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Unit indices and cohomology for biquadratic
extensions of imaginary quadratic fields

par Marcin MAZUR et Stephen V. ULLOM

Résumé. Nous étudions, en tant que module galoisien, le groupe
des unités des extensions biquadratiques de corps de nombres
L/M . Le 2-rang du premier groupe de cohomologie des unités de
L/M est calculé pour M quelconque. Pour M quadratique imagi-
naire, nous déterminons la plupart des cas (incluant le cas L/M
non ramifiée) où l’indice [V : V1V2V3] prend sa valeur maximale 8,
avec V les unités modulo la torsion de L et Vi les unités modulo
la torsion d’un des trois sous-corps quadratiques de L/M .

Abstract. We investigate as Galois module the unit group of
biquadratic extensions L/M of number fields. The 2-rank of the
first cohomology group of units of L/M is computed for general
M . For M imaginary quadratic we determine a large portion of the
cases (including all unramified L/M) where the index [V : V1V2V3]
takes its maximum value 8, where V are units mod torsion of L
and Vi are units mod torsion of one of the 3 quadratic subfields
of L/M .

1. Introduction

This is the first of a series of papers in which we intend to investigate
the Galois module structure of units in biquadratic extensions of imaginary
quadratic fields. In our earlier work [6] we obtained fairly satisfactory infor-
mation on the Galois module structure of units modulo torsion in a totally
real biquadratic extension of Q and we hope to get similar results when the
base field is an imaginary quadratic field. This is the only case besides Q
where there are no units of infinite order in the base field. One substantial
difference though is that the base has now non-trivial class group which
has influence on the structure of units.

Manuscrit reçu le 31 janvier 2007.
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Let M be an imaginary quadratic field and let L be a biquadratic exten-
sion of M , so Γ = Gal(L/M) is the Klein four group . Let V be the group of
units modulo torsion of L and let Vi, i = 1, 2, 3, be the units modulo torsion
of the three quadratic subfields of L/M . Note that each Vi is a Γ-module
and as an abstract group is free abelian of rank 1. It is easy to see that
the index Q = [V : V1V2V3] is a divisor of 8. Moreover, if M = Q, then
the index can not be 8. This paper grew out of our attempt to prove the
same for imaginary quadratic base M . It turns out that it is false and Q
can be 8. One of the goals of this work is to describe the extensions L/M
for which the index is 8. We do not have a full classification of such fields
but we can describe a large portion of them which includes all unramified
extensions L/M (and we show that in any L/M with Q = 8 only primes
over 2 can ramify). Note that if Q = 8 then V and V1×V2×V3 are isomor-
phic Γ-modules. In particular, V is a Galois module of type I, using the
terminology of [6].

A substantial part of this paper is a consequence of our effort to un-
derstand the arithmetic significance of the equality Q = 8. This led us to
the cohomological calculations presented in section 2, which we believe are
of independent interest. As a consequence we compute the 2-rank of the
first cohomology group of units for biquadratic extensions L/M with an
arbitrary number field M as a base. In section 4 we show that our results
provide a more conceptual approach to the main calculation performed in
[5] in order to prove Kuroda’s class number formula for biquadratic exten-
sions L/M that relates the class number of L to the class numbers of M
and the 3 intermediate subfields of L/M .

2. H1

In this section we use the following notation:
• Γ = {1, σ1, σ2, σ3} is the Klein four-group;
• W is a Γ-module;
• Wi = W σi , i = 1, 2, 3;
• N = W1 + W2 + W3;
• N = (1 + σ3)W1 ∩ (1 + σ3)W2 ∩ (1 + σ1)W3;
• K = WΓ ∩ (1− σ3)W1 ∩ (1− σ3)W2 ∩ (1− σ1)W3.

Furthermore, for an abelian group A we denote by A[2] the kernel of mul-
tiplication by 2 on A.

Note that WΓ = Wi∩Wj for any i 6= j, 2WΓ ⊆ N ⊆ WΓ, and K ⊆ WΓ[2].
From now on we assume that the following is true for at least two indices
i ∈ {1, 2, 3} :

if m ∈ Wi and 2m ∈ WΓ then m ∈ Wj + Wk. (∗)

(here {i, j, k} = {1, 2, 3}).
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The main result of this section is the following theorem.

Theorem 1. Suppose that W satisfies the condition (∗) for at least two
indices i ∈ {1, 2, 3}. There is an exact sequence:

0 −→ WΓ[2]/K −→ H1(W1)×H1(W2)×H1(W3)

−→ H1(N) −→ N/2WΓ −→ 0,

where H1(Wi) = H1(Γ/Γi,Wi) for i = 1, 2, 3 and H1(N) = H1(Γ, N).
Furthermore, H1(N) = H1(N)[2].

Proof. Without any loss of generality we may (and will) assume that (∗)
holds for i = 1, 2. Let

Z = Z(W ) = Z1(Γ,W ) = {f : Γ −→ W : f(στ) = f(σ) + σf(τ)}
be the group of 1-cocycles. For any f ∈ Z we have f(1) = 0. If zi =
f(σi) then the condition that f is a 1-cocycle is equivalent to the following
relations among z1, z2, z3:

zk = zi + σizj = σjzi + zj , (1 + σi)zi = 0

for any permutation i, j, k of 1, 2, 3. Thus the group of 1-cocycles is isomor-
phic to the group of ordered pairs (z1, z2) of elements of W which satisfy
the following relations:

(1 + σ1)z1 = 0 = (1 + σ2)z2; z1 + σ1z2 = σ2z1 + z2. (1)

The group B = B(W ) = B1(Γ,W ) of 1-coboundaries corresponds to the
subgroup of pairs (z1, z2) such that zi = (σi − 1)z for some z ∈ W and
i = 1, 2.

We analyze now the groups Z = Z(N), B = B(N) and H1(N) =
H1(Γ, N) = Z/B. Consider a 1-cocycle (z1, z2) in Z. We may write z1 =
n1 + n2 + n3, with ni ∈ Wi. We have

0 = (1 + σ1)(n1 + n2 + n3) = 2n1 + (1 + σ1)n2 + (1 + σ1)n3.

Since (1 + σ1)ni ∈ WΓ for i = 2, 3 and (∗) holds for i = 1, we see that
n1 ∈ W2 + W3. Thus we may write z1 = m2 + m3, where m2 ∈ W2 and
m3 ∈ W3. Similarly, there are m

′
1 ∈ W1, m

′
3 ∈ W3 such that z2 = m

′
1 + m

′
3.

The last relation of (1) is equivalent to m3 + σ1m
′
3 = σ2m3 + m

′
3. Note

that σ1 and σ2 act the same on W3 so we have σi(m3−m
′
3) = m3−m

′
3 for

i = 1, 2. This means that m3 −m
′
3 = b ∈ WΓ. Setting m1 = m

′
1 − b we see

that
z1 = m2 + m3, z2 = m1 + m3

for some mi ∈ Wi. The relations (1) are equivalent to

(1 + σ3)m1 = (1 + σ3)m2 = −(1 + σ1)m3. (2)

This leads us to the group N = (1 + σ3)W1 ∩ (1 + σ3)W2 ∩ (1 + σ1)W3.



186 Marcin Mazur, Stephen V. Ullom

Let X be the subgroup of W1 × W2 × W3 which consists of triples
(m1,m2,m3) which satisfy condition (2). Our discussion above can be
summarized as follows: the map Φ : (m1,m2,m3) 7→ (z1, z2) given by
z1 = m2 + m3, z2 = m1 + m3 is a surjective homomorphism from X onto
Z. In order to gain a better understanding of X note that there is a short
exact sequence:

0 −→ Z1 × Z2 × Z3 −→ X −→ N −→ 0, (3)

where
Zi = {n ∈ Wi : (1 + σj)n = 0} = Z1({1, σj},Wi)

and the map X −→ N sends (m1,m2,m3) to (1 + σ3)m1.
We want now to see which elements of X are mapped by Φ into B.

