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On the slopes of the Us operator acting on
overconvergent modular forms

par L. J. P KILFORD

RESUME. Nous démontrons que les pentes de 'opérateur Us agis-
sant sur 5-adique formes modulaires surconvergentes de poids k
avec caractere de Dirichlet primitif x de conducteur 25 sont

(L8] o (b 228 v

Nous prouvons aussi que I’espace de forms parabolique de poids
k et caractére x a une base des formes propres pour les opérateurs
de Hecke T}, et Us définie sur Qs(+v/5,/3).

ABSTRACT. We show that the slopes of the Us operator acting on
5-adic overconvergent modular forms of weight k with primitive
Dirichlet character x of conductor 25 are given by either

RIS

depending on k and .

We also prove that the space of classical cusp forms of weight k&
and character x has a basis of eigenforms for the Hecke opera-
tors T, and Us which is defined over Qg,(\4/57 \/5)

1. Introduction

We first define the slope of a (normalized) cuspidal eigenform.

Definition 1. Let f be a mormalized cuspidal modular eigenform with
Fourier expansion at oo given by Y o>, anq™. The slope of f is defined
to be the 5-valuation of as viewed as an element of Cs; we normalize the
5-valuation of 5 to be 1.

As a consequence of the main result of this paper, we will prove the
following theorem about the slopes of classical modular forms. Let us set
up some notation.

Manuscrit regu le 9 février 2007.
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The cyclotomic polynomial ®9(x) factors over Qs into two factors, fi
and fo, such that

(1) fi=at+223 +422 + 324+ 1 mod 5,
(2) fo=at+323 +422 + 22+ 1 mod 5.

Let x be an odd primitive Dirichlet character of conductor 25 and let 7
be an odd primitive Dirichlet character of conductor 5.

Let k be a positive integer. We fix an embedding of the field of definition

of x into Q5(v/5,v/3). Then we have the following theorem which tells us
what the slopes of the eigenforms are:

Theorem 2. Using the preceding notation, the slopes of the Us operator
acting on Si(To(25), x7F~1) are

{i L%J (i€ N} if x(6) is a root of fi,
{i . L8Z;_4J RS N} if x(6) is a root of fo.

Because all of the slopes are distinct, we can also prove a result about
the field of definition of a basis of eigenforms for this space.

Corollary 3. Let k be a positive integer and let x be a primitive Dirichlet
character of conductor 25. Then if f is a normalized modular eigenform of
weight k and character x, its Fourier expansion is defined over Q5(\4/5, \@)

This gives some evidence towards Questions 4.3 and 4.4 of Buzzard [2];
these concern conjectural bounds on the degree of the field of definition of
certain modular forms over Q.

2. Previous work, and new directions

This paper uses methods introduced by Emerton in his PhD thesis [9],
which deals with the action of the Uy operator. It also uses methods devel-
oped by Smithline in his thesis [16] and applied by him in [17], which were
then also used in the author’s paper [11] and in the paper of the author
with Buzzard [4].

In [17], the following theorem is proved about 3-adic modular forms:

Theorem 4 (Smithline [17], Theorem 4.3). We order the slopes of Us by
size, beginning with the smallest.

The sum of the first x nonzero slopes of the Us operator acting on 3-adic
overconvergent modular forms of weight 0 is at least 3x(x —1)/2 4 2x, and
is exactly that if x is of the form (37 —1)/2 for some j.
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His thesis also shows that the sum of the first = slopes of the Us operator
acting on 5-adic overconvergent modular forms of weight 0 is at least 2.

In Buzzard-Kilford [4], the following theorem was proved about the
2-adic slopes of Uy acting on certain spaces of modular forms.

Theorem 5 (Buzzard-Kilford [4], Theorem B). Let k be an integer and
let x be a character of conductor 2" such that x(—1) = (—1)*.

If |5% - x(5) — 1|2 > 1/8, then the slopes of the overconvergent cuspidal
modular forms of weight k and character x are {t,2t,3t,...}, where t =
v(5% - x(5) — 1), and each slope occurs with multiplicity 1.

