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Journal de Théorie des Nombres
de Bordeaux 20 (2008), 227-241

Logarithmic frequency in morphic sequences

par Jason P. BELL

Résumé. Nous répondons affirmativement à une question
d’Allouche et Shallit en montrant l’existence de la fréquence
logarithmique des lettres et des mots dans une suite morphique.

Abstract. We study the logarithmic frequency of letters and
words in morphic sequences and show that this frequency must
always exist, answering a question of Allouche and Shallit.

1. Introduction

Let Σ be a finite alphabet. Given a sequence s = s(1), s(2), s(3), . . .
taking values in Σ it is natural to ask the question: With what frequency
does a letter/word a ∈ Σ∗ appear in the sequence s?

To make this question precise, we must carefully define what we mean
by frequency. Given a sequence s, the ordinary frequency of a letter a in s
is simply the limit

lim
x→∞

#{n ≤ x | s(n) = a}
x

,

if it exists. More generally, if w is a word of length d on Σ, then the ordinary
frequency of w in s is the limit

lim
x→∞

#{n ≤ x | s(n)s(n + 1) · · · s(n + d− 1) = w}
x

,

if it exists.
The main problem with the ordinary frequency is that for many inter-

esting clases of sequences, it cannot be guaranteed that it exists. For this
reason, the logarithmic frequency is often a better measure of frequency.

Definition 1. Given a finite alphabet Σ and a sequence s = s(1), s(2),
s(3), . . . taking values in Σ, we define the logarithmic frequency of a letter
a ∈ Σ to be the limit

lim
x→∞

1
log x

∑
{n≤x | s(n)=a}

1
n
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provided the limit exists. Similarly, we define the logarithmic frequency of
a word w ∈ Σ∗ to be the limit

lim
x→∞

1
log x

∑
{n≤x | s(n)···s(n+d−1)=w}

1
n

provided the limit exists, where d is the length of w.

The main advantage of logarithmic frequency over ordinary frequency is
that it exists for large classes of sequences; for example, Cobham showed
that the logarithmic frequency of letters in automatic sequences always ex-
ists [2], while the ordinary frequency need not exist for automatic sequences.
Logarithmic frequency generalizes ordinary frequency in the following sense:
if the ordinary frequency of a letter/word in a sequence exists, then the log-
arithmic frequency will also exist and be equal to the ordinary frequency.
Automatic sequences are a subset of the collection of morphic sequences.
We define morphic sequences here.

Let Σ = {a1, . . . , ad} be a finite alphabet and let φ : Σ∗ → Σ∗ be a
morphism. We say that a letter ai ∈ Σ is mortal if φj(ai) = ε, the empty
word, for some j ≥ 1. Suppose that φ(a1) = a1x for some non-empty word
x containing a non-mortal letter. Then we say that φ is prolongable on a1.
Then we can form the right-infinite word

φω(a1) := a1xφ(x)φ2(x) · · · .

Note that the right-infinite word φω(a1) is a fixed point of φ. Words defined
in this manner are called pure morphic words. In general, a word u on a
finite alphabet ∆ is morphic if there is a set map f : Σ → ∆ such that
u = f(w) for some pure morphic word w on Σ. We note that a word can
be thought of as an infinite sequence of letters, and it is this interpretation
that we use when we talk of letter frequency.

Since automatic sequences form a subset of the collection of morphic
sequences, it is natural to ask whether the logarithmic frequency of a letter
in a morphic sequence exists. This is a question of Allouche and Shallit [1,
Section 8.8, p. 282]. Our main theorem is the following.

Theorem 1.1. Let s be a morphic sequence on a finite alphabet Σ. Then
the logarithmic frequency of a word w ∈ Σ∗ in s exists.

We note that the ordinary frequency in morphic sequences has been
studied by many authors [3, 4, 5, 6].

Our approach to proving Theorem 1.1 is to obtain how many occurrences
of a word w appear in certain “blocks” of φω(a1). We then use the fact that
φ is a morphism to obtain sufficiently small blocks that we can in fact
compute the logarithmic frequency.

