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Triple correlation of the Riemann zeros
par J. BRiaAN CONREY et NINA C. SNAITH

RESUME. La conjecture de Conrey, Farmer et Zirnbauer [11] concer-
nant les moyennes de quotients de la fonction ¢ de Riemann nous
permet de déterminer tous les termes d’ordre inférieur de la cor-
rélation triple des zéros de la fonction ¢ de Riemann. Bogomolny
et Keating [4], en s’inspirant de méthodes semi-classiques, avaient
suggéré en 1996 une approche permettant de s’attaquer a ce pro-
bleme mais n’avaient pas donné explicitement le résultat qui est
l'objet de cet article. Notre méthode permet de déterminer ri-
goureusement tous les termes d’ordre inférieur jusqu’au terme
constant en admettant les conjectures de quotients de Conrey,
Farmer et Zirnbauer. Bogomolny et Keating [4] se sont de nou-
veau penchés sur leurs résultas en méme temps que ce travail et
ont donné I'expression entiere explicite. Le résultat décrit dans cet
article coincide exactement avec leur formule et est en accord avec
nos calculs numériques qui sont aussi présentés ici.

Nous donnons également une autre preuve de la corrélation
triple des valeurs propres des matrices aléatoires U (V) qui suit une
méthode quasiment identique a celle employée pour les zéros de la
fonction ¢ de Riemann mais qui repose sur le théoréme concernant
les moyennes des quotients de polynémes caractéristiques [12, 13].

ABSTRACT. We use the conjecture of Conrey, Farmer and Zirn-
bauer for averages of ratios of the Riemann zeta function [11] to
calculate all the lower order terms of the triple correlation func-
tion of the Riemann zeros. A previous approach was suggested by
Bogomolny and Keating [6] taking inspiration from semi-classical
methods. At that point they did not write out the answer ex-
plicitly, so we do that here, illustrating that by our method all
the lower order terms down to the constant can be calculated
rigourously if one assumes the ratios conjecture of Conrey, Farmer
and Zirnbauer. Bogomolny and Keating [4] returned to their previ-
ous results simultaneously with this current work, and have writ-
ten out the full expression. The result presented in this paper
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agrees precisely with their formula, as well as with our numerical
computations, which we include here.

We also include an alternate proof of the triple correlation of
eigenvalues from random U(N) matrices which follows a nearly
identical method to that for the Riemann zeros, but is based on
the theorem for averages of ratios of characteristic polynomials

[12, 13].
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1. Introduction

In 1973 Montgomery [23] proved the following result, assuming the Rie-
mann Hypothesis, on the two-point correlation of the zeros of the Riemann
zeta function:

(11 > w(%—w)f(

71’726[0771}

log T
27

_ TloeT (f<o> + 7w [1 (st

for suitably decaying functions f with Fourier transform supported in [—1, 1]
and weight w(z) = ﬁ. He conjectured that (1.1) would in fact hold for
any test function f.

(1 =)
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In 1994 Hejal [17] proved a similar result for the triple correlation of
Riemann zeros:
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with weight w (1, 2, 23) = [];<), exp [— g (x; —x1)?] and the Fourier trans-
form of the continuous, suitably decaying test function f is supported on
the hexagon with successive vertices (1,0), (0,1), (-1,1), (-=1,0), (0,-1)
and (1,—1). Here S(z) = %

This was extended to the n-point correlation function and to more gen-
eral L-functions by Rudnick and Sarnak [24] in 1996.

These results encompass the rigorous work on the subject, but are limited
by two things. Firstly, the support of the Fourier transform of the test func-
tion is always confined to a restricted range. Secondly, only the asymptotic
for large T is found. This second point is understandable, as the goal was to
show that this limiting form was the same as that for the n-point correla-
tion function of eigenvalues from large-dimensional matrices from the GUE
ensemble of random matrix theory (see [8] or [21] for review articles on the
connection between random matrix theory and number theory). This aim
was duly achieved, but there is clearly interest in the lower-order terms,
as Bogomolny and Keating’s early results [6] showed that in the two-point
correlation function of the Riemann zeros one sees sensitivity to the posi-
tions of the low Riemann zeros themselves - something that clearly does
not happen in random matrix theory at any order. After it was predicted
by Bogomolny and Keating, a numerical illustration of this for the two-
point correlation function was first shown in [2], where Berry and Keating
also fully explain a similar phenomenon in the number variance statistic
first observed by Berry in 1988 [1]. A numerical plot of the two-point cor-
relation function calculated using the first 100 000 zeros of the Riemann
zeta function is shown in Figure 1. The x-axis is the correlation distance
between pairs of zeros in unscaled units, showing the distinctive dip at each
Riemann zero. The plot is a histogram of the number of pairs of zeros with

N
a given separation distance, and the y-axis is divided by T' (loi%) , where
T ~ 75000 is the height of the 100 000th zero.
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FIGURE 1. The two-point correlation function of the Rie-
mann zeta function calculated from the first 100 000 zeros.
The correlation distance is plotted along the x-axis. Note the

significant dip at the first few Riemann zeros: 14.13, 21.02,
25.01, .. ..

Meanwhile, alongside this rigorous work in the number theory commu-
nity, physicists using semiclassical techniques applied in the field of quan-
tum chaos, treated the Riemann zeta function as a model system (the prime
numbers playing the role of periodic orbits) and so studied the correlation
of Riemann zeros in analogous ways to those in which they would study
correlation of energy levels in their more standard physical systems. The
first step in this direction was the derivation by Keating [18] of the limiting
form of the two-point correlation function of the Riemann zeros. This is a
heuristic calculation and it relies on a conjecture by Hardy and Littlewood
[16] for the behaviour of correlations between prime numbers, but it has the
advantage that there are no restrictions on the support of a test function.
Using analogous methods this result was then extended in two papers by
Bogomolny and Keating [5, 7] to obtain the limiting form of the n-point
correlation function.

The first result on lower-order terms of the correlations of the Riemann
zeros was also by Bogomolny and Keating [6], but using a different heuristic
inspired more directly from semiclassical methods. Here they truncate the
Euler product for the Riemann zeta function at primes less than log % (in
semiclassical language this means taking periodic orbits up to the Heisen-
berg time) and define a new set of zeros from the resulting approximation
to the staircase function of the Riemann zeros (the function that increases
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by one at the position of each zero). It is the two-point correlation of this
new set of zeros that miraculously gives all the significant lower-order terms
of the analogous statistic for the Riemann zeros. Using the same method,
an expression is also given [6] in semiclassical language for all lower-order
terms of the three-point correlation function, and it is this which could be
turned into a detailed formula including all terms calculated in the present
paper, but the authors did not publish it explicitly at that time.

Bogomolny and Keating also did further work, largely unpublished, ob-
taining all the lower-order terms for the 2-; 3- and 4-point correlations both
by extending their Hardy-Littlewood method (see [19] for some details of
the two-point correlation function) and by the method mentioned in the
previous paragraph, as well as two other heuristic methods (see [3]).

Recently [4] they have written out the lower-order terms for the three
point correlation function of the Riemann zeros in full detail and these
agree with the results presented in this paper.

While this paper was being prepared for publication, the authors cal-
culated the n-correlation of the Riemann zeros [15]. This is necessarily a
more general and less explicit calculation than the one presented here for
the triple correlation, but it exposes more of the structure of the correla-
tions and reveals some nice identities which are generalisations of results in
this current paper.

2. The Riemann zeros

2.1. Results. Using the ratios conjecture of Conrey, Farmer and Zirn-
bauer [12, 11] we obtain the following

Theorem 2.1. Assuming the ratios conjecture and summing over distinct
zeros of the Riemann zeta function:

T T
> f(%—’m,%—%):(271T)3/_T/_Tf(vl,v2)

0<v1#v2#AY3<T
T u
X / log? Q—du + I(ivy,iv9;0) + 1(0, iv1; —ivg)
0 T

+1(0,ivy; —ivy) + I(—ivy, —ive; 0) + 1(0, —ivg;ivy)
+1(0, —ivy;ive) + I1(0;4vg) + 11 (05 4v1) + I1(—ive;ivy)

(2.1) +1;(—ive; 0) + I (—iv1;dv2) + I (—ivy; 0)1 dvidvy + O(T°),

where the integrals in v1 and vy are to be interpreted as principal value
integrals and
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FI1GURE 2. The triple correlation of the Riemann zeros: we
plot the quantity in square brackets from (2.1). The x and
y axes are v1 and vy and the density plot is lighter were the
function has a higher value and is darker for smaller values.
Note the horizontal, vertical and diagonal lines occurring at
the Riemann zeros: 14.13, 21.02, 25.01, ...

