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On the generation of the coefficient field of a
newform by a single Hecke eigenvalue

par Koopa Tak-Lun KOO, William STEIN et Gabor WIESE

Résumé. Soit f une forme nouvelle de poids k ≥ 2 sans multi-
plication complexe. Soit L un sous-corps du corps des coefficients
de f . Nous résolvons complètement la question de la densité de
l’ensemble des premier p tels que le p-ième coefficient de f en-
gendre L. Cette densité est déterminée par les tordues intérieures
de f . Comme cas particulier, on obtient que cette densité est 1
pour L le corps des coefficients de f , pourvu que f n’ait pas de
tordue intérieure non-triviale. Nous présentons aussi quelques don-
nées nouvelles sur la réductibilité de polynômes de Hecke suggé-
rant des questions pour des recherches à venir.

Abstract. Let f be a non-CM newform of weight k ≥ 2. Let L
be a subfield of the coefficient field of f . We completely settle the
question of the density of the set of primes p such that the p-th
coefficient of f generates the field L. This density is determined
by the inner twists of f . As a particular case, we obtain that
in the absence of nontrivial inner twists, the density is 1 for L
equal to the whole coefficient field. We also present some new data
on reducibility of Hecke polynomials, which suggest questions for
further investigation.

1. Statement of the results

The principal result of this paper is the following theorem. Its corollaries
below completely resolve the question of the density of the set of primes p
such that the p-th coefficient of f generates a given field.

Theorem 1.1. Let f be a newform (i.e., a new normalized cuspidal Hecke
eigenform) of weight k ≥ 2, level N and Dirichlet character χ which does
not have complex multiplication (CM, see [5, p. 48]). Let Ef =
Q(an(f) : (n,N) = 1) be the field of coefficients of f and Ff =
Q

(
an(f)2

χ(n) : (n,N) = 1
)
.

The set
{
p prime : Q

(
ap(f)2

χ(p)

)
= Ff

}
has density 1.
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A twist of f by a Dirichlet character ε is said to be inner if there exists
a (necessarily unique) field automorphism σε : Ef → Ef such that

(1.1) ap(f ⊗ ε) = ap(f)ε(p) = σε(ap(f))

for almost all primes p. For a discussion of inner twists we refer the reader
to [5, §3] and [6, §3]. Here we give several statements that will be needed
for the sequel. The σε belonging to the inner twists of f form an abelian
subgroup Γ of the automorphism group of Ef . The field Ff is the subfield
of Ef fixed by Γ. It is well-known that the coefficient field Ef is either a
CM field or totally real. In the former case, the formula

(1.2) ap(f) = χ(p)−1ap(f),

which is easily derived from the behaviour of the Hecke operators under
the Petersson scalar product, shows that f has a nontrivial inner twist by
χ−1 with σχ−1 being complex conjugation. If N is square free, k = 2 and
the Dirichlet character χ of f is the trivial character, then there are no
nontrivial inner twists of f .

Lemma 1.1. The field Ff is totally real and Q(ap(f)) contains ap(f)2

χ(p) .

Proof. Equation 1.2 gives ap(f)2

χ(p) = ap(f)ap(f), whence Ff is totally real.
Since every subfield of a CM field is preserved by complex conjugation,
Q(ap(f)) contains ap(f), thus it also contains ap(f)2

χ(p) . �

We immediately obtain the following two results.

Corollary 1.1. Let f and Ef be as in Theorem 1.1. If f does not have
any nontrivial inner twists (e.g. if k = 2, N is square free and χ is trivial),
then the set

{p prime : Q(ap(f)) = Ef}
has density 1.

Corollary 1.2. Let f and Ff be as in Theorem 1.1. The set

{p prime : Ff ⊆ Q(ap(f))}
has density 1.

