OURNAL

de Théorie des Nombres

e BORDEAUX

anciennement Seminaire de Theorie des Nombres de Bordeaux

Analytic and combinatoric aspects of Hurwitz polyzétas
Tome 19, n° 3 (2007), p. 595-640.

<http://jtnb.cedram.org/item?id=JTNB_2007__19_3_595_0>

© Université Bordeaux 1, 2007, tous droits réservés.

L’acces aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.cedram.org/), implique I’accord
avec les conditions générales d’utilisation (http://jtnb.cedram.
org/legal /). Toute reproduction en tout ou partie cet article sous
quelque forme que ce soit pour tout usage autre que I’utilisation a
fin strictement personnelle du copiste est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/


http://jtnb.cedram.org/item?id=JTNB_2007__19_3_595_0
http://jtnb.cedram.org/
http://jtnb.cedram.org/legal/
http://jtnb.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/

Journal de Théorie des Nombres
de Bordeaux 19 (2007), 595-640

Analytic and combinatoric aspects of Hurwitz

polyzétas

par JEAN-YVES ENJALBERT et Hoance NGOC MINH

RESUME. Dans ce travail, un codage symbolique des séries généra-
trices de Dirichlet généralisées est obtenu par les techniques com-
binatoires des séries formelles en variables non-commutative. Il
permet d’expliciter les séries génératrices de Dirichlet généralisées
'périodiques’ — donc notamment les polyzétas colorés — comme
combinaison linéaire de polyzétas de Hurwitz. De plus, la ver-
sion non commutative du théoreme de convolution nous fournit
une représentation intégrale des séries génératrices de Dirichlet
généralisées. Celle-ci nous permet de prolonger les polyzétas de
Hurwitz comme des fonctions méromorphes & plusieurs variables.

ABSTRACT. In this work, a symbolic encoding of generalized Di-
richlet generating series is found thanks to combinatorial tech-
niques of noncommutative rational power series. This enables to
explicit periodic generalized Dirichlet generating series — particu-
larly the coloured polyzétas — as linear combinations of Hurwitz
polyzétas. Moreover, the noncommutative version of the convo-
lution theorem gives easily rise to an integral representation of
Hurwitz polyzétas. This representation enables us to build the
analytic continuation of Hurwitz polyzétas as multivariate mero-
morphic functions.
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1. Introduction

Technologies of generating series (g.s.) and of generating functions (g.f.)
on one variable are basic tools required for asymptotic, complexity and
probabilistic analysis of combinatorial and discrete structures. These tech-
nologies play a central role in several application areas like in arithmetics,
statistic physics, algorithmic information theory [8], analytic combinatorics
[10] and analysis of algorithms, .... This makes the natural link between
these structures and complex analysis and exploits intensively the associa-
tion between ordinary generating functions (o.g.f.) and exponential gener-
ating functions (e.g.f.).

In this paper, we will study the association of 0.g.f. and of a generalization
of Dirichlet generating functions (D.g.f.) [22]. The value at 1 of a D.g.f is
a Dirichlet generating serie (D.g.s); for example Riemann polyzétas [26],
defined by

(1) C(s1,...,87) = Z e
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are D.g.s and Hurwitz polyzétas [27], defined by

(2) Clstyeevspitioet) = !

e, (n1 —t1)51 ... (n, — )5’

are Parametrized D.g.s. Reciprocally, we show that 'periodic’ Parametrized
D.g.s. (and so periodic D.g.s.) can be written as a finite combination of Hur-
witz polyzétas (see Proposition 3.3). It is notably the case for the coloured
polyzétas as described by Equality (49). This equality enables us to give
the expression of any Hurwitz polyzéta as a finite combination of coloured
polyzétas (Proposition 3.4).

