

Tamás ERDÉLYI

Extensions of the Bloch–Pólya theorem on the number of real zeros of polynomials

Tome 20, nº 2 (2008), p. 281-287.

 $\verb|\c| ttp://jtnb.cedram.org/item?id=JTNB_2008__20_2_281_0 > \\$

© Université Bordeaux 1, 2008, tous droits réservés.

L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

Extensions of the Bloch–Pólya theorem on the number of real zeros of polynomials

par Tamás ERDÉLYI

RÉSUMÉ. Nous prouvons qu'il existe des constantes absolues $c_1 > 0$ et $c_2 > 0$ telles que pour tout

$$\{a_0, a_1, \dots, a_n\} \subset [1, M], \qquad 1 \le M \le \exp(c_1 n^{1/4}),$$

il existe

$$b_0, b_1, \dots, b_n \in \{-1, 0, 1\}$$

tels que

$$P(z) = \sum_{j=0}^{n} b_j a_j z^j$$

a au moins $c_2n^{1/4}$ changements de signe distincts dans]0,1[. Cela améliore et étend des résultats antérieurs de Bloch et Pólya.

ABSTRACT. We prove that there are absolute constants $c_1 > 0$ and $c_2 > 0$ such that for every

$$\{a_0, a_1, \dots, a_n\} \subset [1, M], \qquad 1 \le M \le \exp(c_1 n^{1/4}),$$

there are

$$b_0, b_1, \ldots, b_n \in \{-1, 0, 1\}$$

such that

$$P(z) = \sum_{j=0}^{n} b_j a_j z^j$$

has at least $c_2 n^{1/4}$ distinct sign changes in (0,1). This improves and extends earlier results of Bloch and Pólya.

1. Introduction

Let \mathcal{F}_n denote the set of polynomials of degree at most n with coefficients from $\{-1,0,1\}$. Let \mathcal{L}_n denote the set of polynomials of degree n with coefficients from $\{-1,1\}$. In [6] the authors write

"The study of the location of zeros of these classes of polynomials begins with Bloch and Pólya [2]. They prove that the average number of real zeros

of a polynomial from \mathcal{F}_n is at most $c\sqrt{n}$. They also prove that a polynomial from \mathcal{F}_n cannot have more than

$$\frac{cn\log\log n}{\log n}$$

real zeros. This quite weak result appears to be the first on this subject. Schur [13] and by different methods Szegő [15] and Erdős and Turán [8] improve this to $c\sqrt{n\log n}$ (see also [4]). (Their results are more general, but in this specialization not sharp.)

Our Theorem [4.1] gives the right upper bound of $c\sqrt{n}$ for the number of real zeros of polynomials from a much larger class, namely for all polynomials of the form

$$p(x) = \sum_{j=0}^{n} a_j x^j, \quad |a_j| \le 1, \quad |a_0| = |a_n| = 1, \quad a_j \in \mathbb{C}.$$

Schur [13] claims that Schmidt gives a version of part of this theorem. However, it does not appear in the reference he gives, namely [12], and we have not been able to trace it to any other source. Also, our method is able to give $c\sqrt{n}$ as an upper bound for the number of zeros of a polynomial $p \in \mathcal{P}_n^c$ with $|a_0| = 1, |a_j| \leq 1$, inside any polygon with vertices in the unit circle (of course, c depends on the polygon). This may be discussed in a later publication.

Bloch and Pólya [2] also prove that there are polynomials $p \in \mathcal{F}_n$ with

$$\frac{cn^{1/4}}{\sqrt{\log n}}$$

distinct real zeros of odd multiplicity. (Schur [13] claims they do it for polynomials with coefficients only from $\{-1,1\}$, but this appears to be incorrect.)

In a seminal paper Littlewood and Offord [11] prove that the number of real roots of a $p \in \mathcal{L}_n$, on average, lies between

$$\frac{c_1 \log n}{\log \log \log n} \quad \text{and} \quad c_2 \log^2 n$$

and it is proved by Boyd [7] that every $p \in \mathcal{L}_n$ has at most $c \log^2 n / \log \log n$ zeros at 1 (in the sense of multiplicity).