To any subgroup H of Γ, we associate a number field KH as follows. Con-
sider the inner twists as characters of the absolute Galois group Gal(Q/Q)
and let ε1, . . . , εr be the inner twists such that H = {σε1 , . . . , σεr}. Let KH

be the minimal number field on which all εi for 1 ≤ i ≤ r are trivial, i.e.
the field such that its absolute Galois group is the kernel of the map

Gal(Q/Q)
ε1,...,εr−−−−→ C× × · · · ×C×.

We use this field to express the density of the set of primes p such that
ap(f) is contained in a given subfield of the coefficient field.
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Corollary 1.3. Let f , Ef and Ff be as in Theorem 1.1. Let L be any
subfield of Ef . Let ML be the set

{p prime : ap(f) ∈ L} .
(a) If L does not contain Ff , then ML has density 0.
(b) If L contains Ff , then L = EH

f for some subgroup H ⊆ Γ and ML has
density 1/[KH : Q].

Proof. Suppose first that L does not contain Ff . Then ap(f) ∈ L implies
that Ff is not a subfield of Q(ap(f)). Thus by Corollary 1.2, ML is a subset
of a set of density 0 and is consequently itself of density 0. We now assume
that L = EH

f . Then we have

ML = {p prime : σ(ap(f)) = ap(f)∀σ ∈ H}
= {p prime : ap(f)εi(p) = ap(f)∀i ∈ {1, . . . , r}} .

Since the set of p with ap(f) = 0 has density 0 (see for instance [7], p. 174),
the density of ML is equal to the density of

{p prime : εi(p) = 1 ∀i ∈ {1, . . . , r}} =

{p prime : p splits completely in KH} ,
yielding the claimed formula. �

A complete answer as to the density of the set of p such that ap(f)
generates a given field L ⊆ Ef is given by the following immediate result.

Corollary 1.4. Let f , Ef and Ff be as in Theorem 1.1. Let L be EH
f with

H some subgroup of Γ. The density of the set

{p prime : Q(ap(f)) = L} .
is equal to the density of the set

{p prime : εi(p) = 1 ∀i ∈ {1, . . . , r} and εj(p) 6= 1∀j ∈ {r + 1, . . . , s}} ,
where the εj for j ∈ {r + 1, . . . , s} are the inner twists of f that belong to
elements of Γ−H.

This corollary means that the above density is completely determined by
the inner twists of f . We illustrate this by giving two examples. In weight 2
there is a newform on Γ0(63) with coefficient field Q(

√
3). It has an inner

twist by the Legendre symbol p 7→
(p

3

)
. Consequently, the field Ff is Q and

the set of p such that ap(f) ∈ Q has density 1
2 .

For the next example we consider the newform of weight 2 on Γ0(512)
whose coefficient field has degree 4 over Q. More precisely, the coeffi-
cient field Ef is Q(

√
2,
√

3) and Ff = Q. Hence, Γ = Z/2Z × Z/2Z =
{1, σ1, σ2, σ3}. There are thus nontrivial inner twists ε1, ε2 and ε3, all of
which are quadratic, as their values must be contained in the totally real
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field Ef . As σ1σ2 = σ3, it follows that ε1(p)ε2(p) = ε3(p). This equa-
tion already excludes the possibility that all εi(p) 6= 1, whence there is
not a single p such that ap(f) generates Ef . Furthermore, the set of p
such that ap generates the quadratic field E

〈σ1〉
f is equal to the density of

{p prime : ε1(p) = 1 and ε2(p) 6= 1} , which is 1
4 . Similar arguments apply

to the other two quadratic fields. The set of p such that ap ∈ Q also has
density 1

4 .

In the literature there are related but weaker results concerning Corol-
lary 1.1, which are situated in the context of Maeda’s conjecture, i.e., they
concern the case of level 1 and assume that the space Sk(1) of cusp forms of
weight k and level 1 consists of a single Galois orbit of newforms (see, e.g.,
[4] and [1]). We now show how Corollary 1.1 extends the principal results
of these two papers.

