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Extensions of the Bloch–Pólya theorem on the
number of real zeros of polynomials

par Tamás ERDÉLYI

Résumé. Nous prouvons qu’il existe des constantes absolues c1 >
0 et c2 > 0 telles que pour tout

{a0, a1, . . . , an} ⊂ [1,M ] , 1 ≤ M ≤ exp(c1n
1/4) ,

il existe
b0, b1, . . . , bn ∈ {−1, 0, 1}

tels que

P (z) =
n∑

j=0

bjajz
j

a au moins c2n
1/4 changements de signe distincts dans ]0, 1[. Cela

améliore et étend des résultats antérieurs de Bloch et Pólya.

Abstract. We prove that there are absolute constants c1 > 0
and c2 > 0 such that for every

{a0, a1, . . . , an} ⊂ [1,M ] , 1 ≤ M ≤ exp(c1n
1/4) ,

there are
b0, b1, . . . , bn ∈ {−1, 0, 1}

such that

P (z) =
n∑

j=0

bjajz
j

has at least c2n
1/4 distinct sign changes in (0, 1). This improves

and extends earlier results of Bloch and Pólya.

1. Introduction

Let Fn denote the set of polynomials of degree at most n with coefficients
from {−1, 0, 1}. Let Ln denote the set of polynomials of degree n with
coefficients from {−1, 1}. In [6] the authors write

“The study of the location of zeros of these classes of polynomials begins
with Bloch and Pólya [2]. They prove that the average number of real zeros
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of a polynomial from Fn is at most c
√

n. They also prove that a polynomial
from Fn cannot have more than

cn log log n

log n

real zeros. This quite weak result appears to be the first on this subject.
Schur [13] and by different methods Szegő [15] and Erdős and Turán [8]
improve this to c

√
n log n (see also [4]). (Their results are more general,

but in this specialization not sharp.)
Our Theorem [4.1] gives the right upper bound of c

√
n for the num-

ber of real zeros of polynomials from a much larger class, namely for all
polynomials of the form

p(x) =
n∑

j=0

ajx
j , |aj | ≤ 1 , |a0| = |an| = 1 , aj ∈ C .

Schur [13] claims that Schmidt gives a version of part of this theorem.
However, it does not appear in the reference he gives, namely [12], and we
have not been able to trace it to any other source. Also, our method is able
to give c

√
n as an upper bound for the number of zeros of a polynomial

p ∈ Pc
n with |a0| = 1, |aj | ≤ 1, inside any polygon with vertices in the unit

circle (of course, c depends on the polygon). This may be discussed in a
later publication.

Bloch and Pólya [2] also prove that there are polynomials p ∈ Fn with

(1.1)
cn1/4

√
log n

distinct real zeros of odd multiplicity. (Schur [13] claims they do it for
polynomials with coefficients only from {−1, 1}, but this appears to be
incorrect.)

In a seminal paper Littlewood and Offord [11] prove that the number of
real roots of a p ∈ Ln, on average, lies between

c1 log n

log log log n
and c2 log2 n

and it is proved by Boyd [7] that every p ∈ Ln has at most c log2 n/ log log n
zeros at 1 (in the sense of multiplicity).

Kac [10] shows that the expected number of real roots of a polynomial of
degree n with random uniformly distributed coefficients is asymptotically
(2/π) log n. He writes “I have also stated that the same conclusion holds if
the coefficients assume only the values 1 and −1 with equal probabilities.
Upon closer examination it turns out that the proof I had in mind is inap-
plicable.... This situation tends to emphasize the particular interest of the
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discrete case, which surprisingly enough turns out to be the most difficult.”
In a recent related paper Solomyak [14] studies the random series

∑
±λn.”

In fact, the paper [5] containing the “polygon result” mentioned in the
above quote appeared sooner than [6]. The book [4] contains only a few
related weaker results. Our Theorem 2.1 in [6] sharpens and generalizes
results of Amoroso [1], Bombieri and Vaaler [3], and Hua [9] who give
versions of that result for polynomials with integer coefficients.