On the other hand, the moment sum of index ! of basic sign algorithm
is given by [17]

1 2 1
(3) =14+ —.
202 d<§<:2d dd
But
1 1 1 1
Z a1 Z ﬁ_ZE_Zﬁ’
deacad €4 [Gycd ot gcd
1 _ 1+ (=1)°
> -y e
S cldl o clel
(4) Z (71)6 _ 272l 21: (_1)(1 Z 1
i ] T
0<c<e ce a—b,b=0 n>m>0 (n + a/2) (m + b/2)

Hence, the moment sum of index [ can be expressed in terms of polyzétas :

,(1)7l_ I C(lal)
=5 1+ (2 2)«21)

—1 ! - aC(Ll?_a/Z _b/2)
(5) + 2 G%ZO( 1) C(2l) :

This motivates this study of polyzétas. First, we recall some combinatorial
aspects : bi-algebra structure of Riemann polyzétas and of Hurwitz polyzé-
tas [27], shuffle relation of Hurwitz polyzétas (equality 44). This combina-
torial study give easily rise to an integral representation of Hurwitz polyzé-
tas [21]. From this integral representation of Riemann and Hurwitz zéta
function [7], we can deduce their analytic continuation and the structure
of their poles. Unfortunately, in the multivariate case, several singularities
appear and the ’classic’ method can only treat one of them. In a preprint
[20], Goncharov remarks that continuing with only one variable in turn by
turn is not admissible because the result depends on the selected path. He
suggests so to use a distribution to obtain the analytic continuation. This
method operates in the univariate classic case with only singularities near
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zero [18], and still remains to be adapted in the multivariate case. Gon-
charov builds a tensor product of distributions, each distribution having
to regularize each variable. But, in the multivariate case, there appear two
singularities for any variable, and Goncharov use a product of distribu-
tions in same variable to expand these singularities. Moreover, to get the
structures of the poles, he works with a formal development in an infinite
multi-sum without considering the “problems of convergence”. We define
and study the distribution (the regularized distribution) which enables to
get the continuation of Hurwitz polyzétas. We also give the structure of
their poles. Thanks to the decomposition of periodic D.g.s. into sums of
Hurwitz polyzétas (Proposition 3.3), we can derive the continuation of pe-
riodic D.g.s. and the structure of their poles. In [15], Ecalle suggests to use
the equality

1 XIr(s+k
(6) _ Z ( )n—s—k
(n—1)* = T(s)k!
to get a relation between ((s) and its translates, in order to build the
analytic continuation of the Riemann polyzétas. So have we, in a similar
way, calculated a relation between Hurwitz polyzétas and its translates.

This paper is a continuation of [26, 27]. It is organized as follows :

e Section 2 gives the background of the classic case of single Dirichlet
series (Subsection 2.1) as the guide for our developments in the next
sections and the combinatorial techniques on formal power series
(Subsection 2.2) as technical support for our results. We give the
encoding of iterated integrals by noncommutative variables (Sub-
subsection 2.2.2) : to encode the polylogarithms (Equality 30) and
the Riemann polyzétas (Equality 32). In particular, we describe the
convolution theorem in noncommutative version (Equality 25) in or-
der to obtain in the next section the multiple integral representation
of some special functions.

e In Section 3, we introduce the generalization of the Dirichlet gen-
erating series (D.g.s.) from Definition 3.1, of Parametrized D.g.s.
(Definition 3.1), of Dirichlet generating functions (D.g.f.) in Propo-
sition 3.1 and of Parametrized D.g.f. (Proposition 3.2), associated
to sequences of complex numbers. When the sequences are periodic
with same period, we give the explicit expression of generalized
Parametrized D.g.f. as finite sums of Hurwitz polyzétas (Proposi-
tion 3.3). So, we obtain the explicit expression of coloured polyzétas
as a finite combination of Hurwitz polyzétas (Equality 49). Recip-
rocally, we calculate the explicit expression of Hurwitz polyzétas as
finite sum of coloured polyzétas (Proposition 3.4). Next, we use the
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convolution theorem to get the integral representation of general-
ized D.g.f. (Proposition 3.5) and generalized D.g.s. (Corollary 3.2)
: in particular these combinatorial techniques give easily rise to an
integral representation of Hurwitz polyzétas.

e Section 4 contains the main results. In Subsection 4.1, we show
the Hurwitz polyzétas have a meromorphic continuation over the
entire space. For that, we define (Definition 4.1.2) and study (Sub-
subsection 4.1.2) the regularization near 0, aiming at building the
regularization between 0 and 1. This study enables to know the lo-
calization and the multiplicity of the poles (Theorem 4.1). In Sub-
section 4.2, we calculate the regularization in some case in order to
get the structure of Hurwitz polyzétas poles (Theorem 4.2). Lastly,
in section 6, we note that this result give the analytic continuation
of the periodic Paramatrized Dirichlet generating series, so of the
colored polyzétas functions.

e We give the relation between translates of Hurwitz polyzétas (Propo-
sition 5.1) in Section 5. Then we discuss about the possibility to
deduce the analytic continuation from this relation.