Suppose that n = n1 + n2 + n3 ∈ N (where ni ∈ Wi) satisfies

m2 + m3 = (σ1 − 1)n, m1 + m3 = (σ2 − 1)n,

where (m1,m2,m3) ∈ X. This is equivalent to

m1 + (1− σ3)n1 = m2 + (1− σ3)n2 = (σ1 − 1)n3 −m3 = w,

where w ∈ WΓ. In other words, if Φ(m1,m2,m3) ∈ B, then there exist
w ∈ WΓ and ni ∈ Wi such that

m1 = w + (σ3 − 1)n1, m2 = w + (σ3 − 1)n2, m3 = −w + (σ1 − 1)n3.

Conversely, if mi are given by the above formulas then (m1,m2,m3) ∈ X
and Φ(m1,m2,m3) ∈ B. We can summarize this as follows. For i ∈ {1, 2, 3}
choose j 6= i and define

Bi = {m ∈ Wi : m = (σj − 1)n for some n ∈ Wi} = B1({1, σj},Wi),

and let D = {(w,w,−w) : w ∈ WΓ}. Then the preimage of B under Φ
is equal to Y = B1 × B2 × B3 + D. Note that D ∩ Z1 × Z2 × Z3 = D[2],
where D[2] is the kernel of multiplication by 2 on D. The exact sequence
(3) restricted to Y is

0 −→ B1 ×B2 ×B3 + D[2] −→ Y −→ 2WΓ −→ 0,

Thus we get an exact sequence

0 −→ Z1 × Z2 × Z3/(B1 ×B2 ×B3 + D[2]) −→ X/Y −→ N/2WΓ −→ 0

which can be written as

0 −→ D[2]/(B1 ×B2 ×B3 ∩D[2]) −→ Z1 × Z2 × Z3/B1 ×B2 ×B3

−→ X/Y −→ N/2WΓ −→ 0,
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or equivalently

0 −→ D[2]/C −→ H1(W1)×H1(W2)×H1(W3)

−→ H1(N) −→ N/2WΓ −→ 0,

where H1(Wi) = H1(Γ/{1, σi},Wi) = Zi/Bi and C = B1 × B2 × B3 ∩
D[2]. Recall now that D is naturally isomorphic to WΓ via WΓ 3 w 7→
(w,w,−w) ∈ D. Under this identification C = B1 ×B2 ×B3 ∩D[2] corre-
sponds to K = WΓ ∩ (1− σ3)W1 ∩ (1− σ3)W2 ∩ (1− σ1)W3. Thus we get
the exact sequence claimed in the statement of the theorem.

In order to prove that 2H1(N) = 0 consider a 1−cocycle f represented by
z1 = m2 +m3 and z2 = m1 +m3. Note that 2z1 = (1−σ1)z1 +(1+σ1)z1 =
(1 − σ1)(m1 + m2 + m3) and similarly 2z2 = (1 − σ2)z2 + (1 + σ2)z2 =
(1− σ2)(m1 + m2 + m3). It follows that 2f is a coboundary. �

Corollary 1. Suppose that in addition to the assumptions of Theorem 1
we assume that W is a finitely generated abelian group. Then

|H1(N)| = |H1(W1)||H1(W2)||H1(W3)|[N : 2WΓ]/[WΓ[2] : K].

�

Corollary 2. Suppose that W is a Γ-module which satisfies the following
condition for at least two indices i ∈ {1, 2, 3} :

if m ∈ Wi and 2m ∈ WΓ then m ∈ WΓ. (∗∗)
Then K = 0 and we have the following exact sequence:

0 −→ WΓ[2] −→ H1(W1)×H1(W2)×H1(W3)

−→ H1(N) −→ N/2WΓ −→ 0.

Proof. Note that the condition (∗∗) for i implies (∗) for the same i. Thus in
order to justify Corollary 2 we only need to show that K = 0. If w ∈ K then
w = (σi−1)ni for some ni ∈ Wi. It follows that 2ni = (1+σi)ni−w ∈ WΓ.
If i is such that (∗∗) holds for it then ni ∈ WΓ and consequently w = 0. �

Usually we are interested in H1(W ) rather than just H1(N). The exact
sequence of cohomology applied to

0 −→ N −→ W −→ W/N −→ 0

yields the exact sequence

0 −→ NΓ −→ WΓ −→ (W/N)Γ −→ H1(N) −→ H1(W ) −→ H1(W/N).

Note that W/N is an elementary abelian 2-group with trivial Γ action.
Furthermore, since WΓ ⊆ N , the map WΓ −→ (W/N)Γ is trivial. Thus we
have the exact sequence

0 −→ W/N −→ H1(N) −→ H1(W ) −→ H1(W/N).
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The following observation is quite useful

Theorem 2. Suppose that W has the following property :

if m ∈ W and 2m ∈ WΓ then m ∈ N. (∗ ∗ ∗)
Then every element of order 2 in H1(W ) belongs to the image of H1(N).

Proof. Let f be a cocycle representing an element of order 2 in H1(W ).
We need to show that the values of f are in N . There is m ∈ W such that
2f(σ) = (σ − 1)m for σ ∈ Γ. Note that

m = (m + f(σ1)) + (m + f(σ2))− σ1(m + f(σ3)).

Indeed, the right hand side is 2m−σ1(m)+ f(σ1)+ f(σ2)−σ1f(σ3). Since
σ1(m) = 2f(σ1) + m and f(σ2) = f(σ1) + σ1f(σ3), the claim follows.
Observe now that

σi(m + f(σi)) = σi(m) + σi(f(σi)) = [2f(σi) + m]− f(σi) = m + f(σi)

and therefore m+ f(σi) ∈ Wi. Thus we may write m = m1 +m2 +m3 with
mi ∈ Wi. Thus 2f(σi) = (1 + σi)(mj + mk) + 2(mj + mk), i.e.

2[f(σi)− (mj + mk)] = (1 + σi)(mj + mk) ∈ WΓ.

By our assumption about W we get f(σi)− (mj + mk) ∈ N and therefore
f(σi) ∈ N . �

Corollary 3. Suppose that W satisfies (∗ ∗ ∗) and also (∗) for at least two
indices i ∈ {1, 2, 3}. Then we have an exact sequence

0 −→ W/N −→ H1(N) −→ H1(W )[2] −→ 0.

Proof. By Theorem 1 we have 2H1(N) = 0 so the image of H1(N) in
H1(W ) is contained in H1(W )[2]. On the other hand, Theorem 2 says that
H1(W )[2] is contained in the image of H1(N). Thus the image of H1(N)
in H1(W ) is equal to H1(W )[2]. �

3. Units

We apply now the results of section 2 to units in biquadratic extensions
L/M of number fields. Thus Γ = {1, σ1, σ2, σ3} = Gal(L/M). We use the
following notation:

• UL, UM are the units of L and M respectively;
• Ui is the group of units of Lσi ;
• Ni is the norm map from Lσi to M ;

• v =

{
1, if L ⊆ M(

√
UM );

0, otherwise
• q = [UL : U1U2U3];
• t∞ is the number of infinite places of M which are complexified in

L;



Unit indices and cohomology 189

• r is the Z-rank of UM ;
• λ is the Z-rank of UL.

The main result of this section is the following theorem.

Theorem 3. Let L/M be a biquadratic extension of number fields. Then

|H1(U)[2]| = 23r+v+5−2t∞ [N1(U1) ∩N2(U2) ∩N3(U3) : U2
M ]

q
∏3

i=1[Ni(Ui) : U2
M ]

.

Furthermore, λ− r = 3r + 3− 2t∞.