Kac [10] shows that the expected number of real roots of a polynomial of degree n with random uniformly distributed coefficients is asymptotically $(2/\pi) \log n$. He writes "I have also stated that the same conclusion holds if the coefficients assume only the values 1 and -1 with equal probabilities. Upon closer examination it turns out that the proof I had in mind is inapplicable.... This situation tends to emphasize the particular interest of the

discrete case, which surprisingly enough turns out to be the most difficult." In a recent related paper Solomyak [14] studies the random series $\sum \pm \lambda^n$."

In fact, the paper [5] containing the "polygon result" mentioned in the above quote appeared sooner than [6]. The book [4] contains only a few related weaker results. Our Theorem 2.1 in [6] sharpens and generalizes results of Amoroso [1], Bombieri and Vaaler [3], and Hua [9] who give versions of that result for polynomials with integer coefficients.

In this paper we improve the lower bound (1.1) in the result of Bloch and Pólya to $cn^{1/4}$. Moreover we allow a much more general coefficient constraint in our main result. Our approach is quite different from that of Bloch and Pólya.

2. New result

Theorem 2.1. There are absolute constants $c_1 > 0$ and $c_2 > 0$ such that for every

$$\{a_0, a_1, \dots, a_n\} \subset [1, M], \qquad 1 \le M \le \exp(c_1 n^{1/4}),$$

there are

$$b_0, b_1, \dots, b_n \in \{-1, 0, 1\}$$

such that

$$P(z) = \sum_{j=0}^{n} b_j a_j z^j$$

has at least $c_2n^{1/4}$ distinct sign changes in (0,1).

3. Lemmas

Let $D := \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk. Denote by S_M the collection of all analytic functions f on the open unit disk D that satisfy

$$|f(z)| \le \frac{M}{1 - |z|}, \qquad z \in D.$$

Let $||f||_A := \sup_{x \in A} |f(x)|$. To prove Theorem 2.1 our first lemma is the following.

Lemma 3.1. There is an absolute constants $c_3 > 0$ such that

$$||f||_{[\alpha,\beta]} \ge \exp\left(\frac{-c_3(1+\log M)}{\beta-\alpha}\right)$$

for every $f \in S_M$ and $0 < \alpha < \beta \le 1$ with $|f(0)| \ge 1$ and for every $M \ge 1$.

This follows from the lemma below by a linear scaling:

Lemma 3.2. There are absolute constants $c_4 > 0$ and $c_5 > 0$ such that

$$|f(0)|^{c_5/a} \le \exp\left(\frac{c_4(1+\log M)}{a}\right) \|f\|_{[1-a,1]}$$

for every $f \in \mathcal{S}_M$ and $a \in (0,1]$.

To prove Lemma 3.2 we need some corollaries of the following well known result.

Hadamard three circles theorem. Let $0 < r_1 < r_2$. Suppose f is regular in

$$\{z \in \mathbb{C} : r_1 \le |z| \le r_2\}.$$

For $r \in [r_1, r_2]$, let

$$M(r) := \max_{|z|=r} |f(z)|.$$

Then

$$M(r)^{\log(r_2/r_1)} \le M(r_1)^{\log(r_2/r)} M(r_2)^{\log(r/r_1)}$$
.

Corollary 3.1. Let $a \in (0,1]$. Suppose f is regular inside and on the ellipse E_a with foci at 1-a and $1-a+\frac{1}{4}a$ and with major axis

$$\left[1-a-\frac{9a}{64},1-a+\frac{25a}{64}\right]$$
.

Let \widetilde{E}_a be the ellipse with foci at 1-a and $1-a+\frac{1}{4}a$ and with major axis

$$\left[1-a-\frac{a}{32},1-a+\frac{9a}{32}\right]$$
.

Then

$$\max_{z \in \widetilde{E}_a} |f(z)| \le \left(\max_{z \in [1-a, 1-a+\frac{1}{4}a]} |f(z)| \right)^{1/2} \left(\max_{z \in E_a} |f(z)| \right)^{1/2}.$$

Proof. This follows from the Hadamard three circles theorem with the substitution

$$w = \frac{a}{8} \left(\frac{z + z^{-1}}{2} \right) + \left(1 - a + \frac{a}{8} \right).$$

The Hadamard three circles theorem is applied with $r_1 := 1, r := 2$, and $r_2 := 4$.