The expression (2.1) is plotted in Figure 2, with f(vy,v2) = d(v; —
x)0(va — y). The x- and y- axes are unscaled, but (2.1) is divided by

oz L\ 3
T (li%) . The density plot is light for large values and dark where (2.1)
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is small. Note the horizontal, vertical and diagonal lines occurring at the
Riemann zeros, caused by terms like %’(1 +ix), Cf,(l +iy —ix), etc. Numer-
ical computation of (2.1) breaks down near the x- and y- axes and on the
diagonal because of the principal value integration, so the plot has been set
to zero in these regions. The plot could be completed with a more careful
expansion of the formula around z = 0, y = 0 and « = y, but this would
not be particularly edifying. The result would be extremely similar to the
random matrix limit shown in Figure 6. The maximum height on the con-
tour plot in Figure 2 is about 0.799. An idea of the height of the plot can
be seen in Figure 3, which is a horizontal cross-section of Figure 2 at height
5 on the y-axis.
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F1GURE 3. A horizontal cross-section of Figure 2 at height
5 on the y-axis to illustrate the height of that plot.

In Figure 4 the numerical triple correlation, using the first 100 000 zeros,
is plotted, again scaled as above. The difference between this and Figure 2
is shown in Figure 5, where the maximum height of the plot is about 0.164.
Compare this with the maximum height of Figure 4, which is about 0.923.
The maximum value of the difference plot may seem rather large, as we
expect an error of T~1/2t¢ but this is probably due to the relatively small
value of T used for these plots. For T' ~ 75000, T-1/2 is around 0.003, but
for T values of this size powers of logT' can make a big difference. The mean
value of the points on the difference plot (Figure 5) is -0.00127, and the
standard deviation is about 0.03, which gives a better idea of the spread of
the points. We also note that the mean of the absolute value of Figure 5 is
about 0.0257.
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FIGURE 4. The numerically calculated triple correlation of
the Riemann zeros. The distribution of triplets of zeros is de-
picted by plotting the distance between the first and second
zero in the triplet on the horizontal axis against the distance
between the first and third zero on the vertical. Higher oc-
currences appear lighter grey and where no triplets fall the
plot is black.

For ease of comparison with Theorem 2.1, we state here the similar ran-
dom matrix result which is derived in detail in Section 3.2. The iden-
tical structure of Theorem 2.1 and Theorem 2.2 is apparent if we re-
call the equivalence N = log 5= (see for example [20]) and reduce (2.8)
from three to two variables by performing a simple translation such as
0o — 05 + 67 and 03 — 603 + 01 and noting from (2.9) and (2.10) that
J(a,B;7) =J(a+t,+t;v—1t) and J(o; B) = J(a+t; 5 —t). In compar-
ing J (e, ;) with I(e, 8;7) and J(o; §) with I1(a; 8), 2(z) = (1 —e )"
plays the part of ((1 + z), as is always the case in moment and ratios con-
jectures. Using the ratios theorem of Conrey, Farmer and Zirnbauer [12, 11]
we obtain the following
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FIGURE 5. The difference between Figures 4 and 2.

Theorem 2.2. With the star indicating a sum over distinct eigenvalues we
have:

T3(f) = /U(N) Z* f(9j17‘9j239j3)dX

1,J2,J3

- L (o

+J (101, 1035 —i02) + J (162, i03; —i07) + J(—i61, —ifs; if3)
+J(—ib, —i03;i02) + J(—ib2, —if3; 0;)
FN (J(—iy;05) + J(—ifa; i03) + J(—i6y;i65)
T (—ibs;i02) + J(—i0a;i61) + J(—ifs; 1))

(2.8) +N3> f(01,62,63) dby dbo dbs
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where

J (o, ag; )

A A A
— _pma1—a2—f DX (om0 2X (oo X (B
e /U o BT ) P X

= e Nt () + B)2(—ay — B) (Zzl(ag — ) — Z;(az + ﬂ))

29 e NI+ Ba(ar = ) (Slar - a) - S+ 9).

and
. . —a—f & -« & -B
J(;B) :=e /U(N) Ax e Ax. (e77)dX
(2.10) _ (Z) (a+8) + N (0 4+ B)2(—a — ).

2.2. Moments of the logarithmic derivative of the Riemann zeta
function. Calculating correlation functions of the Riemann zeros using the
conjectural formulae for averages of ratios of zeta functions proceeds via
moments of the logarithmic derivative of the Riemann zeta function:

L(an, ..o o B, -, Be)
!

- r r i CI 1 . C 1 .
= [ log ﬂz(i—kzt%—al)“-—(g—kzt—%ak)
0

¢
S ¢
A property of these moments that will be of use to us later is that
(212) [’r‘(alv ceey O ﬁlv e 76@) = I’I‘(E7 oo 7E;a717 s ,Tk)

For now the arguments of I, will always have positive real parts. In this
case we have an approximate translation invariance: if R(ay), R(5;), R(o; +
A), R(Bj —A) > 0 then

(2.13) Lo+ A ... ;o + X010 — A, 80— A)
=L (a1, ap; Br, ..o, Be) + O(IA|T).

This can be seen by a change of variables ¢ — ¢ — i\ in (2.11) and using
RH to bound ¢'/{(o + it) by t°.

In particular, to calculate the three-point correlation function, we will
need formula (2.2) for I(ai,ag;3) (here we introduce the convention that
I = Iy).

We will now proceed to derive that formula using the form of the ra-
tios conjecture [11] for three zeta functions over three zeta functions (with
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the conditions —i < Rayg, Rag, RG < %, @ < Ry, Ry, RO < % and
Saq, %042, %ﬁ, %’71, %’72, I <, Tl_e):

/T C(§ +it +an)C(5 it + )¢y —it + )
0 C(3+it+7)¢(5 it +7)C(5 — it +0)
¢

T —a1—p
(214) = / G(a17a275;7177275) + (7) G(_/ga a9, _041;’)/177275)
0 27

t \—a2—p
+( ) G(alv_ﬁv —042;’}/1,’}/2,5) dt+O(T1/2+e)’
2

where the error term is uniform in the specified range of parameters. Here

G(ar, g, 3;71,72,6) =
(215) Y(a17a27/6;71)7255) X AC(Ql,QQ,/B;’Yl,’YQ,(S)

and

Y (a1, a2, B;71,72,0) =
(I+a1+B)(1+as+B)C(L+7 +0)¢(1 +72+9)
C(1+a1+6)¢(1+az+0)¢(1+7 + B)C(1+v2+B)

(2.16)

and

Ac(ar, ag, Bim,72,0) =

II (1-_ p1+i1+6)<1 __p1+i2+@)<1 _-p1+£1+5>(1 _-p1+£2+6)

P (1- W) (1~ W) (1- p1+$1+5) (1- pl+$2+ﬁ)

p(P") p(p"?) n(p*)

X
Z: p1/2(m1 +mo+n+hi+ha+k)+mior+meaz+nf+hiyi+haye+k§
miTmg
+h1+ho
=n+k
mq,mg,hq,hg,
n,k>0

B H (1 - p1+~1n+5)(1 - pl+'lvz+5)
» (1

- p1+i1+6)(1 - p1+01¢2+5)(1 - p1+’}1+ﬁ)(1 - plTIZ"Fﬁ)

L 1 1 1 1
X\L—Pp o pltnts + pltrtd o pltr+s8 + pltr2+o

1 1
+p2+“/1+72+25 o p2+71+72+ﬁ+5

1 1
B—6(1 _ _
(2.17) +p (1 p1+a1+ﬂ)(1 p1+az+ﬁ)>'

The main term of (2.14) is analytic in the specified range of parameters;
the apparent poles from Y cancel, as can be checked directly, or by writing
the three terms as a contour integral as in [11] or Section 2.5 of [10].
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Here p(n) is the Mobius function and the final expression above reflects
the fact that p(p™) is 1 for m = 0, it is —1 for m = 1 and zero for any
power of p higher than the first. Also note that A¢(a1, a2, 3;71,72,0) = 1.

We will not go through the reasoning behind this conjecture in full,
but a simpler example (one zeta function over one zeta function) can be
seen in full detail in [14] and the original reference for the general case
s [11]. We will say only that the recipe for arriving at a ratios conjecture
involves replacing each zeta function in the numerator with an approximate
functional equation, those in the denominator with the Dirichlet series for
ﬁ and then applying a series of rules to discard all the terms in the
resulting multiple sums except for those seen above in A¢. The purpose
of Y is to factor out the divergent terms in the these sums, leaving A¢
convergent for small values of a1, ao, 3,71, 72 and 9.