The outline of this paper is as follows. In Section 2, we discuss incidence
matrices and basic results about nonnegative matrices. In Section 3, we give
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notation that will be used in obtaining the proof of our main theorem. In
Section 4, we give asymptotic results that will be necessary for the proof.
In Section 5 we prove Theorem 1.1.

2. Incidence matrices

In this section we discuss the relationship between matrices and mor-
phisms and Perron-Frobenius theory.

Let Σ = {a1, . . . , ad} be a finite alphabet and let φ : Σ∗ → Σ∗ be a
morphism. We define the incidence matrix M(φ) of φ to be the d × d
matrix whose (i, j) entry is the number of occurrences of ai in φ(aj). We
note that M(φn) = M(φ)n. From this we get the following fact:

Proposition 2.1. Let Σ = {a1, . . . , ad} be a finite alphabet and let φ :
Σ∗ → Σ∗ be a morphism. If w is a finite word on Σ then

|φn(w)| = [1 1 · · · 1]M(φ)nv,

where v is the Parikh vector of the word w; that is, v is the d× 1 column
vector whose ith coordinate is the number of occurrences of the letter ai in
the word w.

Proof. See Corollary 8.2.4 of Allouche and Shallit [1]. �

We note that if Σ is a finite alphabet and φ : Σ∗ → Σ∗ is a morphism, then
M(φ) is a nonnegative matrix ; that is, its entries are all nonnegative real
numbers. Of fundamental importance in the study of nonnegative matrices
is the Perron-Frobenius theorem.

Theorem 2.2. (Perron-Frobenius) Let A be a nonnegative matrix. Then
there is a nonnegative real eigenvalue α of A such that if λ is an eigenvalue
of A then either |λ| < α or λ = αω for some root of unity ω.

The eigenvalue α is called a Perron-Frobenius eigenvalue of A. We denote
the Perron-Frobenius eigenvalue of a nonnegative matrix A by α(A). We
note that any other eigenvalue of A on the circle |z| = α(A) satisfies λd = αd

for some d. We thus obtain the following remark.

Remark 1. If A is a nonnegative matrix then there is some number d such
that for every eigenvalue λ of Ad, if λ 6= α(Ad) then |λ| < α(Ad).

Definition 2. Let Σ = {a1, . . . , ad} be a finite alphabet and let φ : Σ∗ →
Σ∗ be a morphism. We say that φ is strongly Perron-Frobenius if for every
eigenvalue λ of the incidence matrix M(φ), if λ 6= α(M(φ)) then λ <
α(M(φ)).

Lemma 2.3. Let A be a d × d nonnegative matrix and let v,w ∈ Rd

be two vectors with nonnegative entries. Suppose α is the Perron-Frobenius
eigenvalue of A and β < α is such that all other eigenvalues of A are strictly
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less than β in absolute value. Then there is a (possibly zero) polynomial p(x)
such that

wTAnv = p(n)αn + O(βn).

Proof. There exists an invertible complex d× d matrix S such that

S−1AS = J

is in Jordan form. The i, j entry of Jn can be expressed as qi,j(n)αn+O(βn)
for some polynomial qi,j , possibly zero. Let w0 = wS and v0 = JS−1v.
Then

wTAnv = wT
0 Jnv0.

Since the entries of Jn are all of the form q(n)αn + O(βn), we obtain the
desired result. �

We are considering nonnegative matrices with integer entries. In this
case an interesting trichotomy arises: the Perron-Frobenius eigenvalue is
either strictly larger than 1, is equal to 1, or is 0. (It cannot be strictly
between 0 and 1 since the product of the nonzero roots of the characteristic
polynomial of M is an integer.) If the Perron-Frobenius eigenvalue is zero,
then M is nilpotent. In particular, if M = M(φ) for some morphism φ of a
finite alphabet, then every letter is mortal with respect to this morphism. If
the Perron-Frobenius eigenvalue is 1 and M is strongly Perron-Frobenius,
the only eigenvalues of A are 0 and 1. In particular, the O(βn) term can
be eliminated in the statement of Lemma 2.3 and all quantities involved
become polynomials in n. In this case, the logarithmic frequency of words
always exists. In fact, the ordinary frequency of words even exists [6], [7,
Theorem 3.8]! The case that the Perron-Frobenius eigenvalue is strictly
larger than 1 is the case we consider.