Proof. We apply the results of section 2 to W = UL. Clearly Wi = Ui,
WΓ = UM , and WΓ[2] = {±1}. Note that UL satisfies the condition (∗ ∗ ∗).
In fact, if u ∈ UL and u2 ∈ UM then u belongs to one of the quadratic
subfields of L/M . Furthermore, UL satisfies (∗) for at least two indices
i. Indeed, if L cannot be obtained from M by adjoining square roots of
two units of M then Ui/UM has no 2-torsion for at least two indices i.
It follows that in this case UL satisfies (∗∗) (hence also (∗)) for at least
two indices i. Also, by Corollary 2, K = 0 and therefore [WΓ : K] = 2. If
L = M(

√
u1,

√
u2) for some units u1, u2 ∈ UM then we may assume that√

ui ∈ Ui for i = 1, 2 and setting u3 = u1u2 we see that
√

u3 ∈ U3. If w ∈ Ui

is a unit such that w2 ∈ UM then w
√

uj ∈ Uk and w = (√uj)−1(w√uj) ∈
UjUk. It follows that (∗) holds in this case for all i. Furthermore, we have
−1 =

√
ui/σj(

√
ui) ∈ (1− σj)Wi. Thus −1 ∈ K and [WΓ : K] = 1. We see

that [WΓ : K] = 21−v, where

v =

{
1, if L ⊆ M(

√
UM );

0, otherwise

By Corollary 1 we get

|H1(N)| = |H1(U1)||H1(U2)||H1(U3)|[N : U2
M ]/21−v,

where N = U1U2U3 and N = N1(U1) ∩ N2(U2) ∩ N3(U3). Here Ni stands
for the norm map from Lσi to M . Let q = [UL : U1U2U3] = [W : N ]. We
have |H1(N)| = q|H1(UL)[2]| by Corollary 3. Thus

|H1(UL)[2]| = |H1(U1)||H1(U2)||H1(U3)|[N : U2
M ]/q21−v. (4)

Now we need to recall a formula for H1(U), where U is the group of units
in a quadratic extension K/M . The group U has a subgroup of finite index
V such that

V ⊕ Z = ⊕vIndG
Gv

(Z)
where v runs over infinite places of M and G is the Galois group of K/M .
Since G is cyclic, we can use the calculus of Herbrand indexes. Note that
h(W ) = h(U) and h(Z) = 2. Thus h(U) = h(W ⊕ Z)/2. If Gv is trivial,
then H i(G, IndG

Gv
(Z)) = H i(1, Z) = 0 and h(IndG

Gv
(Z)) = 1. If Gv =

G, which happens iff v is a real place which is complexified in K, then
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h(IndG
Gv

(Z)) = 2. Let t∞ be the number of such places. We see that h(W ⊕
Z) = 2t∞ and therefore h(U) = 2t∞−1. Recall that Ĥ0(U) = UM/NK/M (U)
so

|Ĥ0(U)| = |UM/U2
M |/[NK/M (U) : U2

M ] = 2r+1/[NK/M (U) : U2
M ],

where r is the Z-rank of UM . Thus

|H1(U)| = |Ĥ0(U)|/h(U) = 2r+2−t∞/[NK/M (U) : U2
M ].

Using this formula for each of the groups Ui we see that (4) can be written
as follows:

|H1(U)[2]| = 23(r+2)−t∞,1−t∞,2−t∞,3
[N1(U1) ∩N2(U2) ∩N3(U3) : U2

M ]
21−vq

∏3
i=1[Ni(Ui) : U2

M ]
,

where t∞,i is the number of real places of M which are complexified in
Lσi (such places are often called ramified, but there are many benefits
of considering them as unramified with residue degree 2; hence we try to
avoid this terminology). Since every real place of M which complexifies in
L complexifies in exactly two quadratic subextensions of L/M , we have
t∞,1 + t∞,2 + t∞,3 = 2t∞, where t∞ is the number of real places of M which
are complexified in L. Thus

|H1(U)[2]| = 23r+v+5−2t∞ [N1(U1) ∩N2(U2) ∩N3(U3) : U2
M ]

q
∏3

i=1[Ni(Ui) : U2
M ]

.

The equality λ − r = 3r + 3 − 2t∞ is a straightforward consequence of
Dirichlet’s Unit Theorem. �

Lemma 1. Let x be a generator of the 2-torsion of the group of roots of
unity µL. Then H1(Γ, µL) = H1(Γ, µL)[2] and

|H1(Γ, µL)[2]| =
{

4 if x ∈ Ui for some i and σj(x) = x±1 for j 6= i;
2 in all other cases.

Proof. Let µ be the 2-torsion of µL. Then H1(Γ, µL) = H1(Γ, µ). We will
apply the results of section 2 to W = µ. Since the subgroups of µ are
linearly ordered by inclusion, we may assume that µ1 ⊇ µ2 ⊇ µ3, where
µi = µσi . It follows that µ2 = µ3 = µΓ. Consequently, µ satisfies (∗∗) for
at least two indices i ∈ {1, 2, 3} and also satisfies (∗ ∗ ∗). Furthermore, we
have N = (µΓ)2 and K = 1 (we use the notation established in section 2).
Thus Theorem 1 (applied to N = µ1) yields

0 −→ ±1 −→ H1(µ1)×H1(µ2)×H1(µ3) −→ H1(Γ, µ1) −→ 0,

where H1(µi) = H1(Γ/{1, σi}, µi). Note that |H1(µi)| = 2 for i = 2, 3
since µi is a trivial Γ-module. Since Herbrand index of a finite module is
1, we have |H1(µ1)| = |Ĥ0(µ1)|. The generator of Γ/{1, σ1} acts on µ1 as
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automorphism of order ≤ 2, hence it is one of x 7→ x, x 7→ x−1, x 7→ x2n±1,
where |µ1| = 2n+1. It is now straightforward to see that

|H1(µ1)| =
{

2 if σ2(x) = x±1;
1 in all other cases.

Thus

|H1(Γ, µ1)| =
{

4 if σ2(x) = x±1;
2 in all other cases.

If µ 6= µ1 then |µ| ≥ 8 and Γ acts faithfully on µ. Thus σi acts on µ via
x 7→ x1+2n for some i, and then µ2 is fixed by this automorphism but
µ2 * µΓ. It follows that i = 1, µ1 = µ2 and σ2 acts on µ1 as x 7→ x−1. Thus
|H1(Γ, µ1)| = 4. By Corollary 3 we get |H1(Γ, µ)[2]| = 2. Finally, it is easy
to check that every 1-cocycle in Z(Γ, µ) has values in µ2 so H1(Γ, µ)[2] =
H1(Γ, µ). �

Let us now consider more carefully a special case when M is an imaginary
quadratic field. In this case we have r = v = t∞ = 0 and Theorem 3 gives
the following equality

|H1(U)[2]| = 25 [N1(U1) ∩N2(U2) ∩N3(U3) : U2
M ]

q
∏3

i=1[Ni(Ui) : U2
M ]

.

Note that the groups Ui have Z-rank 1, so we may speak about funda-
mental units of Ui (i.e. generators of Ui modulo torsion). Clearly [Ni(Ui) :
U2

M ] ≤ 2 and equality holds iff either
√
−1 6∈ M and Ui has fundamental

unit of norm −1 or M = Q[
√
−1] and Ui has fundamental unit of norm√

−1. We have the following

Lemma 2. Let M be an imaginary quadratic field. Then (UL/µL)Γ = 1
and H1(Γ, µL) embeds into H1(Γ, UL).

Proof. Let VL = UL/µL. If a ∈ V Γ
L then a is represented by a unit a ∈ UL

such that σi(u) = εiu for some εi ∈ µL, i = 1, 2, 3. Thus uk ∈ UM for k
divisible by the orders of εi. Since UM ⊆ µL, we have u ∈ µL and a = 1.
This shows that V Γ

L = 1.
From the long exact sequence of cohomology applied to the exact se-

quence 0 −→ µL −→ UL −→ VL −→ 0 we immediately get the embedding
of H1(Γ, µL) into H1(Γ, UL). �

Theorem 4. Let M be an imaginary quadratic field. Then q ≤ 8 and
the equality holds iff H1(Γ, UL)[2] = H1(Γ, µL) and one of the following
conditions is satisfied:

(1)
√
−1 6∈ L and each Li has a fundamental unit of norm 1.