Let f be a newform of level N , weight k ≥ 2 and trivial Dirichlet char-
acter χ = 1 which neither has CM nor nontrivial inner twists. This is for
instance true when N = 1. Let T be the Q-algebra generated by all Tn

with n ≥ 1 inside End(Sk(N, 1)) and let P be the kernel of the Q-algebra

homomorphism T Tn 7→an(f)−−−−−−→ Ef . As f is new, the map TP
Tn 7→an(f)−−−−−−→ Ef

is a ring isomorphism with TP the localization of T at P. Non canonically
TP is also isomorphic as a TP-module (equivalently as an Ef -vector space)
to its Q-linear dual, which can be identified with the localization at P of
the Q-vector space Sk(N, 1;Q) of cusp forms in Sk(N, 1) with q-expansion
in Q[[q]]. Hence, Q(ap(f)) = Ef precisely means that the characteristic
polynomial Pp ∈ Q[X] of Tp acting on the localization at P of Sk(N, 1;Q)
is irreducible. Corollary 1.1 hence shows that the set of primes p such that
Pp is irreducible has density 1.

This extends Theorem 1 of [4] and Theorem 1.1 of [1]. Both theorems
restrict to the case N = 1 and assume that there is a unique Galois orbit
of newforms, i.e., a unique P, so that no localization is needed. Theorem 1
of [4] says that

#{p < X prime : Pp is irreducible in Q[X]} � X

logX

and Theorem 1.1 of [1] states that there is δ > 0 such that

#{p < X prime : Pp is reducible in Q[X]} � X

(logX)1+δ
.
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2. Group theoretic input

Lemma 2.1. Let q be a prime power and ε a generator of the cyclic group
F×q .
(a) The conjugacy classes c in GL2(Fq) have the following four kinds of

representatives:

Sa =
(
a 0
0 a

)
, Ta =

(
a 0
1 a

)
, Ua,b =

(
a 0
0 b

)
, Vx,y =

(
x εy
y x

)
where a 6= b, and y 6= 0.

(b) The number of elements in each of these conjugacy classes are: 1,
q2 − 1, q2 + q, and q2 − q, respectively.

Proof. See Fulton-Harris [3], page 68. �

We use the notation [g]G for the conjugacy class of g in G.

Proposition 2.1. Let q be a prime power and r a positive integer. Let
further R ⊆ R̃ ⊆ F×qr be subgroups. Put

√
R̃ = {s ∈ F×qr : s2 ∈ R̃}. Set

H = {g ∈ GL2(Fq) : det(g) ∈ R}
and let

G ⊆ {g ∈ GL2(Fqr) : det(g) ∈ R̃}
be any subgroup such that H is a normal subgroup of G. Then the following
statements hold.
(a) The group G/(G ∩ F×qr) (with F×qr identified with scalar matrices) is

either equal to PSL2(Fq) or to PGL2(Fq). More precisely, if we let
{s1, . . . , sn} be a system of representatives for

√
R̃/R, then for all g ∈ G

there is i such that g
(

s−1
i 0

0 s−1
i

)
∈ G ∩GL2(Fq) and

(
si 0
0 si

)
∈ G.

(b) Let g ∈ G such that g
(

s−1
i 0

0 s−1
i

)
∈ G∩GL2(Fq) and

(
si 0
0 si

)
∈ G. Then

[g]G = [g
(

s−1
i 0

0 s−1
i

)
]G∩GL2(Fq)

(
si 0
0 si

)
.

(c) Let P (X) = X2−aX+b ∈ Fqr [X] be a polynomial. Then the inequality∑
C

|C| ≤ 2|R̃/R|(q2 + q)

holds, where the sum runs over the conjugacy classes C of G with char-
acteristic polynomial equal to P (X).
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Proof. (a) The classification of the finite subgroups of PGL2(Fq) yields that
the group G/(G ∩ F×qr) is either PGL2(Fqu) or PSL2(Fqu) for some u | r.
This, however, can only occur with u = 1, as PSL2(Fqu) is simple. The rest
is only a reformulation.