3. Notation

In this section we introuduce notation that will be used throughout our
proof that logarithmic frequency of words in morphic sequences exists.

Let Σ = {a1, . . . , ad} be a finite alphabet and suppose that φ : Σ∗ → Σ∗

is a strongly Perron-Frobenius morphism prolongable on a1. We keep the
morphism φ fixed throughout this section. As is standard, if v and w are
words on the same alphabet, we let |v|w denote the number of occurrences
of w in the word v

Write φ(a1) = a1x with x ∈ Σ∗ and let m be a natural number. Write

φm(x) = ai1ai2 · · · ait(m)
,

where

(1) t(n) = |φn+1(a1)| − |φn(a1)|.
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We note that if

φm(x) = ai1ai2 · · · ait(m)
,

then

φn+m(x) = φn(ai1) · · ·φn(ait(m)
)

and

|φn+m(x)| =
t(m)∑
j=1

|φn(aij )|.

We define t(m) functions

(2) hj,m(n) = |φn+m(a1)|+
j∑

k=1

|φn(aik)| for 0 ≤ j ≤ t(m).

Note that in the expression of hj,m(n), |φn+m(a1)| is just the length of
φn+m(a1), and the sum is the length of φn(ai1 · · · aij ). Thus hj,m(n) is the
length of an initial subword of φn+m+1(a1) that contains φn+m(a1). Let
w ∈ Σ∗. We now define two new functions, which will be important in
getting upper and lower bounds when estimating the logarithmic frequency.

Am,w(n) =
t(m)∑
j=1

(
log(hj,m(n) + |φn(aij )|w − 1)− log(hj,m(n)− 1)

)
(3)

and

Bm,w(n) =
t(m)∑
j=1

(
log(hj+1,m(n))− log(hj+1,m(n)− |φn(aij )|w)

)
.(4)

In the study of logarithmic frequency of a word w ∈ Σ∗ in a morphic
sequence, it is of course necessary to know the positions at which w occur.

Definition 3. Let Σ = {a1, . . . , ad} be a finite alphabet and suppose that
φ : Σ∗ → Σ∗ is a strongly Perron-Frobenius morphism prolongable on a1.
We define

sw(n) = sw(n) :=


1 if there is an occurrence of w at

the nth position of φω(a1),
0 otherwise.
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4. Asymptotics

In this section, we prove several asymptotic results that we will need to
prove Theorem 1.1

Proposition 4.1. Let Σ = {a1, . . . , ad} be a finite alphabet and let φ :
Σ∗ → Σ∗ be a strongly Perron-Frobenius morphism prolongable on a1. Sup-
pose that every letter a ∈ Σ appears in φk(a1) for some k. Then there are
polynomials p1, . . . , pd with p1 6= 0 and real numbers α, β with α > β > 0
such that

|φn(aj)| = pj(n)αn + O(βn).

Proof. Let α denote the largest eigenvalue of the matrix M(φ). Choose
β < α such that the remaining eigenvalues of M(φ) are strictly less than β
in absolute value. Then by Lemma 2.3, there exist polynomials p1, . . . , pd

such that

(5) |φn(aj)| = pj(n)αn + O(βn).

To see why p1 6= 0, note that M(φ) has α as an eigenvalue. Hence there
is some nonzero vector v such that M(φ)v = αv. Note that v is a lin-
ear combination of the Parikh vectors of a1, a2, . . . , ad. By Proposition
2.1, it follows that αn[1, 1, . . . , 1] · v is the same linear combination of
|φn(a1)|, |φn(a2)|, . . . , |φn(ad)|. Hence pj is nonzero for some j. By hypoth-
esis, |φn(a1)| ≥ |φn−k(aj)|, and so p1 must also be nonzero. �

We note that by the definition of the function hj,m(n), they must also
have asymptotics as described in the statement of Proposition 4.1.