(2)
√
−1 ∈ L,

√
−1 6∈ M ,

√
2 6∈ L and each Li has a fundamental unit

of norm 1.
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(3)
√
−1 ∈ M ,

√
−2 6∈ L and each Li has a fundamental unit of norm

1.
(4)

√
−2 ∈ M ,

√
−1 6∈ L and each Li has a fundamental unit of norm

1.
(5) L = M(

√
−1,

√
2) and each of M(

√
−1), M(

√
−2) has fundamental

units of norm 1.
(6) Li = Q(

√
−1,

√
−2) for some i and each of Lj, Lk has fundamental

unit of norm 1.
Proof. We use the equality

|H1(U)[2]| = 25 [N1(U1) ∩N2(U2) ∩N3(U3) : U2
M ]

q
∏3

i=1[Ni(Ui) : U2
M ]

.

In cases (1)-(4) we have |H1(Γ, µL)[2]| = 4 by Lemma 1. Thus
|H1(Γ, UL)[2]| ≥ 4 by Lemma 2. If |H1(Γ, UL)[2]| ≥ 8 then q ≤
4 [N1(U1)∩N2(U2)∩N3(U3):U2

M ]∏3

i=1
[Ni(Ui):U2

M ]
≤ 4. If |H1(Γ, UL)[2]| = 4 then q = 8 iff

[N1(U1)∩N2(U2)∩N3(U3):U2
M ]∏3

i=1
[Ni(Ui):U2

M ]
= 1, which happens iff each Li has a fundamental

unit of norm 1.
In cases (5) and (6) Lemma 1 yields |H1(Γ, µL)[2]| = 2. Thus

|H1(Γ, UL)[2]| ≥ 2 by Lemma 2. In case (5) the field Li = M(
√

2) has
a unit of norm −1 and therefore [Ni(Ui) : U2

M ] = 2. Similarly, in case (6)
the field Li = Q(

√
−1,

√
−2) has a unit of norm

√
−1 (namely the primitive

8-th root of unity) and therefore [Ni(Ui) : U2
M ] = 2. Thus

q ≤ 16
1

|H1(Γ, UL)[2]|
[N1(U1) ∩N2(U2) ∩N3(U3) : U2

M ]∏
j 6=i[Nj(Uj) : U2

M ]

and the equality q = 8 holds iff |H1(Γ, UL)[2]| = 2 (i.e. H1(Γ, UL)[2] =
H1(Γ, µL)) and both Lj , Lk have fundamental units of norm 1. �

In an unpublished manuscript Lemmermeyer speculates about the upper
bound for q in biquadratic extensions. For imaginary quadratic M his upper
bound is 8, which agrees with the upper bound we obtained. He suggests
though that if L/M is unramified then the equality is obtained only if the
2-part of the class group of M is of type (2, 2) and L has odd class number.
The example following Proposition 7 in section 5 shows that this is false.

In our investigation of the Galois module structure of VL we are interested
not in the index q but rather in the index Q = [UL : µLU1U2U3]. When
M is an imaginary quadratic field then q = Q except perhaps when L =
M(

√
−1,

√
2). In this case we have in fact q = 2Q as we will now show. It

amounts to proving that w = u1u2u3 is not possible, where w is a primitive
8-th root of 1 and ui ∈ Ui. Since V = V1×V2×V3, the equality w = u1u2u3

implies that the image of ui in Vi is trivial for i = 1, 2, 3, i.e. each ui is
a root of unity. Since w has order 8, at least one of u1, u2, u3 would have
order divisible by 8, which is not possible.
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4. Capitulation

The equality of Theorem 3 resembles some formulas in the paper [5] by
Lemmermeyer, which are key to his proof of Kuroda’s class number formula
for biquadratic extensions. We show now that indeed his computations
are essentially equivalent to Theorem 3, except that his paper contains a
small but confusing mistake (it does not however affect the validity of his
results). Our results provide therefore a more conceptual explanation of
Lemmermeyer’s computation.

We start with some general observations. For a number field L we denote
by IL, PL the groups of fractional ideals and fractional principal ideals
respectively. Suppose that L/M is a Galois extension with Galois group
Γ. Let H = Ker(ClM −→ ClL) be the capitulation kernel and set B =
Im(ClM −→ ClL). By A we denote the subgroup of ClL consisting of
strictly ambiguous ideal classes. Thus we have the following exact sequence

0 −→ PΓ
L −→ IΓ

L −→ A −→ 0.

Applying the snake lemma to the following diagram

0 // PM
//

��

IM
//

��

ClM //

��

0

0 // PΓ
L

// IΓ
L

// A // 0

(note that the left two vertical arrows are injective) we get the exact se-
quence

0 −→ H −→ PΓ
L/PM −→ IΓ

L/IM −→ A/B −→ 0.

Recall now that applying the long exact sequence of cohomology to the
exact sequence of Γ-modules

0 −→ UL −→ L× −→ PL −→ 0

and using Hilbert’s Theorem 90 we get an exact sequence

0 −→ UM −→ M× −→ PΓ
L −→ H1(UL) −→ 0

which allows us to identify PΓ
L/PM with H1(UL). Thus we have the follow-

ing exact sequence

0 −→ H −→ H1(UL) −→ IΓ
L/IM −→ A/B −→ 0. (�)

The group IΓ
L/IM is fairly easy to describe. It is a direct sum of cyclic

groups Z/e(p)Z indexed by prime ideals p of M which ramify in L, where
e(p) is the ramification index of p. Thus

|IΓ
L/IM | = 2s+t,

where t is the number of primes of M which ramify in L and s is the number
of primes of M which are totally ramified in L.
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Suppose now that Γ is the Klein four-group. A substantial part of Lem-
mermeyer’s paper is devoted to his formula (2.5) for the index [R : Rπ].
Here R is the group of fractional ideals of L of the form I1I2I3, where Ii

is the image of an ambiguous fractional ideal of Li. He defines Rπ as the
principal ideals of R but this is incorrect. It should be defined as those
principal fractional ideals of L whose square comes from a principal ideal
of M . This is in fact the group Lemmermeyer uses in his computations so
the mistake does not affect the validity of his results. Let R∗π be the group
of principal ideals in R. Let A∗ be the image of R in A, so [R : R∗π] = |A∗|.

From the point of view of the sequence (�), the image of R in IΓ
L/IM

coincides with (IΓ
L/IM )[2] and A∗/B is the image of (IΓ

L/IM )[2] in A/B.
Let H1(UL)∗ be the preimage of (IΓ

L/IM )[2] in H1(UL). Then we have an
exact sequence

0 −→ H −→ H1(UL)∗ −→ (IΓ
L/IM )[2] −→ A∗/B −→ 0

from which we get |A∗| = 2thM/|H1(UL)∗|. Under the surjection PΓ
L −→

H1(UL) the group R∗π is mapped onto H1(UL)∗ and Rπ is the preimage in
R∗π of H1(UL)[2]. Thus [R∗π : Rπ] = [H1(UL)∗ : H1(UL)[2]]. Consequently,

[R : Rπ] = |A∗|[R∗π : Rπ] = (2thM/|H1(UL)∗|)[H1(UL)∗ : H1(UL)[2]]

= 2thM/|H1(UL)[2]|

Thus Theorem 2 gives us a formula for [R : Rπ] which coincides with the
formula obtained by Lemmermeyer. It would be interesting to find a direct
relation of H1(UL)[2] to Kuroda’s class number formula.

5. The unit index

In this section we use the following notation.
• M = Q(

√
−A) is an imaginary quadratic field, where A is a positive,

square-free integer;
• L is a biquadratic extension of M ;
• U is the group of units of L and V = U/µL.
• Γ = {1, σ1, σ2, σ3} is the Galois group of L/M , Li is the fixed field

of σi;
• Ui is the group of units of Li; Vi = Ui/µLi .
• εi is a fundamental unit of Ui (i.e. a unit which generates Vi). We

may (and will) assume that the norm from Li to M of εi is a root of
unity of order a power of 2 (more precisely, it is one of 1,−1,

√
−1).