This paper will prove a 5-adic analogue of these results for the specific
level T'y(25). However, the slopes are no longer in one arithmetic progres-
sion, as they are in the previously studied cases. Instead, there are five
arithmetic progressions which interlace together; these all have a common
difference between terms (which is 2). (One could, of course, view the arith-
metic progression 1,2,3,... as being made up of the two arithmetic pro-
gressions 1,3,5,... and 2,4,6... but this point of view is only reasonable
after one has considered the action of Us on forms of level 25, where the
slopes form several arithmetic progressions).

In Buzzard-Calegari [3], the following theorem is proved, using similar
techniques to those in [16], [11] and [4]:

Theorem 6. The slopes of the Us operator acting on 2-adic overconvergent
modular forms of weight 0 are

{120 (O2) cnen).

where vy is the normalized 2-adic valuation.

We see that the slopes at weight 0 do not fall into the arithmetic pro-
gressions found in [11] and [4]; we note that it appears that the behaviour
of the slopes at the boundary of weight-space, which we consider in this
paper, is rather different to the behaviour of the slopes at the centre of
weight-space considered in [3].

In addition to the fact that the slopes do not lie in one arithmetic pro-
gression, there are some other interesting new features which appear when
we consider 5-adic overconvergent modular forms that do not appear for
2-adic or 3-adic overconvergent modular forms.

Firstly, there is a computational issue. In previous work (such as [4]
or [11]), the computations in MAGMA [1] could be carried out either over
the rational numbers or over the field Q,,. However, for p = 5 the calculation
must be carried out over Qs(v/5,v/3).

Secondly, and more importantly, there are now two different possibilities
for the slopes, which depend on which character is chosen. These two pos-
sibilities correspond to the two factors of the cyclotomic polynomial ®9y(x)
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over Qs. This is a departure from the situation in [4] and [11], where the
slopes are independent of choice of character.

Thirdly, part of the complexity in the calculations in [11] was the fact
that (in the notation of that paper) the modular function Us(2?*1) was
identically zero. This meant that the first “matrix of the Us operator”
that was defined had identically zero determinant, which meant that some
algebra had to be done to get a matrix to which Theorem 13 could be
applied to. In the current note, this does not happen because the matrix M
of the Us operator does not have any identically zero columns.

Finally, the strategy of Section 4 was chosen because the modular func-
tions involved were unusually simple, thus making the calculations more
tractable (the corresponding functions for (say) weight 2 were much less
pleasant).

3. Defining 5-adic overconvergent modular forms

We now present the definition of the 5-adic overconvergent modular
forms, first by defining overconvergent modular forms of weight 0, and then
by defining forms with weight and character in terms of the weight 0 forms
and a suitable Eisenstein series.

This section follows Section 3 of [11] in its layout and direction; more
details on the specific steps can be found there.

Following Katz [10], section 2.1, we recall that, for C' an elliptic curve
over an Fs-algebra R, there is a mod 5 modular form A(C) called the Hasse
invariant, which has g-expansion over F5 equal to 1.

We consider the Eisenstein series of weight 4 and tame level 1 defined
over Z, with g-expansion

o
Ey(q):=14240> | > d*]-q"
n=1 \0<d|n

We see that Ejy is a lifting of A(C') to characteristic 0, as the reduction of Ey
to characteristic 5 has the same g-expansion as A(C), and therefore Ey
mod 5 and A(C) are both modular forms of level 1 and weight 4 defined
over F5, with the same g-expansion. Note also that if C' is an elliptic curve
defined over Zs then the valuation vs(E4(C)) can be shown to be well-
defined.

It is interesting to note that one can use the same Eisenstein series, Ej,
in this part of the definition for 2-adic, 3-adic and 5-adic overconvergent
modular forms (as a lifting of the 4t ond and 15% power of the Hasse
invariant, respectively).

We now let m be a positive integer, and we recall that the modu-
lar curve Xo(p™) is defined to be the moduli space that parametrizes
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pairs (C, P), where C' is an elliptic curve and P is a subgroup of C of
order p™.

Using arguments exactly similar to those in [11], we define the affinoid
subdomain Zy(5™) of Xo(5™) to be the connected component containing
the cusp oo of the set of points ¢ = (C, P) in X(5™) which have vs(E4(t)) =
0; we note that vs(E4(t)) = 0 means either that the point ¢ corresponds to
an ordinary elliptic curve or that t is a cusp.