Proposition 4.2. Let Σ = {a1, . . . , ad} be a finite alphabet and let φ :
Σ∗ → Σ∗ be a strongly Perron-Frobenius morphism prolongable on a1. If
w ∈ Σ∗, and α is the Perron-Frobenius eigenvalue of M(φ) then there are
polynomials q1, . . . , qd and a nonnegative real number β with β < α such
that |φn(aj)|w = qj(n)αn(1 + o(1)).

Proof. Let m denote the length of w. By relabeling if necessary, we may
assume that {ae, . . . , ad} are the mortal letters with respect to φ. We note
that in any word of the form φn(aj) there is a uniform bound on the size of
the “gaps” between consecutive appearances of non-mortal letters. Hence
there are distinct natural numbers b and c with b < c such that

(1) the shortest prefix of φb(aj) containing ` non-mortal letters is the
same as the shortest prefix of φc(aj) containing ` non-mortal letters
for 1 ≤ j ≤ d;

(2) the shortest suffix of φb(aj) containing ` non-mortal letters is the
same as the shortest suffix of φc(aj) containing ` non-mortal letters
for 1 ≤ j ≤ d.
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(We note that this prefix and suffix need not exist if aj is mortal, or |φn(aj)|
is bounded.) Pick k such that φk(aj) = ε for e ≤ j ≤ d. Then by con-
struction, the first ` letters of φn(aj) are the same as the first ` letters of
φn+c−b(aj) for 1 ≤ j ≤ d and n ≥ b + k.

Write
φ(aj) = ai1,j · · · aimj ,j ,

for 1 ≤ j ≤ d. Then

φn+1(aj) = φn(ai1,j) · · ·φn(aimj ,j).

Looking at both sides and counting occurrences of w, we see

|φn+1(aj)|w = |φn(ai1)|w + · · · |φn(aimj
)|w + C(j, n),

where C(j, n) counts the number of occurrences of w that “overlap” at least
two words of the form φn(ai,j). By the above remarks, we have C(j, n) =
C(j, n + c− b) for n ≥ b + k. Let

(6) Gj,w(n) = |φn(aj)|w − |φn−c+b(aj)|w.

Then we obtain the vector equation: G1,w(n + 1)
...

Gd,w(n + 1)

 = M(φ)

 G1,w(n)
...

Gd,w(n)


for n ≥ b + k. It follows from Lemma 2.3 that there are polynomials
Q1, . . . , Qd such that

Gj,w(n) = Qj(n)αn + O(βn).

We note that if α = 1, then by the remarks at the end of Section 2, we can
ignore the O(βn) term and by telescoping we see that

|φn(aj)|w =

b(n−b−k)/(c−b)c∑
k=0

Qj(n− k(c + b))

 ,

which is asymptotic to some polynomial qj(n). If α > 1, then we can pick
β > 1. Then

|φn(aj)|w =

b(n−b−k)/(c−b)c∑
k=0

Qj(n− k(c + b))

αn + O(βn),

which is again asymptotic to qj(n)αn for some polynomial qj(n). �

We note that we do not say anything about the error term. We could get
a stronger error term, however, by replacing φ by a suitable iterate.
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5. Estimates

In this section we prove Theorem 1.1. To this end we need the following
estimates.

Estimate 1. Let a and b be integers with b > a > 2. Then

log(b)− log(a) ≤
b−1∑
n=a

1/n ≤ log(b− 1)− log(a− 1).

Proof. This is a straightforward consequence of the fact that the function
1/x is decreasing on [1,∞), using upper and lower Riemann sums. �

Estimate 2. Let a, b, c be positive real numbers with b > a and let F (x) =
log(x + c)− log(x). Then

|F (b)− F (a)| ≤ (b− a)c/a2.