(b) This follows from (a), since scalar matrices are central.
(c) From (b) we get the inclusion

⊔
C

C ⊆
n⊔

i=1

⊔
D

D
(

si 0
0 si

)
,

where C runs over the conjugacy classes of G with characteristic polynomial
equal to P (X) and D runs over the conjugacy classes of G∩GL2(Fq) with
characteristic polynomial equal to X2 − as−1

i X + bs−2
i (such a conjugacy

class is empty if the polynomial is not in Fq[X]). The group G∩GL2(Fq) is
normal in GL2(Fq), as it contains SL2(Fq). Hence, any conjugacy class of
GL2(Fq) either has an empty intersection with G∩GL2(Fq) or is a disjoint
union of conjugacy classes of G ∩ GL2(Fq). Consequently, by Lemma 2.1,
the disjoint union

⊔
D D

(
si 0
0 si

)
is equal to one of

(i) [Ua,b]GL2(Fq)

(
si 0
0 si

)
,

(ii) [Vx,y]GL2(Fq)

(
si 0
0 si

)
or

(iii) [Sa]GL2(Fq)

(
si 0
0 si

)
t [Ta]GL2(Fq)

(
si 0
0 si

)
.

Still by Lemma 2.1, the first set contains q2+q, the second set q2−q and the
third one q2 elements. Hence, the set

⊔
C C contains at most 2|R̃/R|(q2 +q)

elements. �

3. Proof

The proof of Theorem 1.1 relies on the following important theorem by
Ribet, which, roughly speaking, says that the image of the mod ` Galois
representation attached to a fixed newform is as big as it can be for almost
all primes `.

Theorem 3.1 (Ribet). Let f be a Hecke eigenform of weight k ≥ 2, level N
and Dirichlet character χ : (Z/NZ)× → C×. Suppose that f does not have
CM. Let Ef and Ff be as in Theorem 1.1 and denote by OEf

and OFf

the corresponding rings of integers. For almost all prime numbers ` the
following statement holds:

Let L̃ be a prime ideal of OEf
dividing `. Put L = L̃ ∩ OFf

and OFf
/L ∼= F. Consider the residual Galois representation

ρ
f,L̃ : Gal(Q/Q) → GL2(OEf

/L̃)
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attached to f . Then the image ρ
f,L̃(Gal(Q/KΓ)) is conju-

gate to
{g ∈ GL2(F) : det(g) ∈ F×(k−1)

` },
where KΓ is the field defined in Section 1.

Proof. It suffices to take Ribet [6, Thm. 3.1] mod L̃. �

Theorem 3.2. Let f be a non-CM newform of weight k ≥ 2, level N and
Dirichlet character χ. Let Ff be as in Theorem 1.1 and let L ⊂ Ff be any
proper subfield. Then the set{

p prime :
ap(f)2

χ(p)
∈ L

}
has density zero.

Proof. Let L ( Ff be a proper subfield and OL its integer ring. We define
the set

S := {L ⊂ OFf
prime ideal : [OFf

/L : OL/(L ∩ L)] ≥ 2}.

Notice that this set is infinite. For, if it were finite, then all but finitely
many primes would split completely in the extension Ff/L, which is not
the case by Chebotarev’s density theorem.