Armed with this ratios conjecture, we want to evaluate

(2.18) (a1, a2; )

/ C +2t+a1)2( +zt+a2)i(%_it+ﬁ)dt
iii ( +zt+a1)§(§+zt+a2)g(%_it+ﬂ)dt i
dOél da2 dﬁ +Zt+71)<(%+lt+72)g(% _Zt—|—5> 1%i§% .

Examining the derivative of the first term in (2.14), we find a great deal
of cancellation upon substituting v; = a1, 72 = as and § = 3, and the only
surviving terms are

d d d

2.1
( 9) da1 dOéQ dﬁ

(051,0427ﬁ V1,72, 5)

Y11=
T2=2
o=p

(CC) (1+ay +ﬂ)714<(0‘170‘275’0‘1’72’ﬁ)

2=

(i) (1+ a2+ B)iAc(ah oz, im0z, 6)

Y1=Q1
d d d
—A 1) —a
+da1 dos df (o, a2, By91,72,0) 1%235
d d d
. 5 o
= doy don dB A¢(a, oo, B391,72,9) %22%7

because A¢(a1, g, 3;71,72, 8) = 1.
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The term
d d d —oq—f3
2.20) ———(— G(— —o; 1) =a
( )dOél dOZQ dﬁ< 7T> ( 57a27 Q1571 72, ) ;%igé
- LAyt
doy dag dB \ 27

C(1—=B—a)f(1+az—a)l(1+vy+6)C(1+y2+9)
C(1=B+0)¢(1+az+6)C(1+71 —a1)((1+y —ar)

X A¢(=f, a2, —a1;71, 72, 0)

71=o1
v2=a2
6=p

quickly reduces to

d ( ¢ )—al—ﬁg(l—ﬁ—al)C(1+a2—al)C(1+a1+B)C(1+W+ﬁ)

dory (L4 az+ B)C(1 +72 —a1)
(2.21) x A¢(=B, az, —a1;01,72, )
Ye=a2
because we see immediately that the factors ((1—1,6’ 5 and "e +711_a1) cause

the entire term to evaluate as zero upon the substitution 73 = o1 and 6 =
unless the # and «q derivatives are performed on these factors. The final
differentiation with respect to agy shows us that (2.20) equals

(5) " e —p )1+ 5+ a)

X((i(l—l-cm_al)_2(1+a2+6))AC(_ﬂ7a2’_a1;a1’a2’ﬁ)
d
(222) dOZ ( ﬁvO[Qv 041;041,72,/8) 720&2)'
Similarly,
d d d —az—f
E%%<2W) (ala ﬁa 042;’}/1,’72,5) z%zgé
T
((é (1—|—C¥1—042) i_(1—‘,—041—|—ﬁ))Ac(Od1,—,8,_052;051705276)
(2‘23) —{—leAC(Oq,—ﬁ, —042§71704275) 71:Oél>'

Finally, some manipulation of the prime product A¢ (for which Math-
ematica is very helpful) shows us (where A, P and @ refer to equations
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(2.4), (2.7) and (2.6), respectively) that

AC(—/B,OZQ, Oél,Oél,OéQ, ) A(al_}'ﬁ)
2 1
— SiTFa +[3)( 2+ i)
(2.24) :H — 1 12 e,
v (1=135)
d
TAC(—B,O% —ai; 1,72, 3) = P(ay + B,a2 + )
Qa2 Yo=az

(1 - W) (1 -5 1+(11+5)
= H - 2
? (1-3)

(1 — W) (1 — pEtE T pa21+5 + p1+i2+5> log p

1 1
(225) x>

d
(226) TAC(ala_ﬂ?_a2;717a276)
aq

= Plag + 8,010 + (),

Y1=a1
444 a0 B 8)| a1 = Qa1 + B, a2 + )
day devy d3 ¢\, a2, P51, 72, %igé = 1 ; (X2
log® p

(2.27) =—

; p2+a1+a2+2ﬁ(1 — W)(l — Zﬁ)

1 1 2 1 9_ ’
p (p17a1+a2 - 1) (1 o p1+a2+6) (1 D + p1+a1+ﬁ>p arraz

75

Substituting these expressions into (2.19), (2.20) and (2.23), we arrive at

(2.2) as expected.

The other version of (2.11) that we need is I1(c; 3), as given in (2.3).
This calculation has in fact already been carried out in [14] using the two
zeta functions over two zeta functions ratios conjecture in a manner very
similar to the three-over-three calculation above. That is [12, 11], with
—1 < Ra, RB < 1, @ < Ry, RS < 1 and S, I8, S, 36 < T¢ (for

every € > (), the ratios conjecture states

Cs+acl—s+ﬁ)
C(s+7)C(1—s+9)

_ CA+a+pB)¢(1+v+9) .

(2.28) /0 0+ atoid +6+7)A<(a,ﬁ,%5)

+<t P l—a—-pB)CA+y+9)

dt

- Ac(—B,—a;7, 5)) dt

s C1-8+0)C1—-a+7)
+0 (T1/2+6) :
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where

( - Iﬁ) (1 - p1+1ﬂ+w - p1+1a+§ + p1+17+6)
. /8’ , .
(2.29) 7,0 1;[ (1- ) (1- )
This implies that

/0 CC/(s—l—a)g(l—s—i—ﬁ) dt—/OT ((g)/(1+a+ﬁ)+

—a—p3 1— 21— 24 L
(2;) C(1+a+5)C(1—a_g)H( P @(i(_ 1)2 )
b p
1) 2
(230) _Z ((pﬂ-&-{«—l—gﬁp_l)> > dt+O(T1/2+e),

provided that = gT < Ra, RB < 4 The ratios conjecture recipe can incor-
porate the log 5= factor in I (c; 8) without any alteration, giving (2.3).

2.3. Triple correlation as a contour integral. We start with the a
triple sum over zeros of the Riemann zeta function, where the zeros do not
have to be distinct. Using Cauchy’s residue theorem, the triple sum can be
written as a triple contour integral where each contour is a rectangle en-
closing the zeros 1/2+1iv (assuming the Riemann Hypothesis) with heights
0<~y<T:

(231) > g(n,72.73)

0<y1,72,73<T
it 74 (il — 1/2), —ily — 1/2), —i(= — 1/2))

! !

Cwsms

TR

In investigating the 3-point correlation of the Riemann zeros, we are

interested in the relative spacing between triples of zeros, so we can assume

that the test function is translation invariant. Thus we define a function f
satisfying the conditions

(z)dxdydz.

(2.32) f(z,y) is holomorphic for [Sz| < 2,|Jy| < 2
and that f(z,y) < 1/(1+ |z|* + |y|?) as |z| or |y| — oo.
Thus we have

> fm—rem - @i f]{%gzl (22) (23)

0<y1,72,73<T
(2.33) Xf( — i(zl — ZQ), —i(zl — Zg))d21d22d2’3,
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where the contours are rectangles with corners at the points (a,0), (a,iT),
(1 =5,iT) and (1 —b,0) with 1/2 < a,b < 1. We distinguish a and b only
for ease of following the manipulations in the following calculations.

The horizontal portions of the contour of integration can be chosen so
that the integral along them is negligible, so we concentrate on the vertical
sides of the contours. This makes (2.1) the sum of eight integrals Ji, ..., Jg
which will be met one by one below (a subscript a on an integral indicates
integration from (a,0) to (a,:T)).

First we have

- 1 g/ C/ g/
wa%mllagmcmuww

X f( — i(zl — 22), —i(zl — Zg))dzle2d23
(2.34) = O(T°).
The final line is true because all three contours can be moved to the right
(assuming the Riemann Hypothesis) where % converges and can be inte-
grated term by term (the pole at 1 doesn’t contribute more than a constant).
Next we examine

J2i= - (2mi)3 /a/a - bC (22)2,(23)

(2.35) X f(—i(z1 — 22), —i(21 — 23))dz1dz2dzs.
We use the functional equation
(2.36) C6 = e-Sa-y
and obtain
_ ¢’ ¢’ ¢
B = %lﬂlﬁb 2) = F 1= m)) @) 5 )
(2.37) Xf(—i(z — ,22) —i(z1 — 23))dz1dz2dzs.

For the term with %(zl) we can shift the integrals to the right, as we did
with Jp, and so see that the contribution is only O(7). A similar manoeuver
cannot be done with the integral containing the three CC , however, because
the z; integral is to the left of the critical line. So,

b= Gy ///C b it1) (a+zt2)g(a+it3)

X f(tl — 19 — ’L(l —b— a),t1 — 13 — ’i(l —b— a))dtldthtg
(2.38) +O(T9).
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Now, letting v; = t9 — t; and vg = t3 — t1, we have

negip [ [ L S

X CC/(G +i(v1 + tl))i_(a +i(ve + 1))
X f(—vi—i(l—b—a),—ve —i(l —b—a))dvidvadty

+O(T%)

277 / / (—v1—i(1—=b—a),—v2 —i(l —b—a))

X /0 i_(b — itl)g(a + i(vl + tl))g(a + i(UQ + tl))dtldvldv2

(2.39) +O(T).