2. Background

2.1. The univariate zéta function.

2.1.1. Ordinary and Dirichlet generating series. Any complex num-
bers sequence {f;}r>1 can be associated to the ordinary generating series
(0.g.s.) and to the Dirichlet generating series (D.g.s.)

(7) F(z) = Z frz® and Di(F;s) Z

k>1 k>1

We associate also {fi}r>1 to the following power series generalizing the
o.g.s. F'(z) as well as the D.g.s. Di(F';s) [22, 27] :

(8) Dis(F|2) kaks, 2| < 1.
k>1

Example. If F'(z) =
rithm Lis(z) and Di(1;

1(z) = z/(1— z) then Di4(1|z) is the classic polyloga-
s
in the region {s € C: R

) is the Riemann zéta function {(s) which converges
(s) >1}:

n

Diy(1]2) = Lis(z) = 3 % and Di(1;s) Z -

n>1 n>1
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In particular, if {f;}r>1 is periodic of period K then Di(F;s) can be
expressed as a linear combination of classic Hurwitz zéta functions,

1 = i
(9) Di(F;s) = s Z fi€(s; _E)’
i=0
where
1
(10) C(s;t) = nZZ:l I and t ¢ Ny.

Recall also that this Hurwitz zéta function ((s;t), converging in the region
{s € C: R(s) > 1}, is the special value at z = 1 of the classic Lerch function
verifying ®4(z;0) = Lis(2),

n

z
(11) @S(Z7t) = Zm, for t¢N+
n>1
Example. Let j be a primitive cubic root of unit. Then
k 2
J J J 1
=1 ks nz>:1 (3n —2)s n§>:1 (3n —1)® nz>:1 (3n)s
1 2 9 1
= 3 C(si 3) +77¢(s: 5) + ()]

2.1.2. Singular expansions and Mellin transform. To get an asymp-
totic expansion of the meromorphic function F, defined over an open set
containing the set S of its poles, we use

Definition ([16]). The singular expansion of F is defined by the formal

sum N
Z Z ck,p(z_p)k7

pES k=—00
where ¢y, is the k-th coefficient of the Laurent series of F' at the pole p,
and we note

-1
F(z) < Z Z i p(2 —p)k.

peES k=—00

Example.
1 1 1 1
—— < -+ — .
2(z—=12" 2z (2—-1)2 2z-1
In fact, the D.g.s. Di(F;s) can be obtained as the Mellin transform of
F(e™*)/I(s) :

o [®F(e) du _ [Ylog* (1/r) dr
D1(F,s)—/0 ) ul—s_/o EEOEALrS
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Example. Let F(z) = z and G(z) = z/(1 — z). The Gamma function,
I'(s), and the Riemann zéta function, ((s), can be then defined as a Mellin
transform of F'(e™%) and G(e _Z)/F( ) respectively :

F(s):/ooo u1 . —/ log®~ 1 (1/r)dr,
C(s):/ooo Gr(?; _/1 log®~( 1/T)G(r)

ul—s r

There is a correspondence between the asymptotlc expansions, via Mellin
transform, of F' at 0 and oo and the singularities of Di(F’;s). Conversely,
under some conditions, the poles of Di(F’; s) induce the asymptotic expan-
sions of F'. This mapping properties are conveniently expressed in terms of
singular expansions [16].

Example. Since e7* = Y, 5 (—2)"/n! and G(e™*) = u™' Y50 By /k!,
where By, is the k-th Bernoulli number, then I'(s) and {(s) can be expressed
as follows

(—)m 1 By, 1
I'(s) < d = .
() nz>:0 nl stn o0 ¢(s) ;.;o ET(s)s—1+k
Therefore, I'(s) has no zeros and the residue at the pole s = —n of I'(s) is

(—1)"/n!. By cancellation, one can deduce the Riemann’s result saying that
((s) has an analytic continuation to the complex plane as a meromorphic
function, with only one simple pole of residue 1 at s = 1.