We now define strict affinoid neighbourhoods of Zy(5™).

Definition 7 (Coleman [7], Section B2). We think of Xo(5"™) as a rigid
space over Qs, and we let t € Xo(5™)(Q5) be a point, corresponding either
to an elliptic curve defined over a finite extension of Qs, or to a cusp. Let w
be a rational number, such that 0 < w < 52~™/6.

We define Zy(5™)(w) to be the connected component of the affinoid

{t S X0(5m) : 1)5(E4(t)) < w}
which contains the cusp oo.

Given this definition, we can now define 5-adic overconvergent modular
forms.

Definition 8 (Coleman, [6], page 397). Let w be a rational number, such
that 0 < w < 52°™/6. Let O be the structure sheaf of Zy(5™)(w). We
call sections of O on Zy(5™)(w) w-overconvergent 5-adic modular forms
of weight 0 and level I'y(5™). If a section f of O is a w-overconvergent
modular form, then we say that f is an overconvergent 5-adic modular
form.

Let K be a complete subfield of Cs, and define Zo(5™)(w)/k to be the
affinoid over K induced from Zy(5™)(w) by base change from Qs. The space

Mo(5™,w; K) := O(Zo(5™)(w) k)

of w-overconvergent modular forms of weight 0 and level T'o(5™) is a
K -Banach space.

We now let x be a primitive Dirichlet character of conductor 5™ and
let k be an integer such that x(—1) = (=1)*. Let Ej . be the normalized
FEisenstein series of weight k and character x with nonzero constant term.

The space of w-overconvergent 5-adic modular forms of weight k and
character x s given by

M (5™, w; K) = By, - Mo(5™, w; K).
This is a Banach space over K.

There are Hecke operators Us and T, (where p 1 5) acting on the space
of modular forms My, , (5", w; K); these are defined on the g-expansions
of the overconvergent modular forms in exactly the same way as they are
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defined on the g-expansions of classical modular forms. One defines T, for n
a natural number in the usual way.

Using results of Coleman, we have the following theorem about the inde-
pendence of the characteristic power series of Us acting on My, , (5™, w; K):

Theorem 9 (Coleman [7], Theorem B3.2). Let w be a real number such
that 0 < w < min(52~™/6,1/6), let k be an integer and let x be a character
such that x(—1) = (=1)F.

The characteristic polynomial of Us acting on w-overconvergent 5-adic
modular forms of weight k and character x is independent of the choice
of w.

We will now rewrite the definition of Zy(25)(w) in terms of a carefully
chosen modular function of level 25, in order to prove the following theorem:

Theorem 10. Let wyg = 1/12. The space of wg-overconvergent modular
forms of weight 0 and level 25, with coefficients in Qs(v/5), is a Tate algebra
in one variable over Qs(v/5).

Proof. We have given a valuation on the points ¢ of the rigid space Xo(5™),
based on the lifting of the Hasse invariant by the Eisenstein series E4. We
recall that the modular j-invariant is defined to be j := E$/A. Therefore,
we see that, if the elliptic curve corresponding to ¢ has good reduction,
then A(t) has valuation 0, and therefore that

ust) = vs(Ex(1) = 5 o5 ((BR)(0)) = 5 5 (5(0)

We now recall that the modular curve X (25) has genus 0. This means that
there is a modular function to5 which is a uniformizer on X (25):

by = D)
n(q*)
where 7 is the Dedekind n-function. We could write o5 as a rational function
in j directly, but as the resulting rational function is very complicated, we
will instead also work with the uniformizer ¢5 of X¢(5), defined as

%:<%%f

By explicit calculation, one can verify the following identities of modular

functions:
t2 4+ 250t5 + 3125)3
3) =B TIBN gy
5

We note also that

35
t35 + 5t35 + 15t3; + 25805 + 25

j(00) = t5(00) = ta5(00) = o0;
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this follows because the g-expansion of all of these functions begins ¢~ '+ - - .