In this last line we have switched the order of integration of t; with v
and vy. The range of the innermost integral should really be from
max{0, —vi, —v2} to min{T, T —v;, T —v2 }. However, since we are assuming
that f(z,y) decays fast, see (2.32), it is not hard to show that extending the
interval to (0,7) as we have done above, and will do again in the following
integrals J3 to Jg, incurs only an error that is a power of logT" and so can
be incorporated into the error term O(7).

Now all that is left is to tidy up the expression for Js, so we shift the con-
tours of integration off the real axis and apply the definition of I(ay, ag; )
from (2.11) with r = 0:

1 T—i(l—b—a) T—i(1—b—a)
Jo = / / f(v1,v2)

(2m) i(1—b—a) J—T—i(1—b—a)

CI /
/ — itq) (1 + ity — b —ivy)
E_ (1 + ity —b— ’iUQ)dtldvldUQ + O(Tg)

1 T—i(l-b—a) ,T—i(l—b—a)
— @n ) /T‘(lb )/T'(lb )f(vl,vg)l(—ivl,—ivg;O)dvldvg

(2.40) +O(T9).

To simplify the last line we have used (2.13).
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We use exactly the same sequence of manipulations to obtain similar
expressions for J3 and Jy:

Jy 1= —271”//1 b/C/(m)C,(ZQ)C/(Zs)

X f( —i(z1 — 22), —i(21 — 23))dz1dz2dz3

T+i(1—b—a) ) ]
(241) = / / f(v1,v2)1(0, —ivg;ivy)dvrdvy + O(T€)
277 T+i(1—b—a)

and

'_ 1 C/ C, C,
1= oo L Ve
X f( — i(zl — 22), —i(Zl — Zg))dzle2d23

1 T+i(l-b—a) T o
(242) = (27T)3/—T+'(1—b— )/_T f(v1,v2)I(0, —ivy;ivy)dvrdog + O(T).

The integral J5 throws up something slightly different. We start off in an
identical manner, replacing %(22) and %(z;;) by their functional equation

(2.36). This results in four terms, one of which contributes no more than
O(T¢). We are left with three terms:

= G o fou [ G e

X f( — z'(zl — ZQ) —i(zl — 23))d21d22d2’3

@) ///( (a+ ity g(b—itg)g(b—itg)

’;(1 —b+zt2)i (a+zt1)i(b—z’t3)

- X;u — b—l—z'tg)cc(a +z’t1)§(b - it2)>

X f(tl — 1o + i(l —a— b),tl — i3+ i(l —a— b))dtldtgdtg
+ O(T°)
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(2m)3 / /T ltl/T " <CI aﬂtl)g(bi(vlﬂl))

< (b= i+ 1))

¢
- >><</(1 —b+i(v; + t1))g(a + itﬁg(b —i(ve +t1))
— f(l(l —b+i(vy + tl))g(a + itl)g(b — (v + tl)))

X f(—v1+i(l—a—0b),—ve +i(1l—a—0b))dvidvedty
(2.43)
+ O(T),

where in the last line we have made our usual change of variables v = t9—t;
and Vg = t3 — tl.
We now note the asymptotic for XY

w0 Lonenullio(2).

Since f is very small when v; or vy are large, we replace %(1 —b+i(vj+21))
with —log 51 and obtain

Js5 = @np / / —v+i(l—a—0>),—ve+i(l —a—0b))
!/

X/o (Ccl(aﬂtl)g( —i(v1+t1))i

(b—i(ve + 1))

(b—i(ve +t1))

! !/

+ log %CC (a+zt1)i

! !/

+ log Qﬂi_ (a+zt1)C

c (b—i(v1 + t1))> dt1dvidvs

(2.45) +O(T°),

where we have extended the range of t;, after exchanging the order of
integration, by the same argument as for Js.
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Now we can write J5 as a double integral along contours running just be-
low the real axis, in a similar form to .J2, J3 and J4 above, but we introduce
I(a; ) (see (2.11) and (2.3)) to arrive at

1 T+i(l—a—b) ,T+i(1—a—b) 0 '
s = (27T)3_/ / f(UhUQ)( (05 iv1,ivg)

—T+i(l—a—b) /—T+i(1—a—b)

(2.46) + 1105 iv) + 11(0; vy ) ) dvadvy + O(T).

Proceeding exactly as for J5, we obtain similar expressions for Jg and

J7:
: ¢
Jo 1= 2772 /1b/ 1bC Zz)C(ZS)
X f( — z(zl — 22) —i(z1 — 23))dz1dzadz3
e vl,vg)(l(—ivl; 0,iv2)
i(1—a—0)
(2.47) + Il(—wl; ive) + I (—ivy; O))dvldvg + O(T°)
and
, C' ¢
Jri= 2m //1 b/l )4(23)
X f(—i(z1 — 22), —z(zl — 23))dzldz2d23
1 T—i(l—a—b) T o
~ (2m)3 /—T—i(l—a—b) /—T flor, UQ)(I(_ZU% 0.71)
(2.48) + Il(—iUQ; Z"Ul) + Il(—iUQ; 0))d1)1d1)2 + O(TG).

We are just left with the integral

_ ¢
Jsi= (2mi)3 /1b-/1ble (ZQ)C(B)
(2.49) X f(—i(z1 — 22), —i(21 — 23))dz1dz2dz2s

to evaluate. Once each %(z) is replaced by its functional equation (2.36),
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any term with at least one <?/(1 —z) in it can be shown to be size just O(7T)
by shifting the contour far to the left. This leaves us with

1 T T T X/ XI X/
J:————/ /l/47l+“ (L pity) (L it
8 (27T)3 0 0 0 X(2 1)X(2 Q)X(Q 3)

(2.50) X f(tl —to,t1 — t3)dt1dt2dt3 + O(T€).

Here the contours have all been moved onto the half-line as there are no
longer zeros of zeta functions to avoid. We replace to —t; with v1 and replace
t3 — t1 with v and substitute — log 5—; for each % factor with the help of
(2.44), as we did in the discussion of Js5, and so obtain

(251)J8 = 73/ / ( 2)/ 1 Ttdd d2+O(T)
. f(uvi,v og t dvidv ).
(27(‘) —TJ-T ! 0 7 !
The sum of inlegrals Jl, RN Js gives us (see (2.54)) the expression for

(2.52) o fn—r2m —3)

0<y1,72,73<T

Such a triple sum over zeros necessarily contains terms where two zeros are
identical. These are essentially two-point correlations, rather than three-
point statistics. Similarly, terms where all three zeros are identical are just
one-point statistics. To remove these lower-order correlations, one looks at
the sum

(2.53) S fn = — )

0<v1#£v2#AY3<T

instead. As will be shown in the next section, simply rewriting as an integral
on the real line each of the integrals above that occurs with a contour on
(-T—i(l—a—0b),T—i(l—a—-0b))or (-T+i(l—a—0b),T+i(l—a—0b))
gives us the purely triple correlation, and so we obtain the final result (2.1).
The contributions from the poles that we meet as the contours are shifted
to the real axes are the source of the two- and one-point correlation terms.
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2.4. Contributions from lower-order correlations. Collecting tog-
ether the results from the previous section we have

o fn =2 — 1)

0<v1,7v2,73<T

1 T T T,
— W /_T/_Tf(vl,v2)/0 log %dt dvidug

T+i(1—a—b) T+i(1—a—b)
—|—/ / flvg,v9) (I(O;ivl,ivg)

—T+i(1—a—b) J—T+i(1—a—b)

+1; (0' ivg) + 1 (O; iUl))dvldvg

T—i(l—a—b)
+/ / f Ul;%)(f(—i’ul;oyi?&)

i(l1—a—"b)

+11 (—ivy;ive) + I (—ivy; O))dvldvg

+/T e b/ F(vr,v2) ((=iva; 0, 01)

T—i(l—a—b

—{—Il(—il}g; ivl) + Il(—ivg; O))dvldvg

T—i(l-b—a) ,T—i(l1—b—a)
+ / / f(vl, UQ)I(-iUl, —iUQ; O)dvld'l}g
i(1=b—a) J-T—i(1-b—a)

T+i(1—b—a)
+/ / ?)1,7)2)](0, —ivg;ivl)dvldvg
T+i(1—b—a)

T+i(1—b—a)
(2.54) —l—/ / flop,v9)1 ivl;ivg)dvldvg> +O(T°).
T+i(1—b—a)

The goal of this section is to move all the contours of integration above
onto the real axis, evaluating the contributions from the poles encountered
during this process. The resulting integrals along the real axis will then be
computable, for the purposes of Figure 2 for example, as principal value
integrals. Elegantly, the terms resulting from the residue at the various poles
will yield the contribution to (2.54) from lower-order correlations between
Riemann zeros.