2.2. Symbolic computations on special functions.

2.2.1. Formal power series. Let X be a finite alphabet. The free monoid
generated by X is denoted by X*. It is the set of words over X. The empty

word is denoted by ”"¢”. We denote by X the set X* \ {e}. The shuffle of
two words u and v is the polynomial recursively defined as

(12) cwu=vwe=1u and auwbv = a(uwbv)+ blauwv),

for a,b € X and u,v € X*. The shuffle product is extended by distributiv-
ity to the shuffle product of formal power series. Let A be a commutative
C-algebra. We denote by A(X) (resp. A{X))) the ring of noncommuta-
tive polynomials (resp. formal power series) with coefficients in A. The
C-module A{(X)) equipped with the shuffle product is a commutative A-
algebra, denoted by Sh(X). A formal power series S in A{(X)) can be
written as

(13) S:Z<S|w)w
weX*

Let S be a proper formal power series (i.e. (S|e) = 0), the formal power
series S* and ST are defined as S* =1+4+...+ 5"+ ... = 1+ SS* and
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ST = §S* respectively. The polynomials are defined as formal power series
with finite support. The shuffle product is extended by distributivity to the
shuffle product of formal power series as follows

(14) SwT = Z (S|lu)(T|v) uww.

u,veEX*

2.2.2. Words and iterated integrals. Let us associate to each letter x;
in X a 1-differential form w;, defined in some connected open subset U
of C. For all path zg ~» z in U, the Chen iterated integral associated to
w = x4, - - x;, along zp ~» z is defined recursively as follows

(15) /wil---wik / wi, (1) / Wiy * * * W, -

20~ 2 202 20~ 21

In a shortened notation, we denote this iterated integral by of (w) with
z

aZ (e) = 1. More generally, if F'(z) is analytic, and vanishing at 2o, one
puts
(16)  af, (@ wi i F) = [ w0l (@ m F)

202
and of (e; F) = F(z).

Observe that these notations are related to a choice of the differential
forms w; associated to x;. Recall also that af(e) # og’(e) 4+ o (€) (this
could imply 1=1+41!). Thus iterated integral is not ordinary integral since
additivity, in particular, is not satisfied for w = € and it is replaced by the
rule (17) of the following properties :

e Rule of concatenation of paths. For any word w € X*, one has, for
any p € U,

(17) a(w)= Y ab(waj(v).
u,vEX* uv=w

e Rule of integration by parts. For any words u € X* and v € X*,

one has
(18) az, (vwwv) = oz, (u)ajo (v).
e Rule of inversion of path integration. For any word w € X*, one
has
(19) aZ, (w) = (=Dlaz (@).
Here, @ stands for the mirror of w and (—1)!“l@ is the antipode of
w.
e Rule of change of variables. For any word w € X*, one has
(20) a9 (w) = g*aZ, (w),
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where g*a7 is the iterated integral of the path zp ~ z with respect
to the differential forms g*w (the reciprocal image ¢g* of w).

2.2.3. Iterated integrals and noncommutative convolution theo-
rem. For
any polynomial S (resp. formal power series up to convergence [30]), one
defines [21]

(21) aZ,(8) = Y (Slw)as, (w).

weX*
With the previous notations, according to the rule of integration by parts,
one has

(22) 07 (SwT) = oz, (S)a, (T).

20
Indeed, it is true if S and T are two words, it is also true (by distributivity)
if S and T are two noncommutative formal power series. In other words,aZ
is an homomorphism from (A{(X)),w) to A.

Let ¢; be a primitive of w;, for j = 0,...,m. For any exchangeable formal
power series H, the iterated integral associated to H can be expressed as
follows [21]

(23) H= Yl 20w wapr,
10, ;Nm 20

1o, nm >0

Example. For any letters xj,z; € X, and any n € N,

g = [ PO GO,

n!

202

"2 [ el
:Z¢u./[g2&“W%

=0 202

azo(x;kxk) = / esaj(z)fgoj(s)wk(s)

20~ 2
— 690.7'(2") / e_cpj(s)wk(s).
202

More generally, if F' is analytic and vanishing at zg, the convolution
theorem yields [21]

(25) o (H; F) = / hlpo(z) = @o(s), -+ om(2) — em(s)]dF (s).