Let D be an element of Cs such that 0 < vs(D) < 1/2. We see that,
if 0 < v5(j) < D, then vs(j) = vs(t5) (the valuation of ¢2 + 250t5 + 3125
is given by the valuation of #2) and that vs(t5) = v5(t25) (because the val-
uation of t3; + 5t35 + 15t3; + 25t95 + 25 is given by the valuation of ¢3;).
Therefore, for this range of D we have that vs(j) = vs(t25). Then, be-
cause t5(00) = to5(0c0) = oo, this means that the connected components
of Zy(5) and Zp(25) which contain the cusp oo of sufficiently small radius
are of the form vs(t5) < Dy and vs(te5) < Do, for some rational numbers D
and Dy with valuations between 0 and 1/2.

By considering the Newton polygons of the numerators and denominators
of the rational functions in (3), we see that if vs(tes) < 1/2, then vs(ta5) =
v5(t5) = v5(j). This means that we have shown that

Zp(25)(w) = {z € Xo(25) : vs(tes(x)) < 3w}, for 0 < w < 1/6.
Now, we choose w = 1/12, and therefore we obtain
Z0(25)(1/12) = {x € Xo(25) : wvs(tas(x)) < 1/4}.

Let us define W := v/5/ta5. We can rewrite the definition of Zy(25)(1/12)
again in terms of W to get

Z0(25)(1/12) = {& € X(25) : vs(W(2)) > 0}.

Finally, we recall that the rigid functions on the closed disc over Qs with
centre 0 and radius 1 are defined to be power series of the form

Z anz" 1 a, € Qs, a, — 0.
neN

Therefore, the space of 1/12-overconvergent modular forms of level I'y(25)
and weight 0 is

Qs (V5) (W),

which is what we wanted to show. O

We have written down this space of overconvergent modular forms as
an explicit Banach space. This means that we can write down its Banach
basis: the set {W, W2, W3, .. .} forms a Banach basis for the overconver-
gent modular forms of weight 0 and level I'g(25). This Banach basis is
composed of weight 0 modular functions — we want to be able to con-
sider the action of the Us operator on overconvergent modular forms with
non-zero weight k and character x (here, as elsewhere in this note, x has
conductor 25 and x(—1) = (—1)¥). Using an observation from the work of
Coleman [7], we will be able to move between weight 0 and weight k& and
character x via multiplication by a suitable quotient of modular forms.
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Let F' be an overconvergent modular form of weight k£ and character x
which has nonzero constant term, and let z be an overconvergent modu-
lar function of weight 0. In particular, we note that F' may have negative
weight. From the discussion in Coleman [7, page 450] we see that the pull-
back 05 of the Us operator acting on overconvergent modular forms of
weight k and character x to weight 0 is 1/F - Us(z - F).

Now by equation 3.3 of [8] we have that

(4) Us(z- V(F)) = Us(2) - F.

We therefore consider the modular form V' (F'), which has nonzero constant
term because F' does, and substitute V(F') into the formula for the pullback
of Us to weight zero, to obtain

Us(z-V(F)) = V) Us(2).

5 P
We can also use (4) to see that the pullback of Us acting on overconvergent
modular forms of weight k£ and character y is

(6) \JF - Us(z- F) = Us (ZVfF))

We now use equations (5) and (6) to define the twisted Us operator U.

Definition 11 (The twisted Us operator). Let k be an integer and let x be
an odd character of conductor 25. Let T be an odd character of conductor 5,
and let W be the overconvergent modular form /5/tas of level To(25) and
weight 0 that we defined above.

We define U to be the “weight k” twisted Us operator acting on the basis
(Wi Ef JV(E],)} by the formula:

k—1
7T . i Py ) Eyr
(7) UW?*) :=Us (W V(El,x)) (V(E1,7)> .

We note here that the operator U acts on overconvergent modular forms
of weight 0; we consider it because it has the same characteristic power
series as the standard Us operator acting on overconvergent modular forms
with nonzero weight and character. N

We can now consider the action of the operator U on these spaces of
overconvergent modular forms.
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Definition 12 (The matrix of the twisted Us operator). Let k be an integer
and let x be an odd character of conductor 25. Let T be a character of
conductor 5 such that x(—1) = (=1)k. We let W be the modular function
given in Definition 11.

Let M = (m; ;) be the infinite compact matriz of the twisted Us operator
acting on overconvergent modular forms of weight 1+k and character x-7*,
where m; j is defined to be the coefficient of W in the W -expansion of the
operator defined in equation (7).

Here we will make the observation that the entries of our matrix M
depend on x and 7.