Proof. This is an easy consequence of the Mean Value Theorem. �

Lemma 5.1. Let Σ = {a1, . . . , ad} be a finite alphabet and let φ : Σ∗ → Σ∗

be a strongly Perron-Frobenius morphism prolongable on a1. Then

Bm,w(n) ≤
|φn+m+1(a1)|−1∑
j=|φn+m(a1)|

sw(j)/j ≤ t(m)|w|/|φn+m(a1)|+ Am,w(n)

for m,n ≥ 1.

Proof. Write φ(a1) = a1x and φm(x) = ai1 · · · ait(m)
. Then

(7) φm+n(x) = φn(ai1) · · ·φn(ait(m)
).

Using the notation of Section 3, we have

|φn+m+1(a1)|−1∑
j=|φn+m(a1)|

sw(j)/j =
t(m)∑
j=1

hj+1,m(n)−1∑
k=hj,m(n)

sw(k)/k.

By assumption, there are exactly |φn(aij )|w occurrences of the word w in
φn(aij ). This accounts for all occurrences of w in φm+n(x) except for those
which intersect at least two words of the form φn(aik) that appear in the
right-hand side of equation (7). Since there are t(m) such words, this leaves
at most

t(m)|w|
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unaccounted for occurrences of w. Therefore, we see that

t(m)|w|/|φn+m(a1)|+
t(m)∑
j=1

hj,m(n+1)+|φn(aij
)|w−1∑

k=hj,m(n)

1/k

≥
t(m)∑
j=1

hj+1,m(n)−1∑
k=hj,m(n)

sw(k)/k

≥
t(m)∑
j=1

hj+1,m(n)−1∑
k=hj+1,m(n)−|φn(aij

)|w

1/k.

We now use the estimates from Remark 1 to obtain:
t(m)∑
j=1

hj+1,m(n)−1∑
k=hj+1,m(n)−|φn(aij

)|w

1/k

≥
t(m)∑
j=1

log(hj+1,m(n))− log(hj+1,m(n)− |φn(aij )|w)

= Bm,w(n).

Similarly,

t(m)∑
j=1

hj,m(n)+|φn(aij
)|w−1∑

k=hj,m(n)

1/k

≤
t(m)∑
j=1

log(hj,m(n) + |φn(aij )|w − 1)− log(hj,m(n)− 1)

= Am,w(n).

The result follows. �

Lemma 5.2. Let Σ = {a1, . . . , ad} be a finite alphabet and let φ : Σ∗ → Σ∗

be a strongly Perron-Frobenius morphism prolongable on a1. Let m be a
natural number and w ∈ Σ∗, then

lim
n→∞

Am,w(n)

and
lim

n→∞
Bm,w(n)

exist and are finite.
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Proof. Fix m and write φ(a1) = a1x and φm(x) = ai1 · · · ait(m)
. Consider

Am,w(n). Since t(m) is fixed it is sufficient to show that

log(hj+1,m(n))− log(hj+1,m(n)− |φn(aij )|w)

and

log(hj,m(n + 1) + |φn(aij )|w − 1)− log(hj,m(n + 1)− 1)

tend to a finite limit for each j. By the remarks immediately following
Proposition 4.1 and by Proposition 4.2, both hj+1,m(n) and hj+1,m(n) −
|φn(aij )|w can be expressed in the form p(n)αn(1+o(1)), for suitable poly-
nomials p(x), where α is a Perron-Frobenius eigenvalue of M(φ). Thus

log
(
hj+1,m(n)/(hj+1,m(n)− |φn(aij )|w

)
= log p(n)/q(n) + o(1),

for some polynomials p and q. We note that p and q are nonzero and satisfy
p(n) ≥ q(n) for sufficiently large n, since

hj+1 ≥ hj+1,m(n)− |φn(aij )|w ≥ h0(n) ≥ |φn+m(a1)|,

and |φn(a1)| is asymptotic to Cnkαn for some positive constant C by Propo-
sition 4.1.