202
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Example. For any letters z;,z; € X, and any integers n, m,

n [ 2 —0.i(s n—l
Oéo,v(x?;F):Z%l(! : / | ((fz](—)l])' dF(s),

=0 202
n o m k n—l m—k
5 ( )/[—903‘(8)] [—i(s)]
g (2] wa F) = dF(s),
( Z:kz:% l'k' S (n =0 (m —k)! )
o (2% F) = e#5) / e #1O) P (s)
20~2
al (2 wal; F) = e#i(2)+9i2) / e PP g (s).
20 2

2.2.4. Polylogarithms, multiple harmonic sums and polyzétas. The
composition s = (s1,...,s,), i.e. a sequence of positive integers, is said to
have depth equal to r and weight equal to >;_; s;. The empty composi-
tion is denoted by e = (). The quasi-shuffle product of two compositions

r=(ry,...,7x) = (r1,r') and s = (s1,...,5) = (s1,8) is defined as
(26) ree=ewr=r

and

(27) rws = (r,r' ws) + (s;,rws’) + (r; + 51,1’ ws').

To s we can canonically associate the word u = zg' ™~ Loy, xf{_lxl over the

finite alphabet X = {xz¢,z1}. In the same way, s can be canonically associ-
ated to the word v = yq, ...ys, over the infinite alphabet Y = {y1,v2,...}.
We obtain so a concatenation isomorphism from the A-algebra of compo-
sitions into the algebra A(X)x; (resp. A(Y)). We shall identify below the
composition s, the correspondent word v € X*z; and the correspondent
word v € Y*. The word u € X* (resp. v € Y*, resp. the composition s) is
said to be convergent if s; > 1.
The polylogarithm associated to the composition s is defined as
z™
(28) Lis(z) = Z TR for |z| < 1.

ni>.>n>0 1 00T
Let wg and w; be the following differential forms

(29) wo(z) = % and wi(z) = dz

1—2z
One verifies that the polylogarithm Lig is the iterated integral with respect
to wp and wq :

(30) Lis(z) = af(u), forall |z] <1,
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where u = 3381713:1 .. .:B(S{_lznl is the word corresponding to s in X*z.
>From this representation integral provides the meromorphic continuation
of Lis for z over the Riemann surface of C\ {0, 1}. Note that the polyloga-
rithms, as iterated integrals, verify the shuffle relation :

(31) Lisws (2) = Lig(z) Lig(2), for all |z| < 1.

If s is a convergent composition, the limit of Lig(z) when z — 1 exists and
is nothing but the Riemann polyzéta ((s) [41] :

. . 1
(3 ImLiG)=alw= Y g =((s).
ny>..>n.>0 1 T
One thus has a encoding of the polyzéta ((s) in term of iterated integrals.
For 1 <r < N, let s = (s1,...,8:). The finite polyzétas (or multiple

harmonic sums) (y(s) is defined as (see [30])
(33) nvis) = > -

1 Sp °
N>ni>..>n.>0 .-

and (y(s) =0 for 1 < N < r. For r =0, we put {p(s) = 0 and (n(s) = 1,
for any N > 1. These can be obtained as the specialization in the quasi-
monomial functions (see [38])

(34) Ms(t)= > Lty

n1>...>n>0
at t; = 1/i1if 1 <i < k and t; = 0if ¢ > k. Let us extend linearly the
notation Mg when s is a linear combination of compositions. If r (resp. s)
is a composition of depth r and weight p (resp. of depth s and weight q),
My 145 is a quasi-monomial function of depth r + s and of weight p+ ¢, and
one has

(35) Mg \or = Mg M,.
Therefore,
(36) (n(swr) = (N (S)CN(T).

For s; > 1, the limit when N — oo of {x(s) is nothing but the polyzéta
((s) [41], and thus by an Abel’s theorem,

1

nyt..onp

=((s).

(37)  lim (n(s) = lim Lis(z) =
N—oo z=l 1> >ne>0
The asymptotic expansion of (x(s), for N — oo, was already treated by use
of Euler-Mac Laurin summation [12] or by use of a full singular expansion,
at z = 1, of its generating series 3"y (v (s)2Y [11].
Let us come back to Equality (37). On the one hand, the polyzétas ¢(s),
as limits of the polygarithms Lig(2), verify the shuffle relation. On the other
hand, the polyzétas ((s) can be obtained also as the specialization of the
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quasi-monomial functions at ¢; = 1/4, for i > 1. So, if two compositions r,s
correspond respectively to the two convergent words [, [, then we get on
the convergent polyzétas the three families of relations (see [23]) :

(38) C(lrwlz) = ¢(l1)C(l2),
(39) C(lrwlz) = C(11)¢(l2),
(40) C(xl uull — 1 ll) =0.