We know that Us is a compact operator, so we can show that the trace,
determinant and characteristic power series of M are all well-defined. The
following result follows directly from the general result given as Proposi-
tion 7 of [15], on the characteristic power series of compact operators (Serre
uses the older term “completely continuous” for what we are calling “com-
pact”).

Theorem 13. (1) Let M, be an n X n matriz defined over a finite
extension of Qp. Let det(1 — tM,) = Y i, citt. Let M,, be the
matriz formed by the first m rows and columns of M,,.

Let s(i) be the formula for the i slope; in our specific case, this
will mean that either

s(i):Z- V?J ors(i):i' {SZ’;—ZLJ.

Assume that there exists a constant r € Q* such that
(a) For all positive integers m such that 1 < m < n, the valuation
of det(My,) is r- > s(7).
(b) The valuation of elements in column j is at least r - s(7).
Then we have that, for all positive integers m such that 1 < m <
n, vacm) =1 352 s(1).

(2) Let My be a compact infinite matriz (that is, the matriz of a com-
pact operator). If M,, is a series of finite matrices which tend
to My, then the finite characteristic power series det(l — tM,,)
converge coefficientwise to det(l —tMy), as m — oo.

We now quote a result of Coleman that tells us that overconvergent
modular forms of small slope are in fact classical modular forms:

Theorem 14 (Coleman [6], Theorem 1.1). Let k be a non-negative integer
and let p be a prime. Every p-adic overconvergent modular eigenform of
weight k with slope strictly less than k — 1 is a classical modular form.
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We now state the main theorem of this paper, which tells us exactly what
the slopes of the Us operator acting on slopes of modular forms of level 25
are.

Theorem 15. We recall and use the notation of Theorem 2.

Let x be an odd primitive Dirichlet character of conductor 25 and let T
be an odd primitive Dirichlet character of conductor 5.

Let k be a positive integer. We fiz an embedding of the field of definition
of x into Qs(v/5), and recall the notation of fi and fo from Theorem 2.

The slopes of overconvergent modular forms of weight k and charac-

ter xtF~1 are given by
1 .
{4. L%J = N} if x(6) is a root of fi,
1 4+ 4
{4 ' ng; |ic N} if x(6) is a root of fo.

We can prove Theorem 2, assuming Theorem 15, by recalling the follow-
ing theorem from Cohen-Oesterlé:

Theorem 16 (Cohen-Oesterlé [5], Théoreme 1). Let x be a primitive
Dirichlet character of conductor 25 and let k be a positive integer greater
than 1. The following formula holds:

5k =7

d(k, x) := dim Sx(I'9(25), x) = + e (x(8) + x(17)),

where € is 0 for odd k, —1/4 if k=2 mod 4, and 1/4 if k =0 mod 4.

Proof of Theorem 2. The classical theorem will follow, because when we
substitute d(k,x) into the formula s(i) for the i*" slope, we see that the
maximum value of s(d(k, x)) is k—1. We now apply either Theorem 14 or a
standard argument shows that slopes greater than k — 1 cannot be classical
(see [4], the proof of the Corollary to Theorem B, which references the proof
of Theorem 4.6.17(1) of [13]), so therefore as there are at most k — 1 slopes
which are smaller than or equal to k — 1, we see that all of these small
slopes are the slopes of classical eigenforms. Il

Finally, we show that there is a basis of eigenforms which is defined over

K := Q5(v/5,/3), to prove Corollary 3.

Proof of Corollary 3. Let x be a primitive Dirichlet character of conduc-
tor 25 and let k be a positive integer such that x(—1) = (—1)*.

We recall a useful fact stated on page 21 of [14], that if f(q) = Y roq ang™
is the Fourier expansion of a nonzero normalized classical modular cuspidal



On the slopes of the Us operator acting on overconvergent modular forms 175

eigenform of weight k and character y, and o is an element of Gal(K/K),
then

o0
a(f)(g) = olan)q"
n=1
is also the Fourier expansion of a normalized classical modular cuspidal
eigenform of weight k£ and character x; we see that because y takes values
in K, it is invariant under the action of o.