By Dirichlet’s Unit Theorem, the group V is a free abelian group of rank
3. In what follows, we use the same notation for units and their images in
V . The norm map for a finite extension F/K of fields is denoted by NF/K .

If u is a unit of L then we write u(i) for the norm NL/Li
u of u.
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Lemma 3. V 2 ⊆ V1V2V3.
Proof. Let u ∈ U . Note that u(1)u(2)u(3) = u2NL/Mu, i.e. u2 =
u(1)u(2)u(3)/NL/Mu. It follows that U/U1U2U3 is an elementary abelian
2-group and so is V/V1V2V3. Since V is a free abelian group of rank 3, we
have [V : V1V2V3] ≤ 8. �

We call a prime ideal odd if it contains an odd prime number.
Lemma 4. Suppose there is a unit u ∈ U of infinite order such that v =
u2 ∈ U1 but u 6∈ U1. Then the sets of odd primes of M which ramify in L2

and L3 are disjoint and their union is the set of odd primes which ramify
in L1.
Proof. We have L = L1(

√
v). From the theory of ramification in Kummer

extensions (see [1], section I.6) odd primes of L1 are unramified in L/L1.
Thus if an odd prime of M ramifies in L/M then it must ramify in L1/M
and its ramification degree in L/M is 2. Thus the inertia subgroup of this
prime has order 2 and it is unramified in the fixed field of the inertia, which
must be one of L2, L3. Finally, since L = L2L3, every prime which ramifies
in L/M must ramify in one of L2/M or L3/M . �

Proposition 1. Suppose that ViVj ⊆ V 2 for some i 6= j ∈ {1, 2, 3}. Then
no odd prime of M ramifies in Lk/M , where {i, j, k} = {1, 2, 3}.
Proof. We may assume that i = 1, j = 2. Our assumptions imply that there
are units w1, w2 ∈ U and torsion units χ1, χ2 ∈ U such that w2

i = χiεi for
i = 1, 2. We may assume that the orders of χ1, χ2 are powers of 2. Clearly
wi 6∈ Ui but wi raised to sufficiently large power of 2 belongs to Ui. Thus
there exist units u1, u2 such that u2

i ∈ Ui but ui 6∈ Ui, i = 1, 2. By Lemma
4, odd primes which ramify in L3 are disjoint from primes which ramify in
Li and ramify in L3−i for i = 1, 2, which is a clear contradiction. �

Proposition 2. If [V : V1V2V3] = 8 then no odd prime of M ramifies in
L/M .
Proof. The equality [V : V1V2V3] = 8 is equivalent to V 2 = V1V2V3. Propo-
sition 2 is therefore a straightforward consequence of Proposition 1. �

Proposition 3. Suppose that either
√
−1 6∈ L or A > 2. Any unit u ∈ U

such that NL/M (u) has odd order is of the form u = ±
√

rε̂m1
1 ε̂m2

2 ε̂m3
3 , where

ε̂i =

{
εi if the norm of εi is 1,

ε2
i otherwise

and r is a root of unity.
Any u ∈ U such that NL/M (u) has even order is of the form u =

±
√

rεm1
1 εm2

2 εm3
3 , where r is a root of unity and 1 ≡ m1 ≡ m2 ≡

m3 (mod 2) .
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Proof. Our assumption guarantees that the norms from Li to M and from
L to M of any torsion unit have odd order. We may assume that NL/M (u) =
±1. We may write u(i) = εai

i ti, where ti is a torsion unit in Ui of norm 1.
Note that

±1 = NL/M (u) = NLj/M (u(j)) = NLj/M (tj)NLj/M (εj)aj = NLj/M (εj)aj .

Suppose that NL/M (u) = 1. Then 1 = NLj/M (εj)aj . In particular, aj is even
if εj has norm −1. Thus u2 = u2NL/M (u) = u(1)u(2)u(3) = rε̂m1

1 ε̂m2
2 ε̂m3

3 .
If NL/M (u) = −1 then NLj/M (εj)aj = −1, so εj has norm -1 and aj is

odd. Again u2 = u2NL/M (u) = −u(1)u(2)u(3) = rεm1
1 εm2

2 εm3
3 , where all mi

are odd. �

As a straightforward corollary we get

Corollary 4. If either
√
−1 6∈ L or A > 2 and if εi is a square in V then

the norm of εi is 1. �

Before we proceed any further let us recall some useful facts about units
in real quadratic fields which we combine in the following lemma (see [6]
for more details).

Lemma 5. Let K be a real quadratic field with a fundamental unit of norm
1 and let σ be the non-trivial automorphism of K. There exists unique
positive integer δ = δ(K) that is a square-free divisor of the discriminant
d of K such that for some (or, equivalently, any ) unit ε > 0 in K which
is not a square in K we have δ = aσ(a) for some integer a of K satisfying
ε = σ(a)/a. We have K(

√
±ε) = K(

√
±δ).

For a square free divisor m > 0 of d the following are equivalent:
(1) m = δ;
(2) m is a norm of an integer in K;
(3) −n is a norm of an integer in K, where n 6= m is the unique square-

free positive divisor of d such that nm is a square in K.

We will need later the following immediate corollary

Corollary 5. Let K be a real quadratic field with fundamental unit of
norm 1 and discriminant d. Denote by m the odd part of d. Then δ = 2 iff
2 ramifies in K and 2 is a norm of an integer of K, and δ ∈ {m, 2m} iff 2
ramifies in K and −2 is a norm of an integer of K.

Lemma 6. Let K = M(i) = Q(
√
−A, i) and let K+ = Q(

√
A). Denote by

v a fundamental unit of K+. The unit index of K/K+ is 2 iff 2 ramifies
in K+ and either 2 or −2 is a norm of an integer in K+. Moreover, if the
unit index is 2, then the norm of v is 1, u =

√
iv is a fundamental unit of

K and NK/M (u) = 1 iff 2 is a norm of an integer in K+.
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Proof. Let {1, τ1, τ2, τ3} be the Galois group of K/Q, where τ1 fixes M , τ2

fixes K+. If A = 2 then it is known that the unit index is 1, so we assume
that A > 2.

Suppose first that 2 ramifies in K+ and ±2 = xτ1(x) is a norm of an
integer x ∈ K+. Then (1+ i)/x is a unit of K, so the unit index must be 2.

Suppose now that the unit index is 2. Thus u2 = rv for some unit u
of K and a root of unity r in K. Since i ∈ K (and K does not contain a
primitive eight root of 1), we may assume that either r = 1 or r = i. Thus
NK/M (u)2 = NK/M (r)NK/M (v) = NK+/Q(v) = ±1. Since i 6∈ M , we have
NK/M (u) = ±1 and therefore NK+/Q(v) = 1. Thus we may assume that v

is totally positive. The equality u2 = v would imply that u is totally real,
hence K = K+(u) would be real, which is false. Therefore u2 = iv. Recall
now that, since v has norm 1, there is a square-free positive divisor δ = δ(v)
of the discriminant of K+ and an integer x of K+ such that v = τ1(x)/x
and xτ1(x) = δ. It follows that

iv = (1 + i)τ1(x)/(1− i)x = (1 + i)(1− i)xτ1(x)/[(1− i)x]2 = 2δ/[(1− i)x]2

and consequently u = ±
√

2δ/(1− i)x. Thus
√

2δ is in K and hence in K+.
If δ is odd then A = 2δ and y =

√
A/x is an integer in K+ of norm −2.