The first two families are called the double shuffie structure. The third
family involves the polynomials 21 wly — 1 wlj that are convergent, even
when the two sums ((z1 wly) and ((x1 w ;) are divergent. These divergent
terms can be regularized syntactically with respect to the associated shuffle
products as explained in [27, 28]. Note that we only have to study that point
over a generator family : the set of Lyndon word [23].

3. Generalized D.g.s. and their integral representation

By now, r stands for a positive integer. Let T = {t1,--- ,t,} and T =

{t1,--- ,t;} two families of parameters connected by the change of variables
ti=t+-+1i, b=t —ty,
to="ta+ -+, ty =12 — 13,

(41) . — .
tp = t. ty =t,.

For i = 1..m, let us consider the locally integrable function' F; and the
following associated differential 1-forms

dz dz dz
(42) wo(z) = — wi(z) = F,-(z)7, w;7,(2) = Fi(z)zlﬂi'
For any composition s = (s1,. .., s,) and for any formal variables t1,. .., t,,

we use the short notations t for (¢1,...,t.), (s;t) for (si;t1),...,(sr;ty)
and F for (F;,,..., F;,).

3.1. Definitions and basic properties. Here, we consider the case

(43) Fi(z) = Z finz", for i=1.m.

n>1

Definition. The D.g.s. associated to {F;};=1. . given in (43) is the sum
D](F, S) — Z fi17n1_n2 st fir—lanr—l_anirynr .

nt .. ny

n1>...>n>0

We get the following iterated integral interpretations :

INote that, here F is not necessary the function (1 — z)~! except when m = 1 and it is in
the case of (29).
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Proposition 3.1 ([22]). Let iy, ...,ip = 1,..,m and let w = x5 2y, ...
mé’“flxu associated to s. With the differential forms wgy,w1,...,wm of

(42), we get
z(w) _ Z fi1,n1—n2 . fir71,nr71—nrfir,n,« oy

nit ..oy

ny>...>ny

We call Generalized D.g.f. Dig(F|z) associated to {F;}i=1 m given in (43)
this previous iterated integral. In particular, Di(F;s) = Dis(F|[1) = of(w).

Example. Let z = (z1,..., z). For the o.g.f.

Fi(z) = T with |zi] <1, for i =1..m,
1— 2z
with the differential forms wp, w1, . ..,wn, we have [22, 27]
ni—nsg Nr—1—Nr _n,
2] e zpl 2
ag(w) - Z nst s ner — 2",
n1>...>n>0 I
and Di(F},..., Fy;s) is nothing but the multiple polylogarithm [4, 19]

. . 2 (2o /21)™2 .. (2 ) 21T
Lis(z) = Lis(21,...,2,) = Z 1 (2/ )51 (S:/ r-1) .

ni'...n;

n1>..>n,>0

Definition. The Parametrized D.g.s. associated to {F;}i—1. m, given in (43)
is the sum

Di(Ft; s) — Z fh,m—nz s firfl,nr,l—nrfir,m .

n1>...>ne>0 (n1 =) .. (ny — 1)

Proposition 3.2 ([22]). Leti1,...,ip = 1,..,m and w =z ‘xy, ...

.. .xérlx” assoctated to s. With the differential forms wo,w; g, .-

of (42), we get
Z(w) — Z fi1,n1—n2 e fi’l‘—17n’l‘—1_n7“fi7'7n7' anftl .

ny>...>n, (TL]_ - tl)sl e (nr — tr)sr

y Wiy, tm

We call Parametrized D.g.f. associated to {F;}i=1.m given in (43) the pre-
vious iterated integral. In particular, Di(Fy;s) = o (w).

Example. Let z = (z1,...,2,). For the o.g.f.