Now, we see that the 5-valuation of as is the same as the 5-valuation
of o(as), because the characteristic polynomial of a5 is invariant under the
action of o. Therefore, we see that o(f) is an eigenform of the same weight
and character as f with the same slope as f, because there is only one
eigenform of any given slope for any given y and k. This means that o(f) =
f for every choice of o, so therefore o(a,) = a, for every o, which means
that a, € K for every n, as required. O

4. The technical part; proof of Theorem 15

As the actual proof of Theorem 15 is somewhat technical, we will first
outline a plan to show how the proof works.

Plan for the proof of Theorem 15. In this section, we will show that
we can apply Theorem 13, which will prove Theorem 15. First we fix an ar-
bitrary positive integer n, an integer k and a primitive Dirichlet character x
of conductor 25 such that x(—1) = —1.

We will begin with the matrix M,; the matrix formed by the first n rows
and n columns of M, the matrix of the twisted Us operator acting on forms
of weight 1 and character y defined in Definition 11. The proof will then
proceed in the following way:

(1) Define the matriz D(B(i)) to be the diagonal matriz with 5(j) in
the 7' row and the ' column. We define the matriz O,, := D(n~27).
M, - D(7%9).

(2) We then show that the valuation of elements in the jth column of O,
are s(j); this verifies condition (b) of Theorem 13, with r = s(j).

(3) We finally show that O,, has determinant of valuation Y ;- s(i), by
considering the matriz Py, := D(7T_4S(j))'0n. We will see that P, has
determinant of valuation 0, which implies that the valuation of the
determinant of Oy, is the valuation of the determinant of D(7r45(j)),
which is Y11 s(i). This will verify condition (a) of Theorem 13,
with determinant of valuation Y1 s(i).

(4) Finally, we will show that, after multiplication by the multiplier (as
defined in Definition 12)

EI,T :
(Vi)
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the matrix of the twisted Us operator acting on forms of weight 14k
and character x - TF 1 still satisfies properties (a) and (b) of Theo-
rem 13.

At each step of this plan, we must show that the characteristic polynomial
of the new matrix defined is the same as that of M,. In the last step, we
will show that P,, has unit determinant by reducing it modulo a prime ideal
above b and showing that this reduction has determinant 1. This means that
we must prove that P, has coefficients which are integers in Q5(\4/5).

Proof of Theorem 15. In this section, we will use the modular function T’
instead of W; we define T as follows:

1
T:= —.
tos

This will make it easier to perform the calculations.

We will adapt a method used by Smithline in [16] and [17] to find the
matrix M, of the “weight 1” operator U , which will use the crucial fact
that this operator is what Smithline calls “a compact operator with rational
generation”. This means that U(T") satisfies a recurrence relation in terms
of other U(TY), for j =i—5,...,i— 1.

Firstly, we can show that U (T%) is a polynomial in T of degree 5i, for 1 <
i < 5. We prove this by explicit computation; we can see that these are
polynomials by studying the zeroes and poles of the U (T%), or by an explicit
computation of sufficiently many Fourier coefficients of both sides. This
directly generalizes the work of Smithline on the weight 0 operator U,

Secondly, we will show that a recurrence relation exists, and then find
an easy to calculate form in terms of the U(7Y) and 7. This will allow us
to compute the determinant of the matrix of U acting on the basis {77}
and therefore to compute the slopes of the characteristic power series of U.

We will just give the valuations of the coefficients of these, as the actual
coefficients are elements of Qs(+v/5) and thus take up a lot of space. If we
have chosen x such that x(6) is a root of (1), then these are the valuations

of the coefficients of T in the T-expansions of the U(T") for 1 < i < 5:

U(T) : [%, 3,2,3,4]

0(r?): B RS T AR

U(T?) [0, 31,2,3,47 19 23 13 g 33 37 10 11, 12]

O : [0,5,1,3,3,1,7,5,6,7,17,3,3 2 12,9 55 14,15, 1]
U(T°) : 011,225 8 8 572,94,

49 51 55 29 65 69
11,42 5155 29 16 65 69 g 19,20} :
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On the other hand, if we have chosen x(6) to be a root of (2), then these
are the valuations of the coefficients of T in the T-expansions of the U (T"):

U(T): 53324

U(T?) : [3.1,2,,4,3,1,%,2 ]

U(T?) : [3.1,5.9.3,5,5,6, 2,8, 77,12, 41 43 19

o (53553553 275,010, 9,12.8, 5,9, 9 16]

U(T®) : 0,1,1,2,2,%,4,5,2 7,45 11 19 2L 17,
%.13,14,52 16,32, 22 T3 TT 20

(We note here that these are the valuations of the elements of the
T'-coefficients of the U(T7) viewed as elements of Qs(v/5,v/3)).