Consider, as an example of the method, the term (coming from J5)

T+i(l1—a—b) T+i(1—a—b)
(2.55) / / f(v1,v2)I(ivy, ive; 0)dvrdug
—T+i(1—a—b) J—T+i(1—a—b)

from (2.54). (Here we have switched the order of the arguments of I using
(2.12).) Treating the integrand first as a function of vy alone (leaving vy
fixed and non-zero), we see that the vy contour lies below the real axis
(since @ > 1/2 and b > 1/2) and there is a pole at vy = 0, so shifting the
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contour onto the axis results in a principal value integral in v plus 77 times
the residue of that pole. Using the definition of the sums and products over
primes found in (2.4) to (2.7), expanding around v = 0 gives us

(2.56) Q(ivy,iv2) = O(1)

(2.57) A(ivg) = 14 O(v3)

(2.58) P(ivg,iv1) = ivy Z 1i§)§ fl +O(v3)
(2.59) P(ivy,ive) = O(l).

These, in conjunction with the poles of I(iv1,ivs;0) at vo = 0 resulting
from ¢(1 — dv2)((1 + iv2) and %(1 + ivy), allows us to express (2.55) as

T T+i(l—a—b)
/ / f(Ul, UQ)I(iUl, 2'1)2; O)dvldvg
—T J—T+i(l—a-b)

+m /_j;:j(ll__aa_bb) /T ((g) (1+1iv1)

+(50) MG )1 — o) (i)
1 2
(2.60) - zpj (w?ifu?> F(v1,0)dt do,

where the vy integral is understood as a principal value integral.

Now we move the v; integral onto the real axis. In this case also we
encounter a pole at v; = 0. The first integral in (2.60) yields a residue
contribution essentially identical to that from the vy pole treated above,
and the second integral has a pole at v; = 0 with residue —ilog % We
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take i times the contributions from these poles and the end result is

T T
/ / f(v1,v2)1(iv1, ive; 0)dv dug
—rJ-T

+7r/_TTf(v1,0) /OT ((%)'(1 +iv)

H(oe) e + i) = i) AGivn)

log” p >
—E — == |dt dvy
1+iv1 2
- (pttr = 1)

+7T/TTf(o,v2)/0T <(g)'(1+m)

+(%)402g(1 +i02)C(1 — iv2) A(ivs)

log” p )
—E ———— | dt dva
1+ive __ 2
o (plt2 —1)

T
(2.61) +7r2/0 £(0,0) log 5=dt.

We note that the final term comprises information on the one-point corre-
lation function, whereas the second and third integrals in (2.61) will form
a contribution to the two-point correlation function, as will be discussed at
the end of this section.

In the meantime we will perform sample calculations on three other terms
from (2.54), leaving the remainder of the terms to the reader, since they all
follow a similar pattern.

We consider now

T+i(l—a—b) ,T+i(1—a—b)
(2.62) / / f(’Ul,’UQ)Il(O; ivg)dvldvg.
—T+i(l—a—b) J-T+i(1—a—b)

Examining expression (2.3) for I;(0;iv2), we see that the (%), term has
a second order pole at vy = 0 with residue zero, the term containing
¢(1 4 dv9)((1 — dvg) has residue

P
(2.63) /0 —ilog® 5-dt,

and B(0,vy) is analytic near vy = 0. The integrand is analytic in vy, so mov-
ing that contour onto the real axis does not incur any polar contribution.
Thus (2.62) equals

T T T T
(2.64) / / F(01,02) 11 (0: v3)dvrdvg + 7 / F(v1,0) / log? L dt duy.
—TJ-T -T 0
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The next term that deserves consideration is

T—i(l—a—b) T
(2.65) a/ / f(v1,v2)I(ivy, 0; —ive)dvdvs,
—T—i(1—a—b) J-T

where again we have used (2.12) to exchange the arguments of I preced-
ing the semicolon with those following it. We note that in these integrals
where two consecutive principal value calculations are made the order of
the integrals cannot be exchanged after the first principal value integral
is obtained, so we always address the principal values starting with the
outermost integral and working inwards.

An inspection of (2.2) reveals that I(ivy,0; —iv2) is not singular at v; = 0
(the poles of two %/ terms cancel), but as we move the vo contour onto the
real axis we encounter extra difficulties when v; = 0, so we will start by
temporarily shifting the v; contour so that it runs just below the real axis;
we choose below rather than above the axis so as to avoid the pole at
V1 = V2.

Now that the v; contour does not pass through zero, we can move the vy
contour onto the real axis and pick up exactly the same polar contribution
as when evaluating (2.55). (An extra minus sign in the residue compen-
sates for the fact that this time we need it multiplied by —im since we are
half-circling the pole in the clockwise direction due to the original contour
passing above the real axis.) Thus, for some € > 0, (2.65) is

T—ie
/ / f(v1,v2)1(ivy, 0; —ive)dvydug
T—ie

T—ie
—|—7r/ / < (1+1dv1)
T—ie

+(277) zvl((l +1v1)C(1 — 1v1) A(ivr)

log? p
(266) — ; W—l)g) f(?)l, O)dt dUl,

where the vy integral is understood as a principal value integral.

As we move the v; contour back to the real axis, we encounter a pole
of the first integral above at v; = vy (the apparent pole at v; = 0 in fact
cancels), and a pole of the second integral at v; = 0 with residue —ilog 2—';,
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as before. The final result is that (2.65) equals

T T
/ / f(Ul, ’UQ)I(’MJl, 0; —ivg)dvldvg
=T J-T

—|—7r/_TTf(v1,0)/ <(<<) (1+iv)

+(%)_m1<(1 +iv1)¢(1 —v1) A(iv)

log® p )
=Y = | dtduv
14+iv1 2
> (ptt —1)

—Hr/_j;f(vg,vg)/o ((g) (1 —dvg)

L) -

log P
fz Jin 1) >dtdvg

(2.67) +m? /0 £(0,0) log 5= dt.

The last term we will consider (all the others follow in an identical man-
ner to one of those discussed) is

i(1—a—0)
(2.68) / / f vy, v2)I(ive, 0; —ivy)dvidvg,
i(1—a—0)

where as usual we have used (2.12) to exchange the arguments of I preced-
ing the semicolon with those following it. We write this as

—i(l—a—b)
(2.69) hm/TT/ f(v1,v2)(ivg, 0; —ivy )dvrdvs.

+
e—0 o[> T—i(l—a—b)

This has not changed a thing because the outer integral is perfectly well-
behaved at vo = 0, but it means that as we move the inner integral onto
the real axis we avoid the complications that arise if vo = 0.
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The inner integral has poles at v1 = 0 and v; = vy with the usual and
now-familiar residues, so (2.68) equals

T T
/ / f(v1,v2)1(ivg, 0; —ivy )dvrdug
—rJ-T

s [ g0 [ () 0+

Han) e+ ima)e(1 — i) Afiva)

log” p )
—E ———— |dt dva
1+ivy _ 2
- (plt2 — 1)

—|—7r/_if(v2,v2)/0 <<<(/) (1 —ivg)

+(%)w2g(1 +i09)C(1 — iv9) A(—ivs)
(2.70) —Z 112% f’l )dt dvg,

where the integrals in v; and ve are to be interpreted as principal value

integrals.
All of the other terms in (2.54) can be handled in exactly the same way
as the one of the four treated here. The complete result is

Z S —72,71 —13) 2 // (v1,v2)
7T

0<y1,72,v3<T
T u
X / log? 2—du + I(iv1,v2;0) 4 1(0, ivy; —iva)
0 0

+I(0, 1V9; —ivl) + I(—ivl, —1V9; 0) + I(O, —1iv2; ivl)
+1(0, —ivy;ive) + I11(0;9va) + 11(05iv1) + I1 (—ivg;ivy)

+I1(—iv2; 0) + Il(—ivl; Z"Ug) + Il(—ivl; 0)) dvidvg
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T T
2 (/ £(0,v2)s(v2)dva + [ f(v1,0)s(vy)dvy
+/ 1)1,111 1)1 dvl +/ 0 ’U2 'UQ)d'UQ

+/—T f(v1,0)s(—v1)dvy +/Tf(v1,v1)s(vl)dvl>

T
oy o [ o oesda
where
/ 510g 27
+(<C) (1+iz) + (%)_mm +iz)C(1 — iz) A(iz)
log” p
(2.72) - Xp: et

Note that some terms above can be combined if we include the natural as-
sumption that f(z,y) = f(—x, —y). All the integrals on the interval (=7, T)
should be considered as principal value integrals near any poles at the origin
or at v = vs.