ZiZ
Fi(z) = ] : with |z;] <1, for i =1..m,
— Ziz
with the differential forms wo,w; 7, ..., w,, 7, , we have [22, 27]
ZMTn2 | I AT
aé(w) — Z 1 r—1 T an—tl’

s, (M —t1)% o (ny — ty)°r
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and Di(F1,..., Fy;s) is nothing but the multiple Lerch function

2P (22/21)"2 .. (20 2™

10\ —
ao(w) = (n1—t1)%t ... (np —tp)"r

n1>...>n>0

Therefore, as iterated integral, the generalized and the parametrized
D.g.f. and the generalized Lerch function verify the shuffle relation (38)
over the alphabet {zq, ..., 2} [22]. In particular, their special values ver-
ify this kind of relation.

3.2. Periodic D.g.s and Hurwitz polyzétas.

Definition. The generalized Lerch function is defined as follows
Dg(z;t) z™M for 2]
at)= ) or |z < 1.
’ ni>->n>0 (nl - tl)sl e (nr — tr)ST

The associated Hurwitz polyzéta is defined by

1
((sit) = = Dg(1;t).
n1>-§>:nr>0 (nl - t1)51 cee (nT - tT)ST °
With the notation of Example 3.1, z; = ... = z,. and for t fixed, the
generalized Lerch function appear as an iterated integral and so verify the
shuffle product. Consequently, as z tends to 1, for any convergent compo-
sitions s and &/,

(44) C(sws'st) = ((s;t)((ss t).

Note that the Hurwitz polyzétas can be also encoded by noncommutative
rational series

(45) R (2 70) M Tl (A b

as given in [27] with two differential forms wp and w;.

These polyzétas contain divergent terms which are looked at via syn-
tactic regularizations of divergent Hurwitz polyzétas with respect to the
associated shuffle products as in [27, 28]. Note also that if t; =ty =--- =0
then ®g4(z;0) = Lig(z) and ((s;0) = ((s).

Proposition 3.3. If the {fin}tn>1 for i = 1..N, are periodic of the same

period K then with the differential forms wo, w3, ;... ,wy, 3 . we have

1 K-1
Di(Fi;s) = ——— i .
( t ) KZl:l s bl,.%:r:() fl1,b1 fZT7b’r
=i b t—b,
K

Cl(s1; )y s (805 K )IE
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Proof. Let us sketch the proof in case of r = 2 :

Di(Fy;s) = Z Jirni—ns fizna

ni>ng >0 (nl B tl)SI (n2 B t2)82

_ Z fi1,m1 fi2,m2

(m1 +mg — t1)%1 (mg — tg)%2"

m1,m2>0

The assumption of periodicity gives f; .1k = fir forallk > 1 and i =1,2.
Therefore,

Dl(Ft, S)

K-1
Z Z fil,m1K+b1 fig,mgK—i—bg
[(m1 4+ ma) K + by 4 by — t1]51 (ma K + by — t9)*2

b1,b0=0m1,m2>1

1
Z fil’blfi2’b2 Z (an + bl + b2 — tl)sl (ngK + b2 - t2)52

b1,b2=0 ni>ng2 >0

1 - tl_(b1+b2) to — by
K51+52 Z fll:blflz,b2<[<51;K> (827 K >:|

b1,b2=0

The proof is easily generalized for any positive integer r. O

In other words, if { fi »}n>1 are periodic of the same period K then gen-
eralized D.g.s. is a linear combination of Hurwitz polyzétas. In particular,
if fiyn=...= fi.n =1, for n > 1, then one can generalize the well known
result for the Riemann and Hurwitz zéta functions.

Corollary 3.1. For K € N, one has

. — 1 Zl 1bl _tr_br
C(Svt)—m Z Clls1; ——=—) -5 (5 % )]

b1,.. ) ab'r—o

Now let ¢ = €2™/™ be a m-th primitive root of unity. For any inte-
gers iy, ...,i,, we will use the notation ¢! for ¢'',...,¢". Let Q(q) be the
cyclotomic field generated by gq.

Let us introduce also the o.g.f.

(46) Z q"2", for i=1.m.