Let L ∈ S be any prime, ` its residue characteristic and L̃ a prime
of OEf

lying over L. Put Fq = OL/(L ∩ L), Fqr = OFf
/L and Fqrs =

OEf
/L̃. We have r ≥ 2. Let W be the subgroup of F×qrs consisting of the

values of χ modulo L̃; its size |W | is less than or equal to |(Z/NZ)×|.
Let R = F×(k−1)

` be the subgroup of (k − 1)st powers of elements in the
multiplicative group F×` and let R̃ = 〈R,W 〉 ⊂ F×qrs . The size of R̃ is
less than or equal to |R| · |W |. Let H = {g ∈ GL2(Fqr) : det(g) ∈ R} and
G = Gal(Q

ker ρ
f,L̃/Q). By Galois theory, G can be identified with the image

of the residual representation ρ
f,L̃, and we shall make this identification

from now on. By Theorem 3.1 we have the inclusion of groups

H ⊆ G ⊆ {g ∈ GL2(Fqrs) : det(g) ∈ R̃}

with H being normal in G.
If C is a conjugacy class of G, by Chebotarev’s density theorem the

density of
{pprime : [ρ

f,L̃(Frobp)]G = C}

equals |C|/|G|. We consider the set

ML :=
⊔
C

{pprime : [ρ
f,L̃(Frobp)]G = C} ⊇

{
pprime :

(
ap(f)2

χ(p)

)
∈ Fq

}
,
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where the reduction modulo L of an element x ∈ OFf
is denoted by x and C

runs over the conjugacy classes of G with characteristic polynomials equal
to some X2 − aX + b ∈ Fqrs [X] such that

a2 ∈ {t ∈ Fqrs : ∃u ∈ Fq ∃w ∈W : t = uw}

and automatically b ∈ R̃. The set ML has the density δ(ML) =
∑

C
|C|
|G|

with C as before. There are at most 2q|W |2 · |R| such polynomials. We are
now precisely in the situation to apply Prop. 2.1, Part (c), which yields the
inequality

δ(ML) ≤ 4|W |3q(q2r + qr)
(q3r − qr)

= O

(
1

qr−1

)
≤ O

(
1
q

)
,

where for the denominator we used |G| ≥ |H| = |R| · |SL2(Fqr)|.
Since q is unbounded for L ∈ S, the intersection M :=

⋂
L∈S ML is a set

having a density and this density is 0. The inclusion{
pprime :

ap(f)2

χ(p)
∈ L

}
⊆M

finishes the proof. �

Proof of Theorem 1.1. It suffices to apply Theorem 3.2 to each of the finite-
ly many subextension of Ff . �

4. Reducibility of Hecke polynomials: questions

Motivated by a conjecture of Maeda, there has been some speculation
that for every integer k and prime number p, the characteristic polynomial
of Tp acting on Sk(1) is irreducible. See, for example, [2], which verifies this
for all k < 2000 and p < 2000. The most general such speculation might be
the following question: if f is a non-CM newform of level N ≥ 1 and weight
k ≥ 2 such that some ap(f) generates the field Ef = Q(an(f) : n ≥ 1), do
all but finitely many prime-indexed Fourier coefficients ap(f) generate Ef?
The answer in general is no. An example is given by the newform in level 63
and weight 2 that has an inner twist by

( ·
3

)
. Also for non-CM newforms of

weight 2 without nontrivial inner twists such that [Ef : Q] = 2, we think
that the answer is likely no.

Let f ∈ Sk(Γ0(N)) be a newform of weight k and level N . The degree of
f is the degree of the field Ef , and we say that f is a reducible newform if
ap(f) does not generate Ef for infinitely many primes p.

For each even weight k ≤ 12 and degree d = 2, 3, 4, we used [8] to
find newforms f of weight k and degree d. For each of these forms, we
computed the reducible primes p < 1000, i.e., the primes such ap(f) does
not generate Ef . The result of this computation is given in Table 1. Table 2
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contains the number of reducible primes p < 10000 for the first 20 newforms
of degree 2 and weight 2. This data inspires the following question.

Question 4.1. If f ∈ S2(Γ0(N)) is a newform of degree 2, is f necessarily
reducible? That is, are there infinitely many primes p such that ap(f) ∈ Z?