In this paper we improve the lower bound (1.1) in the result of Bloch
and Pólya to cn1/4. Moreover we allow a much more general coefficient
constraint in our main result. Our approach is quite different from that of
Bloch and Pólya.

2. New result

Theorem 2.1. There are absolute constants c1 > 0 and c2 > 0 such that
for every

{a0, a1, . . . , an} ⊂ [1,M ] , 1 ≤ M ≤ exp(c1n
1/4) ,

there are
b0, b1, . . . , bn ∈ {−1, 0, 1}

such that

P (z) =
n∑

j=0

bjajz
j

has at least c2n
1/4 distinct sign changes in (0, 1).

3. Lemmas

Let D := {z ∈ C : |z| < 1} be the open unit disk. Denote by SM the
collection of all analytic functions f on the open unit disk D that satisfy

|f(z)| ≤ M

1− |z|
, z ∈ D .

Let ‖f‖A := supx∈A |f(x)|. To prove Theorem 2.1 our first lemma is the
following.

Lemma 3.1. There is an absolute constants c3 > 0 such that

‖f‖[α,β] ≥ exp
(−c3(1 + log M)

β − α

)
for every f ∈ SM and 0 < α < β ≤ 1 with |f(0)| ≥ 1 and for every M ≥ 1.

This follows from the lemma below by a linear scaling:
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Lemma 3.2. There are absolute constants c4 > 0 and c5 > 0 such that

|f(0)|c5/a ≤ exp
(

c4(1 + log M)
a

)
‖f‖[1−a,1]

for every f ∈ SM and a ∈ (0, 1].

To prove Lemma 3.2 we need some corollaries of the following well known
result.

Hadamard three circles theorem. Let 0 < r1 < r2. Suppose f is regular
in

{z ∈ C : r1 ≤ |z| ≤ r2} .

For r ∈ [r1, r2], let
M(r) := max

|z|=r
|f(z)| .

Then
M(r)log(r2/r1) ≤ M(r1)log(r2/r)M(r2)log(r/r1) .

Corollary 3.1. Let a ∈ (0, 1]. Suppose f is regular inside and on the ellipse
Ea with foci at 1− a and 1− a + 1

4a and with major axis[
1− a− 9a

64
, 1− a +

25a

64

]
.

Let Ẽa be the ellipse with foci at 1− a and 1− a + 1
4a and with major axis[

1− a− a

32
, 1− a +

9a

32

]
.

Then

max
z∈Ẽa

|f(z)| ≤
(

max
z∈[1−a,1−a+ 1

4
a]
|f(z)|

)1/2 (
max
z∈Ea

|f(z)|
)1/2

.

Proof. This follows from the Hadamard three circles theorem with the sub-
stitution

w =
a

8

(
z + z−1

2

)
+
(

1− a +
a

8

)
.

The Hadamard three circles theorem is applied with r1 := 1, r := 2, and
r2 := 4. �

Corollary 3.2. For every f ∈ SM and a ∈ (0, 1] we have

max
z∈Ẽa

|f(z)| ≤
(

64M

39a

)1/2
(

max
z∈[1−a,1]

|f(z)|
)1/2

.
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Proof of Lemma 3.2. Let f ∈ SM and h(z) = 1
2(1 − a)(z + z2). Observe

that h(0) = 0, and there are absolute constants c6 > 0 and c7 > 0 such
that

|h(eit)| ≤ 1− c6t
2 , −π ≤ t ≤ π ,

and for t ∈ [−c7a, c7a], h(eit) lies inside the ellipse Ẽa. Now let m :=
bπ/(c7a)c+1. Let ξ := exp(2πi/(2m)) be the first 2m-th root of unity, and
let

g(z) =
2m−1∏
j=0

f(h(ξjz)) .