Also, 2 ramifies in K+ and the norm NK/L(u) = uτ1(u) = −1.
If δ is even then either 2A = δ or δ = 2. In the former case, y = 2

√
A/x

is an integer in K+ of norm −2, 2 ramifies in K+ and the norm NK/L(u) =
uτ1(u) = −1. In the latter case, 2 ramifies in K+ and it is the norm of x.
Also, NK/L(u) = uτ1(u) = 1. This completes the proof. �

In the remaining part of this section we are going to investigate bi-
quadratic extensions L/M with unit index Q = 8. By Proposition 2, only
primes over 2 can ramify in L/M . If L/M is unramified, then by genus
theory L is contained in the genus field of M . In particular, L is abelian
over Q and L = ML+ for unique real biquadratic field L+. The following
proposition describes another instance when Q = 8 implies that L = ML+

for a real biquadratic field L+.

Proposition 4. Suppose that L contains a real quadratic subfield Q(
√

d)
of discriminant d. If [V : V1V2V3] = 8 then L = ML+ for some totally real
biquadratic extension L+/Q unless A > 2 and one of the following is true:

(1) Q(
√

d) = Q(
√

2A), there are integers a, b such that 2 = a2 − Bb2

where B is the square-free part of 2A and L = Q(w), where w is a
root of P (x) = x8 + 2(a2 − 1)x4 + 1;

(2) d = 4A, there are integers a, b such that 2 = a2−Ab2 and L = Q(w),
where w is a root of P (x) = x8 − 2ax6 + 2a2x4 − 2ax2 + 1.
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Proof. Suppose first that K = Q(i,
√

2) ⊆ L. If M 6⊂ K then L = M(i,
√

2),
which is not possible since we have noticed at the end of section 3 that
Q = q/2 ≤ 4 in this case. If M ⊂ K then K = Lj for some j. Since
u = 1−

√
2 is a unit of K, either u or ζ8u is a square in L. Thus L is one

of the fields Q(ζ8,
√

u), Q(ζ8,
√

ζ8u) = Q(ζ8,
4
√

2). As proved in [2][Example
2.14.], these are the only two dihedral extensions of Q ramified only at 2,
and each has class number 1. Kuroda’s class number formula implies that
Q = 4 for each of these fields, a contradiction.

It follows that K is not a subfield of L. Since L/M is unramified at odd
primes by Proposition 2, we see that every odd prime divisor of d must
divide A. Thus A > 2. By Corollary 4, a fundamental unit ε > 0 of Q(

√
d)

has norm 1. Let δ(Q(
√

d)) = δ. The assumption Q = 8 implies that L

contains one of
√

ε,
√
−ε,

√
iε.

If
√

ε ∈ L then Q(
√

δ) is a real quadratic subfield of L different from
Q(
√

d) and we may take L+ = Q(
√

d,
√

δ).
If
√
−ε ∈ L then

√
−δ is in L and therefore Q(

√
Aδ) is a real quadratic

subfield of L. Thus we may take L+ = Q(
√

d,
√

Aδ) unless Adδ is a perfect
square. Suppose then that Adδ is a perfect square. If p is an odd prime
divisor of δ then p divides d hence also A, and Adδ cannot be a perfect
square. Thus δ = 2 and Q(

√
d) = Q(

√
2A). Let B be the square-free part

of 2A. The equality δ = 2 implies that 2 = a2 − b2B for some integers a, b
such that ε = (a + b

√
B)/(a − b

√
B). Since

√
−2 ∈ L, we have i 6∈ L and√

−ε =
√
−2/(a − b

√
B) ∈ M(

√
−2) = L1. Again from Q = 8 we see that

L contains either w =
√√

−ε or w =
√
−
√
−ε. It is easy to see that the

minimal polynomial (over Q) of both ±
√
−ε is equal to x4 +2(a2−1)x2 +1

and the minimal polynomial of w is x8 + 2(a2 − 1)x4 + 1. Thus L satisfies
all the conditions of (1).

Finally, if
√

iε ∈ L then i ∈ L. If Q(
√

d) 6= Q(
√

A) then we may take
L+ = Q(

√
d,
√

A). Suppose then that Q(
√

d) = Q(
√

A). Since L1 = M(i)
has fundamental unit of norm 1 by Corollary 4, Lemma 6 applied to M(i)
tells us that either ε is a fundamental unit of L1 or δ = 2. Let a + b

√
A be

an integer in Q(
√

A) such that δ = a2−Ab2 and ε = (a+ b
√

A)/(a− b
√

A).
Note that η =

√
iε =

√
2δ/(1−i)(a−b

√
A). Thus

√
2δ ∈ L. If

√
2δ 6∈ Q(

√
A)

then L+ = Q(
√

A,
√

2δ). Otherwise
√

iε ∈ L1 so ε is not a fundamental unit
of L1 and δ = 2. Thus 2 is ramified in Q(

√
A) and therefore a, b ∈ Z. The

equality Q = 8 implies now that either √η ∈ L or
√
−iη ∈ L. Note that

η and −iη are conjugate over Q and their minimal polynomial over Q is
Q(x) = x4−2ax3+2a2x2−2ax+1. Thus both w =

√
η and w =

√
−iη have

minimal polynomial over Q equal to P (x) = x8 − 2ax6 + 2a2x4 − 2ax2 + 1
and L = Q(w). In other words, L satisfies all the requirements of (2). �
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The exceptions in Proposition 4 are not merely due to the method
of its proof. In fact, using PARI and Kuroda’s class number formula we
checked that Q = 8 for a = 6, 7, 14, 15, 22, 26, 30, 33, 34, 39, 42, 47, 49, 50, 54,
62, 63, 70, 71, 78, 86, 89, 90, 98 in (1) and for a = 6, 8, 14, 16, 22, 26, 30, 40, 42,
50, 54, 56, 62, 70, 72, 78, 86, 90, 96, 98 in (2). Note that in (2) we have no
example of Q = 8 when a is odd (tested for 3 ≤ a ≤ 1000). It is rea-
sonable to conjecture that Q 6= 8 for L as in (2) and any odd a, but
at present we are not able to prove this. Perhaps it is worth mention-
ing that the normal closure F of each of the fields L defined in (1) and
(2) is of degree 16 over Q and the Galois group of F/Q is isomorphic to
the direct product of a cyclic group of order 2 and the dihedral group
of order 8. In fact, in (1) the field F is the compositum of Q(

√
−1) and

Q(
√

2,
√

2 + a
√

2,
√

2− a
√

2) and F is the compositum of Q(
√
−1) and

Q
(√

−A,
√

(2 + a) + b
√
−A,

√
(2 + a)− b

√
−A

)
in case (2).

It follows that there are many biquadratic fields L/M which have index
Q = 8 but L/Q is not abelian. We are not able to say much about such
fields. Thus we are going to focus our attention on extensions L/M of the
form L = ML+ with index Q = 8. More precisely, we are going to look for
conditions on A and L+ which guarantee the equality [V : V1V2V3] = 8. We
will use the following notation:

• L+ is a real biquadratic extension of Q and L = L+M ;
• L+

i , i = 1, 2, 3 are the quadratic subfields of L+. In particular,
Li = L+

i M .
• U+ and V + are the units of L+ and the units of L+ modulo torsion

respectively.
• U+

i is the group of units of L+
i ; V +

i = U+
i modulo torsion.

• Γ = {1, σ1, σ2, σ3} can be canonically identified with the Galois
group of L+/Q and then L+

i is the fixed field of σi.
• di is the discriminant of L+

i , D is the discriminant of M .
• εi is the unique fundamental unit of L+

i which is larger than 1 (we
consider L as a subfield of C).

It is known that [V : V +] ≤ 2 (see [3]). Recall that [V + : V +
1 V +

2 V +
3 ] ≤ 4.

It follows that [V : V1V2V3] = 8 iff [V : V +] = 2, [V + : V +
1 V +

2 V +
3 ] = 4, and

[Vi : V +
i ] = 1 for i = 1, 2, 3. In particular, we may choose for a fundamental

unit of Ui a fundamental unit of U+
i (if the unit index is 8). If εi has norm

1 then we set δi(L+
i ) = δi.