Now we want to identify the terms in the last three lines of (2.71) as
lower order correlations. To do this, note that we can rewrite the triple
sum over zeta zeros as

o fm=rn—) = > fn —72,7 —3)

0<y1,72,73<T 0<y1#v2#v3<T
+ > fm=0+ D 0, — )
0<y1#72<T 0<y1#y3<T
(2.73) + Z fn =727 —72) + Z f(0,0).
0<v1#£72<T 0<y1<T

The standard result on the density of the zeros of the Riemann zeta function
gives,
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(2.74) > 1=_log I lﬂ +0(1),

for large T', and an expression for the two-point correlation, derived from
the ratios conjecture, is given in [14]:

(2.75) Y f(r=7) @ // (10g +(€;>,(1—|—ir)

y#Y' <T

+ (21;) o C(1 —r)¢(1 +ir)A(ir) — B(ir) + (g)l (1 —ir)

+ <;ﬂ> C(L—ir)C(1+ ir) A(—ir) — B(z’r)) dt dr

+O(T1/2+6),

where f(z) is holomorphic throughout the strip |3z| < 2, is real on the real
line and satisfies f(z) < 1/(1 + 2?) as z — co. In addition, the integral is
to be regarded as a principal value near r = 0,

(- )= 24 1)

(2.76) Am =11

P (- %)2 7
and
10g P
(2.77) =2 G2
P

We see immediately from (2.74), (2.75) and (2.73) that

D 0<yyadtys<T L (Y1 — 72,71 — ¥3) is given by the first five lines of (2.71),
and this is the result presented in Theorem 2.1.

2.5. Retrieving the asymptotic result. We want to confirm that our
formula for the triple correlation of the Riemann zeros (2.1) tends to the
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limit (plotted in Figure 6)

) 1 log lﬂ log %
Thm TliT Z f(22(’71 —72), 27? (71— 73))
7% 27 108 ar 0<mi#rnArs<T T
) ) 1 S(’Ul) S(Ug)
= / / f(Ul, 1)2) S(’Ul) 1 S(Ul — UQ) dvl dvg
oo T> S(’Uz) S(’Ul — Ug) 1
0o oo sin? (7(v) — v2))
p— 1 —
/—oo /—oo f(01’02)< 7T2(U1 _U2)2
sin? (mv1)  sin? (mvg)
202 202
(2.78) 2sin (mv1) sin (vg) sin (7(v1 — v2)) > dvy dvs,
U1 TUY (v — v2)

£0.

17.5

15,

1.5

10.

i) 2.5 5. T.5 1. 1g.5s5 150 1T.5 E0.

FIGURE 6. The triple correlation of eigenvalues of random
matrices from U(N) in the limit as N — oo. That is, we
have plotted the 3 x 3 determinant from the second line of
(2.78). Note that to compare this picture to Figures 2 and
4 the axes of those figures would need to be scaled by the
mean density of zeros, (log %)/(277)
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Using (2.1), with L = log %, we scale the variables in the test function

by %, and make a change of variables v — 2% in the v; and vy integrals:

> (= getn — )

0<y1#y2#73<T
1 e e
2 2m
:m/_ﬂ/_gfwlyvﬂ
2 2
T 3 U omi - - -
(2.79) x /0 log? J-du + (252, 2582:.0) 4 1(0, 25 22

+I(O, 27r£vz — 27r£v1 ) (
—|—I(O, _ 27‘(‘[2;’1)2; 27r[i/111) (0’ _ 27rw1 27rw2) + I (0 271'11)2)
+Il (0’ 27r[i/111) + I ( 27r£112 27rw1) + I ( 27r£1)2 : 0)

271'21)1 271'1'1)2 . O)

(= 2 2 I %?mﬁwww+0@%

Starting with the first term of (2.79), we see that asymptotically for large
T,

L22 / / f(v1,v2 / log dt dvidvs
T
(2.80) ~ —log—/ / f(v1,v2)dvidvs.

A little more work is needed for the other terms of (2.79). Next we
consider

(2.81) L227T/ / 1}1,1}2 (2W£U1,@;0)d7}1dv2.

Using the definition of I(ay, ag; ) in (2.2), we will be a little imprecise and
discard any terms that will not ultimately contribute to the leading-order
T log % result. We thus keep only terms with third-order poles as T — oo,
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and the leading-order contribution to (2.81) is contained in

L227T/ /TLf ’Ul,’Ug

t 2”% 27rw1 27rwl 2mivy
x/o ((%) C(1 — 2 (1 4 2mivr) A (2min)
(1 2 2
_ i 7@ __ 2mivy 27rw1 A 2mivy
(277) q¢ 74)C(1+ JA(FE™)
| CC (1 4 27I'Z'U2)
H(55) T Cl - A
<l )
£\ -2 , .
“(57) 7 OB B g
C

(2.82) (14 2 )>dt dvydvs.

¢

Keeping only the polar terms and performing the integral over T' of the
form

27r'w

(2.83) /0 ! (;ﬂ) dt ~ Te 2T,

we find (2.81) is asymptotic to

T [e'e) [e%s) 67271—“)1 672772‘1)1
iy —
/—oo /—oo fon, v2)< i(2m)3v3 (vy — v1) * i(27)3v3vg

—2mivg
dviduvs.
(27r) v3(v1 — v2) + i(27r)31)1v%> v

—2mive

e (&

(2.84)

A similar calculation can be done for

(2.85) L227T/ / f(v1,v2) (07 27rLz'v1 2”“’2)dv1d112,
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and it can be seen to be asymptotic to

T 00 o) e?ﬂ'ivz e27riv2
ot [t (=
21 Jeso J—xo J (v, v2) i(2m)3v 03 z + i(2m)3v3 (v1 — v2)

8—2771'(1)1 —v3) e—27rz(v1 v2)

(2.86)

i(27r)31)1(1)1 — 1)2)2 B i(271’)3'l)2(1)1 — Ug)Q)dvldUQ'
All of the other terms containing a variation of I(aq, ae; 3) can be obtained
from (2.84) and (2.86) by a simple swapping of v; and vy or by changing
the sign of these variables.

After combining like terms, the exponential terms in the integrands of
(2.84) and (2.86) and the other similar integrals sum to

6—271'1'1)1 627rz'v1 627rz'1)1 e—27ri1)1

—— + — - — + —
4imdv?(vg —vy)  dimdvd(vy —v1)  dimdvvg  dimvdug
67271'1'112 627”'1)2 67271'1'1}2 e27riv2

—— +— +— - —
dimdv3(vy —ve)  dimdvd(vy —wg)  dimdvivd dimlvyol

eQTri(vl—vg) e—27ri(v1—v2) e—27ri(v1 —v2)

_4z'7r3v1(1}1 —w9)?  4dim3v (v — vg)? B 4im3vg(vy — v9)?

e27ri('v1 —v3)

4’i7T31)2(Ul - U2)2
sin(2mvy) sin(2mvy) sin(2mvs)

B 2m3vd(vg —v1)  2m3vdue 2w (v — v2)
sin(27vg)  sin (27 (v1 —v2))  sin (27 (v1 — v2))

2
27130103

2.87 .
( ) 271’31)1(01 — 1)2)2 27['3112(1)1 — 02)2

Taking a common denominator, we arrive at

—sin(27v1) + sin(27vg) + sin (27 (v1 — v2))
2m3v1v9(v1 — v2)

(2.88)

and use the identity

(2.89) sinz siny sin(z —y) = ~(sin(2z — 2y) — sin(2z) + sin(2y))

v»mH

to show that all the terms in (2.79
(2.90)
T T [ [ sin (7o) sin (mve) sin (7(v1 — v2))
/ oo U1 MUY m(vy — vg)

containing I (a1, ag; 3) sum to

d’Ul d’UQ.