Corollary 3.2. For every $f \in \mathcal{S}_M$ and $a \in (0,1]$ we have

$$\max_{z \in \widetilde{E}_a} |f(z)| \le \left(\frac{64M}{39a}\right)^{1/2} \left(\max_{z \in [1-a,1]} |f(z)|\right)^{1/2}.$$

Proof of Lemma 3.2. Let $f \in \mathcal{S}_M$ and $h(z) = \frac{1}{2}(1-a)(z+z^2)$. Observe that h(0) = 0, and there are absolute constants $c_6 > 0$ and $c_7 > 0$ such that

$$|h(e^{it})| \le 1 - c_6 t^2, \quad -\pi \le t \le \pi,$$

and for $t \in [-c_7a, c_7a]$, $h(e^{it})$ lies inside the ellipse \widetilde{E}_a . Now let $m := \lfloor \pi/(c_7a) \rfloor + 1$. Let $\xi := \exp(2\pi i/(2m))$ be the first 2m-th root of unity, and let

$$g(z) = \prod_{j=0}^{2m-1} f(h(\xi^j z)).$$

Using the Maximum Principle and the properties of h, we obtain

$$|f(0)|^{2m} = |g(0)| \le \max_{|z|=1} |g(z)| \le \left(\max_{z \in \widetilde{E}_a} |f(z)|\right)^2 \prod_{k=1}^{m-1} \left(\frac{M}{c_6(\pi k/m)^2}\right)^2$$

$$= \left(\max_{z \in \widetilde{E}_a} |f(z)|\right)^2 M^{2m-2} \exp(c_8(m-1)) \left(\frac{m^{m-1}}{(m-1)!}\right)^4$$

$$< \left(\max_{z \in \widetilde{E}_a} |f(z)|\right)^2 (Me)^{c_9(m-1)}$$

with absolute constants c_8 and c_9 , and the result follows from Corollary 3.2.

4. Proof of theorem 2.1

Proof of Theorem 2.1. Let $L \leq \frac{1}{2}n^{1/2}$ and

$$\mathcal{M}(P) := (P(1 - n^{-1/2}), P(1 - 2n^{-1/2}), \dots, P(1 - Ln^{-1/2}))$$

 $\in [-M\sqrt{n}, M\sqrt{n}]^L.$

We consider the polynomials

$$P(z) = \sum_{j=0}^{n-1} b_j a_j z^j, \qquad b_j \in \{0, 1\}.$$

There are 2^n such polynomials. Let $K \in \mathbb{N}$. Using the box principle we can easily deduce that $(2K)^L < 2^n$ implies that there are two different

$$P_1(z) = \sum_{j=0}^{n-1} b_j a_j z^j, \qquad b_j \in \{0, 1\},$$

and

$$P_2(z) = \sum_{j=0}^{n-1} \tilde{b}_j a_j z^j, \qquad \tilde{b}_j \in \{0, 1\},$$

such that

$$|P_1(1-jn^{-1/2})-P_2(1-jn^{-1/2})| \le \frac{M\sqrt{n}}{K}, \quad j=1,2,\ldots,L.$$

Let

$$P_1(z) - P_2(z) = \sum_{j=m}^{n-1} \beta_j a_j z^j, \qquad \beta_j \in \{-1, 0, 1\}, \quad b_m \neq 0.$$

Let $0 \neq Q(z) := z^{-m}(P_1(z) - P_2(z))$. Then Q is of the form

$$Q(z) := \sum_{j=0}^{n-1} \gamma_j a_j z^j, \qquad \gamma_j \in \{-1, 0, 1\}, \quad \gamma_0 \in \{-1, 1\},$$

and, since $1 - x \ge e^{-2x}$ for all $x \in [0, 1/2]$, we have

(4.1)
$$|Q(1-jn^{-1/2})| \le \exp(2Ln^{1/2})\frac{M\sqrt{n}}{K}, \quad j=1,2,\ldots,L.$$

Also, by Lemma 3.1, there are

$$\xi_j \in I_j := [1 - jn^{-1/2}, 1 - (j-1)n^{-1/2}], \quad j = 1, 2, \dots, L,$$

such that

(4.2)
$$|Q(\xi_j)| \ge \exp\left(-c_3(1+\log M)\sqrt{n}\right), \quad j=1,2,\ldots,L.$$