Since we must have [V + : V +
1 V +

2 V +
3 ] = 4, there are three possibilities

(after renumbering if necessary; see [6]):

Type I:
√

ε1,
√

ε2, ε3 is a basis of V +;

Type II:
√

ε1ε2, ε2,
√

ε3 is a basis of V +;
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Type III:
√

ε1ε2,
√

ε2ε3,
√

ε3ε1 is a basis of V +.
We will consider each type separately.

Proposition 5. Suppose that the units of L+ are of type I. Then there is
no imaginary quadratic field M such that the unit index of ML+/M is 8.

Proof. Suppose that L = ML+ has unit index 8 (and A > 1). The units ε1,
ε2 have norm 1. As in the proof of Proposition 1, no odd prime can ramify
in L+

3 . Thus L+
3 = Q(

√
2) and there is an odd integer m > 1 such that

L+
1 = Q(

√
2m) and L+

2 = Q(
√

m) (possibly after renumbering the fields).
Since ε3 = 1+

√
2 has norm −1, we must have i ∈ L and A = 2 by Corollary

4. This however implies that there is an odd prime which ramifies in L2/M ,
which contradicts Proposition 2.

The above argument did not treat the case of M = Q(i). Recall that δ1,
δ2 are squares in L+. There is no proper and larger than 1 divisor of m
which is a square in L+. Thus we must have m ≡ −1 (mod 4) , d2 = 4m,
δ2 = 2. Since 2 = δ2 is a norm of an integer of L+

2 and 2 ramifies in L+
2 ,

Lemma 3 tells us that [V2 : V +
2 ] = 2 so [V : V1V2V3] cannot be 8. �

It remains to consider the cases when the units of L+ are of type II or
III. Note that in both cases the units ε1, ε2, ε3 have norm 1. In particular,√

2 6∈ L+ since a fundamental unit of Q(
√

2) has norm −1. If M is an
imaginary quadratic field such that the unit index of L+M = L/M is 8
then for each i ∈ {1, 2, 3} there is a torsion unit ρ of order a power of 2 and
such that √ρεi ∈ U . Since

√
2 6∈ L and L is not real, the only possibility

is that ρ = −1 or ρ = i. Thus for each i ∈ {1, 2, 3}, either
√
−εi or

√
iεi

belongs to L.

Lemma 7. Let L/Q be an abelian extension of type (2, 2, 2). There is at
most one imaginary quadratic subfield M of L such that the unit index for
L/M is 8.

Proof. Suppose that M1, M2 are two such subfields. Thus odd primes of
Mi are unramified in L/Mi by Proposition 2. It follows that the sets of
odd primes ramified in Mi/Q are the same for i = 1, 2. Thus no odd prime
ramifies in the real quadratic subfield of M1M2, i.e.

√
2 ∈ L, which we have

seen is not possible. �

Proposition 6. Suppose that the units of L+ are of type II. There exists
unique imaginary quadratic subfield M of L+(i) such that the unit index of
ML+/M is 8. Also there exists a unique imaginary quadratic field M such
that i 6∈ ML+ and the unit index of ML+/M is 8.

Proof. We first show that there are at most two imaginary quadratic fields
M such that the unit index of ML+/M is 8. Set L = ML+. We have seen
that εi is a fundamental unit of Ui. Recall L = L+(

√
−ε1) or L = L+(

√
iε1)
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and, by Lemma 7, for each of these two choices of L there is at most one
imaginary quadratic field M such that L/M has unit index 8. Note also that
i ∈ L = L+(

√
iε1) and i 6∈ L+(

√
−ε1) (otherwise we would have

√
ε1 ∈ L+).

To complete the proof it suffices now to find two imaginary quadratic
fields M for which the unit index of ML+/M is 8. We will show that
M = Q(

√
−d1d2) and M = Q(

√
−2d1d2) both satisfy this requirement.

Since
√

ε1ε2 ∈ L+, the proof of Lemma 2 shows that no odd prime can
ramify in both L+

1 and L+
2 , i.e. (d1, d2) is a power of 2. We may write

di = 2siai (i = 1, 2), where ai are odd and (a1, a2) = 1. Thus d3 = 2sa1a2

for some s. Since
√

2 6∈ L+, both a1 > 1 and a2 > 1. Let A be either a1a2

or 2a1a2. Set M = Q(
√
−A) and L = ML+. In order to prove that the unit

index of L/M is 8 we need to verify that [Vi : V +
i ] = 1 for i = 1, 2, 3 and

[V : V +] = 2.
By Proposition 1 of [4] the equality [Vi : V +

i ] = 1 holds iff neither A/δi

nor Adi/δi is a square of a rational number. Since the odd part of A is a1a2

and the odd part of δi divides ai for i = 1, 2 we easily see that [Vi : V +
i ] = 1

for i = 1, 2. Recall now that d3 = 2sa1a2 and δ3 is a square-free proper non-
trivial divisor of d3. Since Ad3 = 2t(a1a2)2 and δ3 is square-free, Ad3/δ3

can be a square only if δ3 = 2. This however is not possible since
√

δ3 ∈ L+

and
√

2 6∈ L+. Since A and δ3 are square-free, A/δ3 is a square iff A = δ3.
Because

√
δ3 ∈ L+ and

√
A 6∈ L+

i for i = 1, 2, we would have
√

δ3 ∈ L+
3

and this implies that ε3 is a square in L+
3 , which is false. Thus we conclude

that [V3 : V +
3 ] = 1.

In order to show that [V : V +] = 2 it suffices to show that either
√
−ε1

or
√

iε1 is in L. This is equivalent to showing that either
√
−δ1 or

√
iδ1

is in L. Since δ1δ2 is a square in L+, it differs by a square of a rational
number from one of 1, d1, d2, d3. Note that all these integers have square-
free odd parts. Thus the odd part of δ1 must be either 1 or a1. In other
words, δ1 ∈ {2, a1, 2a1}. Note that L+

3 = Q(
√

A) or L+
3 = Q(

√
2A) (since

d3 and A have the same odd parts) . Thus L contains either i or
√
−2. If

δ1 = 2 then
√
−δ1 ∈ L if

√
−2 ∈ L and

√
iδ1 = 1+ i ∈ L if i ∈ L. If δ1 = a1

then L+
1 = Q(

√
2a1) and therefore

√
−δ1 =

√
−2
√

2a1 ∈ L if
√
−2 ∈ L and√

iδ1 = (1 + i)
√

2a1/4 ∈ L if i ∈ L. Finally, if δ1 = 2a1 then L+
1 = Q(

√
a1)

hence
√
−δ1 =

√
−2
√

a1 ∈ L if
√
−2 ∈ L and

√
iδ1 = (1 + i)

√
a1/4 ∈ L if

i ∈ L. �

Proposition 7. Suppose that the units of L+ are of type III and that
(di, dj) has an odd prime divisor for any i, j ∈ {1, 2, 3}. If for some (all)
i ∈ {1, 2, 3} the prime 2 ramifies in L+

i and either 2 or −2 is a norm of
an integer in L+

i then there is no imaginary quadratic field M such that
the unit index of ML+/M is 8. Otherwise there is exactly one imaginary
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quadratic field M such that the unit index of L = ML+/M is 8. This L
does not contain i.

Proof. Recall that the units ε1, ε2, ε3 have norm 1 and all three integers
δiδj are squares in L+. There are three pairwise coprime odd integers a, b, c
such that d1 = 2e1ab, d2 = 2e2bc, d3 = 2e3ac. Since (di, dj) has an odd
prime divisor, none of a, b, c is 1.