Using the Maximum Principle and the properties of h, we obtain

|f(0)|2m = |g(0)| ≤ max
|z|=1

|g(z)| ≤
(

max
z∈Ẽa

|f(z)|
)2 m−1∏

k=1

(
M

c6(πk/m)2

)2

=
(

max
z∈Ẽa

|f(z)|
)2

M2m−2 exp(c8(m− 1))
(

mm−1

(m− 1)!

)4

<
(

max
z∈Ẽa

|f(z)|
)2

(Me)c9(m−1)

with absolute constants c8 and c9, and the result follows from Corollary
3.2. �

4. Proof of theorem 2.1

Proof of Theorem 2.1. Let L ≤ 1
2n1/2 and

M(P ) := (P (1− n−1/2), P (1− 2n−1/2), . . . , P (1− Ln−1/2))

∈ [−M
√

n, M
√

n]L .

We consider the polynomials

P (z) =
n−1∑
j=0

bjajz
j , bj ∈ {0, 1} .

There are 2n such polynomials. Let K ∈ N. Using the box principle we can
easily deduce that (2K)L < 2n implies that there are two different

P1(z) =
n−1∑
j=0

bjajz
j , bj ∈ {0, 1} ,

and

P2(z) =
n−1∑
j=0

b̃jajz
j , b̃j ∈ {0, 1} ,
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such that

|P1(1− jn−1/2)− P2(1− jn−1/2)| ≤ M
√

n

K
, j = 1, 2, . . . , L .

Let

P1(z)− P2(z) =
n−1∑
j=m

βjajz
j , βj ∈ {−1, 0, 1}, bm 6= 0 .

Let 0 6= Q(z) := z−m(P1(z)− P2(z)). Then Q is of the form

Q(z) :=
n−1∑
j=0

γjajz
j , γj ∈ {−1, 0, 1} , γ0 ∈ {−1, 1} ,

and, since 1− x ≥ e−2x for all x ∈ [0, 1/2], we have

(4.1) |Q(1− jn−1/2)| ≤ exp(2Ln1/2)
M
√

n

K
, j = 1, 2, . . . , L .

Also, by Lemma 3.1, there are

ξj ∈ Ij := [1− jn−1/2, 1− (j − 1)n−1/2] , j = 1, 2, . . . , L ,

such that

(4.2) |Q(ξj)| ≥ exp
(
−c3(1 + log M)

√
n
)

, j = 1, 2, . . . , L .

Now let L := b(1/16)n1/4c and 2K = exp(n3/4). Then (2K)L < 2n holds.
Also, if log M = O(n1/4), then (4.1) implies

(4.3) |Q(1− jn−1/2)| ≤ exp(−(3/4)n3/4) , j = 1, 2, . . . , L ,

for all sufficiently large n. Now observe that 1 ≤ M ≤ exp((64c3)−1n1/4)
yields that

|anxn| ≥|x|n ≥ exp(−2(1− x)) ≥ exp(−2Ln1/2)

≥ exp(−(1/8)n3/4) , x ∈ [1− Ln−1/2, 1− (L/2)n−1/2] ,(4.4)

and

|anxn| ≤M exp(−(L/2)n1/2)

≤ exp(−(1/33)n3/4) , x ∈ [1− Ln−1/2, 1− (L/2)n−1/2] ,(4.5)

for all sufficiently large n. Observe also that with log M ≤ (64c3)−1n1/4

(4.2) implies

(4.6) |Q(ξj)| > exp(−(1/63)n3/4) , j = 1, 2, . . . , L ,

for all sufficiently large n. Now we study the polynomials

S1(z) := Q(z)− anzn and S2(z) := Q(z) + anzn .
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These are of the requested special form. It follows from (4.3)–(4.6) that
either S1 or S2 has a sign change in at least half of the intervals Ij , j =
L,L−1, . . . bL/2c+2 , for all sufficiently large n, and the theorem is proved.

�
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