We note that if p and q have the same degree then the limit exists and
is finite, so the only way a problem can arise is if the degree of p is strictly
greater than the degree of q. But if this occurs the limit must be infinite,
and by construction we have

log(hj+1,m(n))− log(hj+1,m(n)− |φn(aij )|w) ≤
|φn+m+1(a1)|∑
j=|φn+m(a1)|

1/j → log α,

and so the limsup cannot exceed α. A similar argument works for Bm,w(n).
The result follows. �

Lemma 5.3. Let Σ = {a1, . . . , ad} be a finite alphabet and let φ : Σ∗ → Σ∗

be a strongly Perron-Frobenius morphism prolongable on a1. Then there is a
positive constant K and a natural number k such that for all m sufficiently
large,

lim sup
n→∞

|Am,w(n)−Bm,w(n)| ≤
{

Kmkα−m/2 if α > 1
0 if α = 1.
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Proof. Using Estimate 2, we have

Am,w(n)−Bm,w(n)

=
t(m)∑
j=1

(
log(hj+1,m(n))− log(hj+1,m(n)− |φn(aij )|w

− log(hj,m(n + 1) + |φn(aij )|w + log(hj,m(n + 1))
)

≤
t(m)∑
j=1

|hj+1,m(n)− hj,m(n)− |φn(aij )|w|||φn(aij )|w|/hj,m(n)2

≤
t(m)∑
j=1

|hj+1,m(n)/hj,m(n)− 1|2

≤
t(m)∑
j=1

∣∣∣|φn(aij )|/hj,m(n)
∣∣∣2 .

We now divide the proof into cases.

CASE I : α > 1.
It is no loss of generality to assume that for each i ≤ d, there is some

number m such that ai appears as a letter in φm(a1), otherwise we can just
delete the letter ai from Σ. That is,

(8) For each i, there exists ei such that φei(a1) has an occurrence of ai.

Thus we may assume that there exist natural numbers e1, . . . , ed such that

|φn(aj)| ≥ |φn−ej (a1)|

for all applicable n; furthermore, hj,m(n) ≥ h0,m(n) = |φn+m(a1)|. Pick
e ≥ e1, . . . , ed. By Proposition 4.1 there exist positive constants C0 and C1

and a natural number k such that

C0n
kαn ≤ |φn(a1)| ≤ C1n

kαn

for all sufficiently large n. Hence

|Am,w(n)−Bm,w(n)| ≤ t(m)|φn+e(a1)|2/|φn+m(a1)|2

≤ t(m)

(
C1(n + e)kαn+k

C0(n + m)kαn+m

)2

for all n sufficiently large, Thus

|Am,w(n)−Bm,w(n)| ≤ t(m)C2
1C−2

0 α−2m+e
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for n sufficiently large. Since t(m) ≤ |φm(a1)| ≤ C1m
kαm for m sufficiently

large, we see that

|Am,w(n)−Bm,w(n)| ≤ C3
1C−2

0 mkα−m+e

whenever m and n are both sufficiently large. The result follows. �

CASE II : α = 1. In this case, note that

|φn(aij )| ≤ hj+1,m(n)− hj,m(n) ≤ |φn+m+1(a1)| − |φn+m(a1)|

and so

|φn(aij )|/hj,m(n) ≤ |φn+m+1(a1)|/|φn+m(a1)| − 1 ≤ K/(n + m)

as n → ∞ for some positive constant K, since |φn(a1)| is a polynomial in
n. Thus

t(m)∑
j=1

∣∣∣|φn(aij )|/hj,m(n)
∣∣∣2 ≤ Kt(m)/(n + m)2.

Since t(m) = O(mk), the result follows. �

We are almost ready to prove Theorem 1.1. We first make a simple
remark.

Remark 2. Let Σ and ∆ be two finite alphabets and let f : Σ → ∆. Suppose
w is a pure morphic word on Σ such that the logarithmic frequency of every
subword exists. Then the logarithmic frequency of every subword of f(w)
exists.