The I (c; 8) terms are simpler. We start with

(2.91) L227T/ /TLf (v1,v2) [1(() 27”’”2)dv1dv2
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Picking out just the relevant terms from (2.3), the leading-order contribu-
tion to (2.91) is contained in

L227r/ /TLfUhUz / log ( ( +27rw2>

2mivg

(2.92) +(2W) P 2y e(1 - 2’TLZ‘W)A(ZW“JQ))dt dvydvs.
Expanding the zeta functions around their pole and keeping just the

leading-order term, we then perform the integration over 7" and arrive at
the asymptotic result for (2.91) for large T’

e—27riv2
2. —71 — dvydvs.
(2.93) 085 / / f(v1,v2) ( e (27w2)2) v1dvg
We combine th1s w1th
L227T/ / Ul,vg Il( 27TLiv2;0)d1)1d1}2

T T o0 [0 1 e2miv2
2.94 ~ ——log — — duvid
(2.94) 0g / / f(UlaUZ)((27w2)2 (2%@2)2) V1402,

T T [o© [o© 1 2
_—log—/ f(Ul,Uz)(2 - cos( Ww))dvldvg

21 727 Jooo Jooo (v2) 2(mvg)?
2
(2.95) =—— / / f U1,U2)bl? (TF)UZ)dvldvz

Since I (q; ﬂ) only depends on the sum of its two arguments, we see
immediately that in the T — oo limit the I; terms are responsible for

in2 (7(vg— in2 (7 in? (7
_Slnyr2<(v1(v_1v21))§)) - Smﬂ(v;l) B Sm7r2(v§v2) in (2'78)'

3. Random matrix theory

We now use a very similar method to that in Section 2 to derive the triple
correlation of eigenvalues of random unitary matrices. Of course, there are
more elegant methods to do this in random matrix theory (see Section 3.1)
but the point of Section 3.2 is that it helps to illuminate the preceding
calculation of the triple correlation of the Riemann zeros.

If X is an N x N matrix with complex entries X = (z;1), we let X* be
its conjugate transpose, i.e. X* = (y;,) where y;, = Tp;. X is said to be
unitary if XX* = I. We let U(N) denote the group of all N x N unitary
matrices. This is a compact Lie group and has a Haar measure which allows
us to do analysis.
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All of the eigenvalues of X € U(N) have absolute value 1; we write them
as

(3.1) e itz N,

For any sequence of N points on the unit circle there are matrices in
U(N) with these points as eigenvalues. The collection of all matrices with
the same set of eigenvalues constitutes a conjugacy class in U(N). Thus,
the set of conjugacy classes can identified with the collection of sequences
of N points on the unit circle.

Weyl’s formula asserts that for a function f : U(N) — C which is con-
stant on conjugacy classes,

(3.2) /U ) dnar = / £(01,... . 0n)dXx,

[0,2m] N

where

1<j<k<N

%) |2 doy ...doN

N!(2m)N
Since N will be fixed in this paper, we will usually write dX in place of
dXn.

The characteristic polynomial of a matrix X is denoted Ax(s) and is
defined by

N
(3.4) Ax(s) = det(l — sX™) H (1 — se=n)

The roots of Ax(s) are the eigenvalues of X. The characteristic polynomial
satisfies the functional equation

AX _ NHezGH —19"/8

(3.5) = (- detX>k sV AX*(l/s).
Note that
A’ 1A%, 1

These characteristic polynomials have value distributions similar to that
of the Riemann zeta-function and form the basis of random matrix models
which predict behavior for the Riemann zeta-function based on what can be
proven about A. Some care has to be taken in making these comparisons
because we are used to thinking about the zeta-function in a half-plane
whereas the characteristic polynomials are naturally studied on a circle.
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The translation is that the 1/2-line corresponds to the unit circle; the half-
plane to the right of the 1/2-line corresponds to the inside of the unit circle.
Note that Ax(0) =1 is the analogue of lim,_.o ((o +it) = 1.

We let

1
3.7 = .
(37) o) = ——
In our formulas for averages of characteristic polynomials the function z(z)
plays the role for random matrix theory that {(1 + x) plays in the theory
of moments of the Riemann zeta-function.

3.1. Triple correlation by Gaudin’s lemma. Let f(z,y,2z) be a
smooth function which is periodic with period 27 in each variable. We
want a formula for

(33) ()= [ 3 0000 05)dX,
(N)j17j27j3
where the sum is for distinct indices ji, jo, j3. It is a standard result in

random matrix theory that by Gaudin’s Lemma (see, for example, [22] or
[9]), we have

1
(3.9) T5(f) = 2 /[02 » (01, 02,03) det S (6, — 0;) dbs df> db
where
in NO
(3.10) Sn(0) = 2
Sin 5

3.2. Triple correlation via the ratios theorem. We now produce an
alternate method of calculation of the triple correlation for eigenvalues of
unitary matrices. This method mirrors that produced earlier in the paper
for the Riemann zeros, but many steps are cleaner and more obvious in
the random matrix case, not to mention the fact that they are all rigorous.
Therefore the calculation in this section serves to clarify and support the
previous calculation of the triple correlation of the Riemann zeros.
Let

N
(3.11) 9(2) == Ax(e) = [T (1 - eFe™).

j=1
Then, since g(z) has zeros at z = i0; + 2mim, m € Z, by Cauchy’s theorem
we have for an arbitrary holomorphic, 27¢ periodic function f,
N / !
1 g ) 1 A . )
(312) Y10 = 5 [ L) de= = [T/ de

9 — = [ e2X
= cg 2 Je Ax
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where C is a positively oriented contour which encloses a subinterval of the
imaginary axis of length 2. We choose a specific path C to be the positively
oriented rectangle that has vertices § — mi,d + 7i, —d + mi, —§ — wi where
0 is a small positive number. Note that, by periodicity, the integrals on
the horizontal segments cancel each other. Applying this three times, and
replacing each variable by its negative, we have (using the fact that C is
unchanged when z — —z),

N N N

/ > > D F(05r,05,05) dX

J1 1j2=1j3=1
A/ A/ A/
—21—22—23 X, —z X (,—22 e %) dX
(27i)3 /// /(N) Ax(e )Ax(e )AX( )

X f(izl,iZQ,i23) ClZg dZQ dZ1

(3.13)

for a three variable holomorphic periodic function f. Notice that Ms(f)
is like T5(f) except that it is a sum over all triples (ji, jo,j3) of indices
between 1 and N instead of over distinct indices.

Let C_ denote the path along the left side of C from —§ + 7i down to
—0 — mwi and let C4 denote the path along the right side of C from § — m¢
up to d + mi. Ignoring the integrals over the horizontal paths (because their
contribution is 0) we take each variable z; to be on one or the other of the
two vertical paths C_ or C4 . In this way our expression can be written as a
sum of eight terms, each term being a triple integral with each integral on a
vertical line segment either C_ or C;. These eight integrals are analogous to
J1,...,Jg in Section 2.3. As we did for the Riemann zeta function, for each
variable z; which is on C_ we use the functional equation (3.6) to replace

6*21%( %) by N — e% 2 “(e#). In this way we find (using X! = X*)

that
M3<f)=(2;3)356{2;+1}/ / // H( N
(3.14) +eje—€j2jf§:(e—szﬂ‘)> dXx

Xf(izl,iZQ,iZ;g) ng dZQ le.

We next compute the averages over X € U(N) which appear in the above
equation.

We need two instances of the ratios theorem (see [12] or [13] for state-
ments and proofs of this theorem). Recall the definition of z(x) from (3.7).
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(A) Let Ry, R0 > 0.

/ AX(E_O‘)AX*(e_ﬁ)dX z(a+ B)z(y +6)
u(N) Ax(e77)Ax«(e7?) z(a+6)z(8+7)
o~ N(a+B) 2(=8 — a)z(y +9)
(3.15) + (- Bro)z—atq)
(B) Let Ry1, Ry2, RS > 0. Then

/ Ax(e_al)Ax(e_oQ)Ax* (e_ﬁ)dX
vy Ax(e77)Ax(e72)Ax-(e?)

z(on + B)z(az + B)z(n +6)2(y2 +9)

z(on 4 6)z(az +6)z(6 +7)z(6 + 12)

Lo Nerts) (B —an)2(ag — an)z(n +9)2(y2 +9)
2(=B+0)z(ae + §)z(—a1 +71)2(—a1 + 72)

2(=B — ag)z(a1 — az)z(m1 +6)2(72 +9)

2(=0+0)z(a1 + 0)z(—ag + 71)2(—ag + ’)/2).

For application to triple correlation, we need averages of logarithmic
derivatives of the characteristic polynomials. Differentiating the above for-
mulas leads to the following two identities, which are the random matrix
version of (2.3) and (2.2) respectively, remembering that z(z) plays the role

of ((1+ z) and N the role of log % The products and sums of primes in
(2.3) and (2.2) do not have any counterpart in random matrix theory.

(3.16) te~Nlazth)

Proposition 3.1. If Ra, RG > 0, then
& eia AS(*

UN) Ax Ax-

(3.17) = (i) (a+0)+e N (o + B)z(—a — B).

J(o; ) = e P e P)dx

Proposition 3.2. Let Raq, Rag, RG > 0. Then
J(a1, ag; B)

A' A
= _em1—2—f —a\ 2 X* (o=Bygx
. / AX (6 )AX* (e )d

= e Nt () + B)2(—ay — B) (Zz(ag —ag) — Z;(ag + 5))

(3.18) +e N2t (v + B)2(—ag — B) (j(oq — ) — ZZI(Oq + 5)) .

