) EJ :

∏
j∈J

aij

Y 2 =
∏
j∈J

X + γij ,

where J ranges over four-element subsets of {1, . . . , 6}. We note that after
translating the smallest γij to zero, we have

(16
5

)
possibilities for γi1 , . . . , γi6 .

At first glance, for each choice of γi1 , . . . , γi6 , there are 230 possibilities for
the sextuplet (ai1 , . . . , ai6). However, this number is drastically reduced by
the trivial observation that if p|ai, aj , then p|γi − γj .
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Our problem is therefore reduced to finding, for every possible choice
of the aij and γij , rational points on the elliptic curves (5.7) which share
a common X-coordinate of height h(X) < 1014. In actual practice, it is
convenient to choose a Weierstrass model for the curves EJ (and hence
also an identity element for the group law on each EJ). For example, if
J = {1, 2, 3, 4} and aJ =

∏
j∈J aij , we have the Weierstrass model of EJ ,

FJ : V 2 = U(U + aJ(γi2 − γi1)(γi4 − γi3))(U + aJ(γi3 − γi1)(γi4 − γi2)),

obtained by the change of variables in (5.7):

X =
aJ(γi2 − γi1)(γi3 − γi1)(γi4 − γi1)
U − aJ(γi2 − γi1)(γi3 − γi1)

− γi1 ,

Y =
(γi2 − γi1)(γi3 − γi1)(γi4 − γi1)V
(U − aJ(γi2 − γi1)(γi3 − γi1))2

.

We consider three cases, depending on the Mordell-Weil groups of the curves
EJ .

Case I: One of the elliptic curves EJ in (5.7) can be proven to have rank
0 (over Q). This is the easiest case. In this case, we easily determine finitely
many possibilities for X by computing the finitely many rational torsion
points of EJ .

Case II: Two distinct curves EJ and EJ ′ in (5.7) can be proven to have
rank 1 (and generators for the Mordell-Weil groups can be computed). Let

XJ = {X(P ) | P ∈ EJ(Q)},
XJ ′ = {X(P ) | P ∈ EJ ′(Q)},
X = XJ ∩ XJ ′ .

We want to determine the set of points X ∈ X with h(X) < 1014. Let PJ

and PJ ′ be generators, modulo torsion, for EJ(Q) and EJ ′(Q), respectively.
We find primes p such that PJ has small order modulo p but PJ ′ has
relatively large order modulo p. This is easily done by (in a Weierstrass
model) factoring the denominators of the coordinates of mPJ for small
m. Since PJ has small order modulo p, the elements in XJ are restricted
to a small number of congruence classes modulo p. If op(PJ ′) denotes the
order of PJ ′ modulo p, then we find, by looking modulo p, that for any
torsion point T ∈ EJ ′(Q), X(nPJ ′ + T ) ∈ XJ implies that n lies in a small
number of congruence class modulo op(PJ ′). Using the theory of canonical
heights on elliptic curves, one can explicitly compute a positive integer
N such that h(X(nPJ ′ + T )) > 1014 for any torsion point T and any n
with |n| ≥ N . Now we choose primes p1, . . . , pm as above until we have
LCM(op1(PJ ′), . . . , opm(PJ ′)) > N , where LCM denotes the least common
multiple. Combining the information from each prime pi, we find that we
only need to check if X(nPJ ′ + T ) ∈ XJ , T ∈ EJ ′(Q)tors, for a small
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number of integers n with |n| < N . For those integers n we need to check,
since for large integers n, computing nPJ ′ is impractical, we work again
modulo primes p, checking whetherX(nPJ ′+T ) mod p is theX-coordinate
of a point in EJ(Fp). In practice, this process is very efficient, typically
taking only a few seconds on a modern computer to compute the points
X ∈ X with h(X) < 1014, for any two given curves EJ and EJ ′ with given
generators PJ and PJ ′ .

Nearly all of the possibilities encountered in Theorem 5.3 are covered by
Case I and Case II. However, there are a small number of instances which
do not fit into these cases. For example, if (γi1 , . . . , γi6) = (0, 1, 2, 10, 13, 14)
and (ai1 , . . . , ai6) = (1, 15, 14, 6, 3, 2), then each of the 15 curves in (5.7)
has rank at least 2. All of these remaining exceptional cases are handled in
Case III.

Case III: There exists a curve EJ in (5.7) which can be proven to have
rank 2, with computable generators P1 and P2, modulo torsion, and sets
of primes Q1, . . . ,Qt such that for any i, |Qi| ≥ 2, (oq(P1), oq(P2)) is the
same for all q ∈ Qi (denote the common value by (oQi(P1), oQi(P2))), and

(5.8) min{LCM(oQ1(P1), . . . , oQt(P1)),LCM(oQ1(P2), . . . , oQt(P2))}

is sufficiently large. In practice, in every case we were able to choose t = 2
and |Q1|, |Q2| ≥ 3. Similar to before, we now use congruence conditions to
restrict the linear combinations of P1 and P2 which must be examined. For
a point P ∈ EJ(Q) and a prime q, let Pq denote the image of P in EJ(Fq).
Let i ∈ {1, . . . , t}. For q ∈ Qi and T ∈ EJ(Q)tors, we compute the set

Iq,T =

(m,n) ∈ FoQi
(P1) × FoQi

(P2)

| X(mP1q + nP2q + Tq) ∈
⋂

J ′⊂{1,...,6}
|J ′|=4

X(EJ ′(Fq))

 .
Then we compute the set IQi,T = ∩q∈QiIq,T . It follows that for any torsion
point T on EJ , we need only look at points mP1 + nP2 + T on EJ such
that (m mod oQi(P1), n mod oQi(P2)) ∈ IQi,T . Using canonical heights,
we compute positive integers M and N such that h(X(mP1 +nP2 + T )) >
1014, if |m| > M , |n| > N , T ∈ EJ(Q)tors. Finally, we piece together the
congruence information from the sets IQi,T to determine a relatively small
number of integers m and n for which we look at the points X(mP1+nP2+
T ) to determine if they give a solution to (5.5).
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This completes a rough description of the computation performed to
prove Theorem 5.3. The necessary Mordell-Weil groups were computed us-
ing Cremona’s mwrank program (through Sage [27]) while the other com-
putations were done using PARI/GP [29].
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