Now let $L := \lfloor (1/16)n^{1/4} \rfloor$ and $2K = \exp(n^{3/4})$. Then $(2K)^L < 2^n$ holds. Also, if $\log M = O(n^{1/4})$, then (4.1) implies

$$(4.3) |Q(1-jn^{-1/2})| \le \exp(-(3/4)n^{3/4}), j = 1, 2, \dots, L,$$

for all sufficiently large n. Now observe that $1 \leq M \leq \exp((64c_3)^{-1}n^{1/4})$ yields that

$$|a_n x^n| \ge |x|^n \ge \exp(-2(1-x)) \ge \exp(-2Ln^{1/2})$$

$$(4.4) \qquad \ge \exp(-(1/8)n^{3/4}), \qquad x \in [1 - Ln^{-1/2}, 1 - (L/2)n^{-1/2}].$$

and

$$|a_n x^n| \le M \exp(-(L/2)n^{1/2})$$

$$(4.5) \leq \exp(-(1/33)n^{3/4}), x \in [1 - Ln^{-1/2}, 1 - (L/2)n^{-1/2}],$$

for all sufficiently large n. Observe also that with $\log M \leq (64c_3)^{-1} n^{1/4}$ (4.2) implies

(4.6)
$$|Q(\xi_j)| > \exp(-(1/63)n^{3/4}), \quad j = 1, 2, \dots, L,$$

for all sufficiently large n. Now we study the polynomials

$$S_1(z) := Q(z) - a_n z^n$$
 and $S_2(z) := Q(z) + a_n z^n$.

These are of the requested special form. It follows from (4.3)–(4.6) that either S_1 or S_2 has a sign change in at least half of the intervals I_j , $j = L, L-1, \ldots |L/2| + 2$, for all sufficiently large n, and the theorem is proved.

References

- F. AMOROSO, Sur le diamètre transfini entier d'un intervalle réel. Ann. Inst. Fourier, Grenoble 40 (1990), 885-911.
- [2] A. Bloch and G. Pólya, On the roots of certain algebraic equations. Proc. London Math. Soc. 33 (1932), 102-114.
- [3] E. BOMBIERI and J. VAALER, Polynomials with low height and prescribed vanishing in analytic number theory and Diophantine problems. Birkhäuser, 1987, pp. 53-73.
- [4] P. Borwein and T. Erdélyi, Polynomials and polynomial inequalities. Springer-Verlag, New York, 1995.
- [5] P. BORWEIN and T. ERDÉLYI, On the zeros of polynomials with restricted coefficients. Illinois J. Math. 41 (1997), 667-675.
- [6] P. Borwein, T. Erdélyi, and G. Kós, Littlewood-type problems on [0,1]. Proc. London Math. Soc. 79 (1999), 22–46.
- [7] D. BOYD, On a problem of Byrne's concerning polynomials with restricted coefficients. Math. Comput. 66 (1997), 1697–1703.
- [8] P. Erdős and P. Turán, On the distribution of roots of polynomials. Ann. Math. 57 (1950), 105–119.
- [9] L. K. Hua, Introduction to number theory. Springer-Verlag, Berlin, Heidelberg, New York, 1982.
- [10] M. KAC, On the average number of real roots of a random algebraic equation, II. Proc. London Math. Soc. 50 (1948), 390–408.
- [11] J. E. LITTLEWOOD and A. C. OFFORD, On the number of real roots of a random algebraic equation, II. Proc. Cam. Phil. Soc. 35 (1939), 133–148.
- [12] E. SCHMIDT, Über algebraische Gleichungen vom P\u00f6lya-Bloch-Typos. Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl. (1932), 321.
- [13] I. SCHUR, Untersuchungen über algebraische Gleichungen. Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl. (1933), 403–428.
- [14] B. SOLOMYAK, On the random series $\sum \pm \lambda^n$ (an Erdős problem). Ann. Math. **142** (1995), 611–625.
- [15] G. Szegő, Bemerkungen zu einem Satz von E. Schmidtüber algebraische Gleichungen. Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl. (1934), 86–98.

Tamás ERDÉLYI
Department of Mathematics
Texas A&M University
College Station, Texas 77843
E-mail: terdelyi@math.tamu.edu
URL: http://www.math.tamu.edu/~tamas.erdelyi