Tables 4–6 contain additional data about the first few newforms of given
degree and weight, which may suggest other similar questions. In particular,
Table 3 contains data for all primes up to 106 for the first degree 2 form f
with L(f, 1) 6= 0, and for the first degree 2 form g with L(g, 1) = 0. We find
that there are 386 primes < 106 with ap(f) ∈ Z and 309 with ap(g) ∈ Z.

Question 4.2. If f ∈ S2(Γ0(N)) is a newform of degree 2, can the asymp-
totic behaviour of the function

N(x) := #{pprime : p < x, ap(f) ∈ Z}

be described as a function of x?

The authors intend to investigate these questions in a subsequent paper.

Table 1. Counting Reducible Characteristic Polynomials

k d N reducible p < 1000
2 2 23 13, 19, 23, 29, 43, 109, 223, 229, 271, 463, 673, 677, 883, 991
2 3 41 17, 41
2 4 47 47
4 2 11 11
4 3 17 17
4 4 23 23
6 2 7 7
6 3 11 11
6 4 17 17
8 2 5 5
8 3 17 17
8 4 11 11
10 2 5 5
10 3 7 7
10 4 13 13
12 2 5 5
12 3 7 7
12 4 21 3, 7
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Table 2. First 20 Newforms of Degree 2 and Weight 2

k d N #{reducible p < 10000}
2 2 23 47
2 2 29 42
2 2 31 78
2 2 35 48
2 2 39 71
2 2 43 43
2 2 51 64
2 2 55 95
2 2 62 77
2 2 63 622 (inner twist by

( ·
3

)
)

2 2 65 43
2 2 65 90
2 2 67 51
2 2 67 19
2 2 68 53
2 2 69 47
2 2 73 43
2 2 73 55
2 2 74 52
2 2 74 21

Table 3. Newforms 23a and 67b: values of
ψ(x) = #{reducible p < x · 105}

k d N ran 1 2 3 4 5 6 7 8 9 10
2 2 23 0 127 180 210 243 277 308 331 345 360 386
2 2 67 1 111 159 195 218 240 257 276 288 301 309

Table 4. First 5 Newforms of Degrees 3, 4 and Weight 2

k d N reducible p < 10000
2 3 41 17, 41
2 3 53 13, 53
2 3 61 61, 2087
2 3 71 23, 31, 71, 479,

647, 1013, 3181
2 3 71 13, 71, 509, 3613

k d N reducible p < 10000
2 4 47 47
2 4 95 5, 19
2 4 97 97
2 4 109 109, 4513
2 4 111 3, 37
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Table 5. First 5 Newforms of Degrees 2, 3 and Weight 4

k d N reducible p < 1000
4 2 11 11
4 2 13 13
4 2 21 3, 7
4 2 27 3, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103,

109, 127, 139, 151, 157, 163, 181, 193, 199, 211,
223, 229,241, 271, 277, 283, 307, 313, 331, 337,
349, 367, 373, 379, 397, 409, 421, 433, 439, 457,
463, 487, 499, 523, 541, 547, 571, 577, 601, 607,
613, 619, 631, 643, 661, 673, 691, 709, 727, 733,
739, 751, 757, 769, 787, 811, 823, 829, 853, 859,
877, 883, 907, 919, 937, 967, 991, 997
(has inner twists)

4 2 29 29
k d N reducible p < 1000
4 3 17 17
4 3 19 19
4 3 35 5, 7
4 3 39 3, 13
4 3 41 41

Table 6. Newforms on Γ0(389) of Weight 2

k d N reducible p < 10000
2 1 389 none (degree 1 polynomials are all irreducible)
2 2 389 5, 11, 59, 97, 157, 173, 223, 389, 653, 739, 859, 947, 1033,

1283, 1549, 1667, 2207, 2417, 2909, 3121, 4337, 5431, 5647,
5689, 5879, 6151, 6323, 6373, 6607, 6763, 7583, 7589, 8363,
9013, 9371, 9767

2 3 389 7, 13, 389, 503, 1303, 1429, 1877, 5443
2 6 389 19, 389
2 20 389 389
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