We claim that the odd part of δ1 must be equal to one of 1, a, b, ab. To
see that suppose that p is a common prime divisor of a and δ1. Assume that
there is a prime divisor q of a which does not divide δ1. Since neither p nor
q divides δ2, we see that the square-free part of δ1δ2 is divisible by p and
not by q. Thus in K = Q(

√
δ1δ2) the prime p ramifies and the prime q is not

ramified. But K is one of the fields L+
i and in each of these fields either both

p and q ramify or both are unramified. The contradiction shows that no
such q exists, i.e. that either a|δ1 or (a, δ1) = 1. The same conclusion holds
for b and since (a, b) = 1 our claim follows. Of course, the same argument
shows that the odd part of δ2 belongs to {1, b, c, bc} and the odd part of δ3

belongs to {1, a, c, ac}.
Suppose that L = ML+ has unit index 8 for M = Q(

√
−A). Note that

abc|A by Proposition 2. If i ∈ L, then L = L+(i) and therefore A is the
square-free part of one of d1, d2, d3 or A = 1. However neither of these
numbers is divisible by abc, a contradiction. Thus i 6∈ L. It follows that√
−εi ∈ L for i = 1, 2, 3. Equivalently, L contains

√
−δi, i = 1, 2, 3. In

particular, L is uniquely determined by L+ and so is M by Lemma 7.
Suppose 2 ramifies in L+

1 and either 2 or −2 is a norm of an integer in L+
1 .

Thus δ1 ∈ {2, ab, 2ab} by Lemma 5. Since both
√

d1 and
√
−δ1 are in L,

we see that
√
−2 ∈ L (note that if δ1 = ab then d1 = 4ab and if δ1 = 2ab

then d1 = 8ab). Thus A is the square-free part of one of 2, 2d1, 2d2, 2d3,
which is not possible since none of these four numbers is divisible by abc.
The contradiction shows that either 2 is unramified in L+

1 or none of 2
and −2 is a norm of an integer in L+

1 . Same conclusion holds for L+
2 and

L+
3 . This proves the first part of the proposition.
In order to prove the second part suppose that either 2 is unramified in

L+
1 or none of 2, −2 is a norm of an integer of L+

1 . We have seen that there
is at most one imaginary quadratic field M such that L+M/M has unit
index 8. It suffices to find such a field M . By Lemma 5, the odd part of δ1

is neither 1 nor ab. Thus it is either a or b. Without any loss of generality
we may assume that the odd part of δ1 is a. Take for A the square-free
part of δ1d2. Then L = L+Q(

√
−A) contains

√
−δ1 =

√
−A/

√
d2, hence it

contains
√
−ε1. Thus [V : V +] = 2. In order to complete the proof we need

to show that [Vi : V +
i ] = 1 for i = 1, 2, 3. By Proposition 1 of [4] it amounts

to showing that neither Adi nor Adiδi is a square of a rational number.
This is straightforward since the odd part of A is abc. �
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Example. In [6] we proved that given t ≥ 2 there exist infinitely many
sets of t + 1 primes p1, ..., pt, p

′
t such that p1 ≡ 2t − 1 (mod 4) , pi ≡

3 (mod 4) for i > 1, p
′
t ≡ 3 (mod 4) and the biquadratic field L+ =

Q(
√

p1...pt,
√

ptp
′
t ) has units of type III. Since 2 is unramified in L+/Q,

we see from the proof of Proposition 7 that for M = Q(
√
−p1...ptp

′
t ) the

unit index of ML+/M is 8. Since primes over 2 do not ramify in ML+/M ,
the extension ML+/M is unramified by Proposition 2. By genus theory,
the 2−rank of the class group of M is t. Thus we get a counterexample
to Lemmermeyer’s conjecture mentioned at the end of section 3. For an
explicit example, take t = 3, p1 = 5, p2 = 3, p3 = 19, p

′
3 = 31.

Proposition 8. Suppose the units of L+ are of type III and that (d2, d3)
has no odd prime divisors. If 2 ramifies in L+

1 and either 2 or −2 is a norm
of an integer in L+

1 then there is no imaginary quadratic field M such that
the unit index of ML+/M is 8. Otherwise, Q(

√
−d1) and Q(

√
−2d1) are

the only imaginary quadratic fields M such that the unit index of ML+/M
is 8.

Proof. There are coprime odd integers a, b such that d1 = 2e1ab, d2 = 2e2b,
d3 = 2e3a. All three integers δiδj are squares in L+. In particular, since δ2δ3

is a square in L+, the odd part of δ2 is in {1, b} and the odd part of δ3 is
in {1, a}. In other words, δ2 ∈ {2, b, 2b} and δ3 ∈ {2, a, 2a}. Note also that
the units ε1, ε2, ε3 have norm 1. Since fundamental units of Q(

√
2) have

norm −1, we have a > 1 and b > 1.
Suppose that M = Q(

√
−A) is such that the unit index of ML+/M is

8. Set L = ML+. By Proposition 2, if an odd prime ramifies in L/Q then
it ramifies in M/Q. Thus ab|A.

Suppose that
√
−1 ∈ L. Then

√
A ∈ L+ and therefore A is the square-

free part of d1. Thus M = Q(
√
−d1). Note that L1 = Q(

√
−A,

√
−1) and

L+
1 = Q(

√
A). Since [V1 : V +

1 ] = 1, Lemma 6 implies that either 2 does not
ramify in L+

1 or neither 2 nor −2 is a norm of an integer in L+
1 .

If
√
−1 6∈ L then either

√
ε2 ∈ L or

√
−ε2 ∈ L. The former case is

not possible, since
√

ε2 is totally real and ε2 is not a square in L+. Thus√
−ε2 ∈ L, which is equivalent to

√
−δ2 ∈ L. Recall now that δ2 ∈ {2, b, 2b}.

Furthermore, if δ2 = b then d2 = 8b and if δ2 = 2b then d2 = 4b. In any case,
we have

√
−2 ∈ L. Thus L = L+(

√
−2) and therefore M = Q(

√
−2d1). We

claim furthermore that either 2 does not ramify in L+
1 or neither 2 nor −2

is a norm of an integer in L+
1 . In fact, suppose the contrary. Thus 2|d1. If 2

is a norm of an integer in L+
1 then δ1 = 2 by Lemma 5 and if −2 is a norm

of an integer in L+
1 then 2δ1 is a square in L+

1 , again by Lemma 5. In both
cases, Proposition 1 of [4] applied to the field F = L1 = Q(

√
d1,

√
−2d1)

implies that [V1 : V +
1 ] = 2, a contradiction.
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To complete the proof of Proposition 8 we must show that if either 2
does not ramify in L+

1 or neither 2 nor −2 is a norm of an integer in L+
1

and if M = Q(
√
−d1) or M = Q(

√
−2d1) then the unit index of L/M is 8,

where L = L+M .

Case 1. M = Q(
√
−d1).

We have [V1 : V +
1 ] = 1 by Lemma 6. Since neither d1/δi nor d1di/δi is a

square of a rational number for i = 2, 3, Proposition 1 of [4] implies that
[V2 : V +

2 ] = 1 = [V3 : V +
3 ]. Since δ2 ∈ {2, b, 2b}, Lemma 5 implies that 2

ramifies in L+
2 and ±2 is a norm of an integer in L+

2 . Thus
√

iε2 ∈ L+
2 (
√
−1)

by Lemma 6. It follows that [V : V +] = 2 and consequently [V : V1V2V3] =
8.

Case 2. M = Q(
√
−2d1).

If 2d1/δ1 is a square of a rational number then δ1 6= 2 and 2δ1 is a square
in L+

1 , so −2 is a norm of an integer in L+
1 by Lemma 5. If (2d1)d1/δ1 is a

square of a rational number then δ1 = 2 and 2 is a norm of an integer in
L+

1 by Lemma 5. Neither case is possible, so [V1 : V +
1 ] = 1 by Proposition

1 of [4]. Since neither 2d1/δi nor 2d1di/δi is a square of a rational number
for i = 2, 3, Proposition 1 of [4] implies that [V2 : V +

2 ] = 1 = [V3 : V +
3 ].

Recall that δ2 ∈ {2, b, 2b}. It follows that
√
−δ2 ∈ L, i.e.

√
−ε2 ∈ L. Thus

[V : V +] = 2. This proves that [V : V1V2V3] = 8. �
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