Note that the right-hand-side has a simple pole when oy = —3 and when
ag = —f but is analytic when a3 = as. We also remark that non-constant
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integrals with no X, or no X*, are 0; for example, if ¥a, RG > 0, then

/ /
/ L N dX = / AX* e %) dX
U(N) AX AX*

(3.19) —/ ﬁlx( By dx =o.

Thus, letting dG be a shorthand for f(iz1,i29,i23) dz3 dze dz1, we have,
upon expanding (3.14),

—(2m)3M3(f)=N3/a /67 /7 dc:+/c+ /c+ [ 1 —20) 4G

—|—/ / J(z2, 23, —21) dG+/ / J(z1, 235 —22) dG
c_Jeg Jeg cy Je_ Jey

- /c, /c, /c (J(—=2z1,—22;23) + N(J(—21;23) + J(—22; 23)) dG
_/ /c /,<J<_z1’_z35z2) + N(J(=21322) + J(—23; 22)) dG
(3.20) /c+/ c, (J(—22,—23;21) + N(J(—29;21) + J(—23;21)) dG.

This is very similar to (2.54), except that we have retained three variables
instead of working with the differences zo — 21 and z3 — 21.
Now, by the inclusion-exclusion principle,

To) = M) = [ TGt ) + F 6883
(3.21) + f(ejlvejwejé)) dX

+2/ 0;,0;,0;) dX.
v ; f(05,05,65)
The pair-correlation sums are evaluated much as above. For example,

[ SE RSN &
U(N)

1,33
1
(27i)?

—/ J(Zl; —Zg)f(izl,’i23,i23) ng le
CyJC_

+N2/ / fliz1,i23,123) dzo dz1> .
Cc_JC_

(3.22) (—/ J(—2z1;23) f(iz1,123,123) dz3 dz;
c_Je,
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The one-correlation sum is

(3.23) /U(N) > 1(65,65,605) dX =

JEN

—-N
21

/ fliz,iz,iz) dz.
C_

Now we move all of the paths of integration over to the imaginary axis.
When we do this we encounter some poles and have to use principal value
integrals. For example,

/ / (21, 22; —23) dG
¢, Jey Joo

:/ / J(z1,22; —23) dG
—mi JCq JC—
:/ lim / J(Zl,ZQ; —Z3) dG

— T e—0t [—mi,mi]

|zg—z1|>€
T
= — lim/ lim/7<sz z9;—23) dzg dz
S [y Jim [ o Gz —2) d e
lz2—=1]>¢ |z3—21|>6
—7i lim Res (J(z1,29; —% 121,129,123))dz
lim S Res (J(z1, 225 —23) f(iz1, 122, i23) ) dz2
|zg—z1|>€
(3.24) —mi lim ~ Res (J(z1, 22; —23) f(iz1,122,123)) dz2 | dz1.
e—07t ‘[*7”»7]'1] 23=22
zZ9—z1|>€

The first equality follows because there are no singularities when we move
z1 onto the imaginary axis. In the second, there are again no singularities
when we move 29 onto the imaginary axis, but anticipating what comes next
we choose to write this integral with a limit as € — 0%. Finally, the third
equality takes into account the poles at z; and zo when we move 23 onto
the imaginary axis. To determine the signs of the three terms in the final
equality, remember the the contour C_ is oriented downwards and just to
the left of the imaginary axis. Thus when it is moved onto the vertical axis
it wraps the singularities in the positive (anti-clockwise) direction. Also the
residues are multiplied by 7 instead of 27é because we moved the path onto
a path that goes right through the singularities, i.e. we have not crossed the
poles but rather moved on top of them, and so we have only one-half the
usual contribution of a residual term and the integral in z3 that remains in
the first term of the final equality is a principal value integral.
Now it is easily calculated that

(3.25) Res J(z1,22; —23) = —J(22; —21)
23=21

and

(3.26) Res J(z1,22; —23) = —J(21; —22).

Z3=22
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Thus, we have

(3.27) /C+ /C+ / T(21, 2: —23) dG

= — lim li [—mi,mi] J 21,2925 —X3 dG
/—71-@'e—>0Jr [=mémi] 50+ |23 —z9|>6 ( T )

lz2—21 |z3—21|>6

T
—m’/ lim  J(z25—21) fiz1,i29,021) dz2 dz;
i et ] 1o
|z9—2z1|>e€

T
—m’/ lim J(z215—29) f(iz1,129,122) dzo dz.
i st J [mim

|zg—21|>€

A slightly different calculation gives

(3.28)/ / J(z3,29; —21) dG
_Jey Je,

= —/ / J(Zg,ZQ; —21) dG
—mi JCq JCq

= —/ lim+ (i, i) J(Z3, 225 —21) dG
—mi €0 \2272’1|>5 C+
iy
+7i Res J(z3,20; —21) f(iz1,iz9,i23) dz3 | dz;
—7i F2741 Cy
g
= —/ lim o J(z3, 297 —21) dG
e e—0+ [—7i,mi] C+
|zg—z1|>€

e
—l—m’/ J(z3;—21) f(iz1,i21,123) dz3 dz;
—7mi JC4

after moving z; and 25 onto the imaginary axis. Now we move z3 onto the
imaginary axis and obtain a residual term from each of the two integrals
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above. Thus,

/ / J(Zg,ZQ; —21) dG
C_JCy JCy

s
= — lim / lim [—mi,mi] J 23,29, —Z%1 dZ3 dZQ
Lm <e—>04r [=mé,mi] 50+ |z3—29]>8 ( e )

lz2—z1]>e |z3—21|>6

+mi 51—1>151+ ‘[*’”"TI] Zg’u:ezs1 (J (23, z2; —21) f(iz1,22,123)) dza
zZ9—z1|>€

+7i lim+ i J(z35—21) f(iz1,121,023) dz3
|z3—21|>€

zZ3=21

(3.29) +(7i)? Res (J(23;—zl)f(izl,izl,iz;g))) dz.

Now

Res J(z3,22; —21) = —J (225 —21) and Res J(z3;—21) = —N.

23=21 z3=21

Thus, we end up with

(3.30) / / T(23, 20: —21) dG
c_Jey Jey

g
= — lim Iim | —rirg J(23,29;—21) dG
/—ﬂ—i e—0t ) [=mimil 50+ |z3—2o|>6 ( T )

lz2—=1]>€ |z3—21|>6

s
—m’/ lim  J(z25—21) fiz1,i29,021) dz2 dzy

i e+ ] mim]
|zg—z1|>€

[—7i,mi]

e
—m’/ lim J(z3;—21) f(iz1,i21,123) dzg dz
—mi e—0t
|z3—z1|>e€

—(mi)®N fliz,iz,iz) dz.

—T

By a change of variables we have

(3.31)/ / J(—z3, —29;21) dG:—/ / J(z3,29; —21) dG.
e, Je_ Jeo _Jey Je,

We can also make use of the symmetry J(aq, ag; ) = J(ag, a1; (). In this
way we can use (3.27) and (3.30) to replace all of the integrals involving a
three-variable J in terms of principal value integrals.
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In a similar way we rewrite, for example, the two variable J- integral as

(3.32) / J(Zl; —Z3)f(’i2’1, iZg, iZg) ng dzl
Cy JC-

s

= —/ lim J(z15—23) f(iz1,123,123) dzg dz;
i e—0t [—mi, 7]
|z3—21|>€

T
—miN fliz,iz,iz) dz.

—i

Using (3.14) — (3.32), after the substitutions iz; = 6;, j = 1,2, 3, and some
simplification, we have

1 s
Ty(f) = i i o 16,10y —if
5(f) (27)3 /_,r ei%i/ [ml ot /egeg.La (‘](l 11025 —i03)

[02—071|>e 105 —0]>5
+J(i61,103; —i0) + J(i02,i03; —ib1) + J(—i61, —ibs; i63)
+J(—ib1, —ib03;i62) + J(—i62, —i03;i61)
+N (J(—1i61;103) + J(—i02;i03) + J(—i61;i02)
+J(—if3;i02) + J(—ibo;i601) + J(—ib3;i61))

(3.33) +N3> F(01,04,05) doy dby dbs,

all of the pair—correlation and one-correlation terms having cancelled. The
principal value integrals with the limits in € and § are no longer needed be-
cause it can be checked, using Mathematica for example, that the integrand
here is

(3.34) = ggg SN(Qk — (9j)f((91,92,93)

which is entire. Now our formula agrees with (3.9).
This concludes our alternate proof of triple correlation for unitary ma-
trices.
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