This is a consequence of the fact that if x is a subword of f(w) then
f−1(x) is a finite collection of subwords of w and the logarithmic frequency
of x in f(w) is simply the sum of the logarithmic frequencies of the subwords
in f−1(x).

Proof of Theorem 1.1: By Remark 2, we may assume that our morphic
sequence is pure. Let Σ = {a1, . . . , ad} be a finite alphabet and let φ be a
morphism from Σ∗ to itself that is prolongable on a1. By Remark 1, we can
assume that φ is strongly Perron-Frobenius by replacing it with a suitable
iterate. We let α denote the Perron-Frobenius eigenvalue of the incidence
matrix of φ. By a result of Saari [7, Theorem 3.8], the ordinary frequency
of all words exists when α = 1, and hence we may assume α > 1.

Write φ(a1) = a1x with x ∈ Σ∗. Let m be a natural number and write

φm(x) = ai1ai2 · · · ait(m)
.

We note that the word

φn+m(x) = φn(ai1) · · ·φn(ait(m)
)
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has length
t(m)∑
j=1

|φn(aij )|.

Since for fixed m, t(m)|w|/|φn+m(a1)| → 0 as n → ∞, we see by Lemma
5.1 that∣∣∣∣∣∣lim sup

n→∞

t(m)∑
j=1

hj+1,m(n)−1∑
k=hj,m(n)

sw(k)/k − lim inf
n→∞

t(m)∑
j=1

hj+1,m(n)−1∑
k=hj,m(n)

sw(k)/k

∣∣∣∣∣∣
≤
∣∣∣∣lim sup

n→∞
Am,w(n)− lim inf

n→∞
Bm,w(n)

∣∣∣∣
for all m. By Lemmas 5.2 and 5.3, limn→∞ Am,w(n) and limn→∞ Bm,w(n)
exist, and

lim
m→∞

lim
n→∞

|Am,w(n)−Bm,w(n)| = 0.

Thus we see that the limit

lim
m→∞

lim
n→∞

t(m)∑
j=1

hj+1,m(n)−1∑
k=hj,m(n)

sw(k)/k

exists. But this is the same as saying

lim
m→∞

lim
n→∞

∑
|φn+m(a1)|≤j≤|φn+m+1(a1)|

sw(j)/j

exists, which implies

lim
n→∞

∑
|φn(a1)|≤j≤|φn+1(a1)|

sw(j)/j

exists. We let γ denote this limit. We claim that the logarithmic frequency
of the subword w in the pure morphic sequence s is γ/ log(α). Let ε > 0
and pick N > 0 such that

(9)

∣∣∣∣∣∣
|φn+1(a1)|∑

j=|φn(a1)|+1

sw(j)/j − γ

∣∣∣∣∣∣ < ε

for all n ≥ N . Let M be a natural number that is greater than N . Then
for |φM (a1)| ≤ x < |φM+1(a1)|, we use Proposition 4.1 to infer that there
are positive constants C0 and C1 such that

(10) C0n
kαn ≤ |φn(a1)| ≤ C1n

kαn
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for n sufficiently large. We next obtain the estimate
1

log x

∑
j≤x

sw(j)/j

≤ 1
log x

( |φN (a1)|∑
i=1

1/i +
M∑

i=N

|φi+1(a1)|∑
j=|φi(a1)|+1

sw(j)/j

)

≤ 1
log x

(
log(|φN (a1)|) + 1 + (M −N + 1)(γ + ε)

)
,

where we use Estimate 1 to estimate the first sum and equation (9) for the
second. Using this expression and equation (10) to estimate log x, we see

1
log x

∑
j≤x

sw(j)/j

≤ log(|φN (a1)|) + 1 + (M −N + 1)(γ + ε)
M log α + log(C0) + k log M

→ γ + ε

log α

as M →∞. Similarly,

lim inf
x→∞

1
log x

∑
j≤x

sw(j)/j ≥ (γ − ε)/ log(α).

The result follows. �
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