The T-expansion of U(T) is not dependent on the choice of valuations;
it is

U(T) = 5T + 25T% + 7573 4 125T"* 4 1257,

which is [1,2,2,3,3] in the valuation scheme we have used for the U(T7)
above. o

There is an explicit recurrence relation which the U(T") satisfy; we have
that

(8) U(T) = é - Us(T) - (25U (T™4) + 250(T*+3)
+ 15U (T2 + 50 (T + U(TY)), for i > 0.

This, together with the explicit values for U (T?) given above, will allow
us to determine all of the U (T*). We see by induction on 4 that all of
the U (T%) are polynomials in T of degree 5i; this, together with the fact
that the relation involves powers of 5, also allow us to show that the matrix
of the operator U is compact. N

We also note that, because 5 divides the coefficients of Us(T'), that U (T?)
is an integral polynomial in 7.

We prove this recurrence relation by first showing that the same recur-
rence relation as in (8) holds for Us(T"). Following the lucid account given
n [12], Section 2, we recall that

U5(Tj)(z):é- Z TI (Z;-t)

t€eZ/5Z

If we define ej, to be the k™ symmetric polynomial in the {T(3%) : ¢ €
Z/5Z}, then we see that we have the following recurrence relation:

Us(T5) — e Us(T) + - — e5Us(T%) = 0, for any i € N.
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Now, we can show that e; = 25Us(T'), ea = —25U5(T), es = 15Us(T),
es = —5Us(T') and e5 = Us(T') by explicit computations of the symmetric
polynomials in the T'(2£%). For instance, we see that e; = 25U5(T') because
that is how Us(T') is defined. For the others, we can compute these by
changing the variable z to 5z and then using MAGMA to compute the e; to
a sufficient precision to show that they are the correct multiples of Us(T).

It is well-known that every modular function of weight 0 for I'g(25)
must be a rational function of T, which is a uniformizer of the genus 0
curve Xo(25). Because the e have no poles on Xo(p) except possibly at
the cusp 0, they must actually be polynomials in 7', and we can compute
these polynomials effectively. _

We now derive the recurrence relation for U(T7) from that for Us(T7).
By definition, we have that

ﬁ(Tj) = Us(T7 - E1x/Vix)(2)
) —5 ¥ () e ().

teZ/5Z

Now, the functions T%((z + t)/5), for t € {0,1,2,3,4}, are the general
solutions to the recurrence relation, because they are the roots of the poly-
nomial associated to the recurrence. Therefore, if F is fixed, both U(T?)
and U(T" - F) satisfy the same recurrence relation, so in particular we see
that the U(T") do satisfy a recurrence relation.

We note in passing that similar calculations to those in this section can
be performed for modular functions on Xy (4) and X(9), and similar recur-
rence relations derived, involving a common multiple of a suitable equiva-
lent of Us(T') as in (8).

Using this recurrence relation, we could derive a generating function
for U, in the style of [3] or [17], but this would be hard to display and not
very illuminating. We will instead use the recurrence relation in the next
Section to show that the valuations of the coefficients of the i*" column
of the matrix O, are at least s(i), that the valuation of the (i,i)™" entry
of O, is exactly s(7), and that the valuation of elements below the diagonal
in the i*" column is strictly greater than s(i). This will show that the
determinant of O,, has valuation 377, s(j), which will be enough to prove
our theorem.

4.1. Finding the valuation of elements of O,,. In this section we will
define X := 72T and U(X?) := 7% . U(X?) for clarity of notation.

We check that the X-expansion of U(X") has integral coefficients, for r =
1,...,5, that the valuation of the coefficient of X" in U(X") is s(i), and
that the valuation of the coefficient of X7 in U(X") is greater than s(i)
for j > i. We call these statements I,. for short.
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We will now prove by induction that I, holds for every positive integer r.
Firstly, we note that the base cases are satisfied; we can check that the
valuations of the T-coefficients of the ﬁ(T’") given above, when translated
into the language of Xs, satisfy I, for r =1,...,5.

We suppose that I holds for every positive integer s < r. We now use
the recurrence relation given in (8) to show that

UX") = (X +mX?+3X° + Xt + X°) - (25 - U(X"h)
+ 25720 (X" 72) 4 157U (X" 73) 4 5700 (X71)
+ 78 T(X"7P)).

We see that the elements of strictly lowest valuation in this sum are those
from the term U := 78 - U(X"7%) - (X + 7m2X?% + 3X3 + n2X* + X?), s0
the valuations of U(X") are determined by this product. We also note
that the valuation of the coefficient of X" in U is exactly s(r — 5) + 2,
that the valuations of the coefficients of X® for s > r in U are greater
than s(r — 5) + 2, and that the valuation of every coefficient of U(X") is at
least s(r—5)+2 (by using I,_5). Therefore we have proved I, by induction,
because s(r) = s(r — 5) + 2.

We now postmultiply the matrix O,, by D(7r_4s(i)) and define this prod-
uct to be P,. The effect on the U(X?) is to multiply them by 7=(). Be-
cause the elements of P, are given by the coefficients of these X-expansions,
we see that P, has integral coefficients, that the coefficients on the diag-
onal are units, and that the coefficients below the diagonal have strictly
positive valuation. We can therefore reduce P,, modulo 7 and take its de-
terminant; we see that P, must have unit determinant by considering the
main diagonal.

This means that the determinant of O,, and also the determinant of M,
both have valuation Y i ; s(7). This means that M,, satisfies condition (a) of
Theorem 13 and therefore that we can apply this theorem to the matrix M
to show that the slopes of the Us operator are given by s(7).

4.2. Generalizing all this to other weights. We note that this part
of the proof has shown that the matrices M, of the twisted Us operator
acting on overconvergent modular forms of weight 1 have determinants
with valuation Y7, s(i), and that the valuations of elements in the ;"
column are at least s(i). We also note that we have expressed O,, in the
form O,, = P, - D, where D is a diagonal matrix and P is a matrix which
is upper triangular and invertible modulo 7.

We will now prove that the matrix of the twisted Us operator acting on
weights of the form 1 + k, where k is an integer, also satisfies these two
properties; this will be enough to prove Theorem 15.
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We note that the following identity of modular functions holds:

B, . 5T+ (2420717
V(Ei,) — 1+@+DT+2+DT?

(10)

where 7 is an odd primitive Dirichlet character of conductor 5, and [ is a
suitably chosen square root of —1.
From this, we see that the following Lemma holds:

Lemma 17. Let O be the ring of integers of Qs(m). Then

(11) VZ;;) €1+ XO[X]).

Proof of Lemma 17. We recall that X = 72T, and check that when we
substitute this into (10) that the coefficients of the X7 remain integral. [

We now change weights from weight 1 to weight 1 + k; this means that
we change the basis on which the Us operator acts by multiplication by
the power series (Fy,/V (E1.))*. We see that this change of basis has the
property that X' is sent to a power series in X whose exponents are at
least i, and that the coefficient of X in this new power series is 1. Also,
by (11), we see that these power series have integral coefficients. We call
the matrix which gives this change of basis S.

From this, we see that this matrix .S has the following properties: it has
coefficients in the ring of integers O, the diagonal entries of S are all 1, and
it is lower triangular modulo .

The change of basis by S has the effect of replacing O,, by

P,-D-S=P,-(D-S-D7')-D.

We will now show that P, - D -S - D™! is invertible and upper triangular
modulo 7. The action of conjugation by D on S is to divide elements above
the diagonal by 74*() and to multiply elements below the diagonal by 745();
given the list of properties of S above, we see that this means that D-S-D~!
must be the identity modulo 7, which means that if we premultiply by P,
then the product will be upper triangular and invertible modulo 7.

This means that we are in the same situation as before; the determinant
of the n x n truncation of the matrix of the operator Us acting on overcon-
vergent modular forms of weight 1+ k has valuation > 1" ; s(¢). This means
that the matrix satisfies condition (a) of Theorem 13 and therefore that
we can apply this theorem to show that the slopes of the Us operator are
given by s(i), which is what we wanted to prove. O
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