The coloured polyzétas are a particular case of periodic D.g.s. Di(F;s) and
they are defined as follows (for 0 < iy < ... <i, <m —1) [3, 4, 19]

S qim1 e qiT”T
(47) C( ) = > s
¢ n1>...>n.>0 Ny ..M
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In other terms, these can be obtained as a special value at z = 1 of the
following D.g.s. associated to {Fj}i—1, . m given in (46)

s 1 -1 =1
(48) €<qi1’qi2i1 ._.’qirwﬂ) =gy Ty - Ty T,

So these verify the first shuffle relation (38) over the alphabet {xo, ..., zm}.
By Proposition 3.3, the periodicity of {¢"},>1 enables then to express the

coloured polyzétas as linear combinations of Hurwitz polyzétas with coef-
ficients in Q(q) [27] :

m—1
(5o Y eeed)
m =1

q* m
a1—a2,...,ar—1—ar,ar=0

Here, a/m stands for (a1 /m, ..., a,/m). Consequently, these coloured polyzé-
tas ¢ (qsi) (with 0 < 4, < m — 1) are linear combinations, with coefficients
in Q(q), of the rational parameters Hurwitz polyzétas ((s;—a/m) with
a1 — G2,...,0r—1 — ar,a, = l..m. They can also be viewed as the evalua-
tions, at the m-th primitive root of unit ¢ of some commutative polynomi-
als on the QQ-algebra of Hurwitz polyzétas. The reader can find the shuffle
structures of Hurwitz polyzétas in [27] inducing then the shuffle structures
of Riemann polyzétas. Conversely, by the distribution formula, we have a
partial result [30] :

Proposition 3.4. Let a = (ay,...,a,) be a composition. If the parameters
a; satisfy the conditions 1 < ay — aa,...,ar—1 — ar,a, < m then
a T m_l ™ . s
C(S; ——) = le:l S1—T Z q Zl:l ZlalC .
m i1pir=0 ¢

Proof. Let us set s and let

. 1 81,82,...,8¢p
f) = qil---"rirc<qi1’qi2—i1 g )
g(c) =((s1,..., 83 —ar/m,...,—a,/m),

with a; = (¢; +1)+ (¢j41+1) ...+ (¢r + 1), for j =1...7. Let us consider
the lexicographical order on the index set

IZ={i=(i1,...,ir) €{0,... m—1}"}
and on the index set
C={c=(c1,...,¢)€{0,... m—1}"}.

Then (f(i));.; (resp. (g(c)) o) can be viewed as the entries of a column
vector F (resp. G) of dimension mr.
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Let M(q) be the matrix (c]ij)o<l.].<mi1 of determinant
(50) dtM(g)= [ (@'—d¢)#0
0<i<j<m—1

The inverses of M(q) and of the r-th tensor product of M(q) are given by
(51) M(q)"'=m"'M(¢"") and [M(q)*"]"=mTM(¢ )"

By Corollary 3.1, we get

(52) F =m 00 (q)*'G and G =m™ "M (g 1)¥"F.

Or equivalently,

m—1 qilcl‘l’u-“l’i'rc'r

fA) = Z Wg(c)a

m—1 m31+...+sr77“

g(c) = Z Wﬂl)
=0

ilvn'viT

Hence, by setting b; = ¢;+1 (thus, by = ag—aq,...,br—1 = ap—1—a,, b, = a,
and bj =1...m) :

_ mz—l ms1+...+s7\—7‘C< $1,89, ..., 5, )
A q11b1+.-.+zrbr g, gz .. gir—ir-1

By changing the indexes j; = ¢1 and jp4+1 = %41 — tn, OF equivalently i, =

Ji+...+jn (mod m) We get qi1b1+---+irbr — qj1b1+(j1+j2)b2+...+(j1+...+jr)br —

girartFirar Jeading to the final result. O

Example. We get in particular :

a st (s
e For 1 <a < m,C(s;—) = Z — C( z) Thus, some con-
m i—0 4 q
stants like Catalan number which can be expressed as numerical
parametrized Hurwitz polyzétas

_ GV SV 1
G_7§(2n—|—1)2_16[<(2,_4)_C(274)]

can so be expressed on coloured polyzétas.
e For 1 < aj; —as, as < m,

a1 a L msts? (g s
Clsmsa——i—— )= > itz O\ v gin |-
m m 1a1 202 ql’q2

iryiz=0
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Moreover, we now can express the D.g.s. of periodic sequences { f; , }n>1
as coloured polyzétas, as a direct consequence of propositions 3.3 and 3.4
[30] :

(53  DiFis) = = 3 gf fiuty o Jinbe o0

7 e =1t =0 g2i= ¢)
where the parameters a; are defined as the sum by +...+b;, forj=1...7.
Note that the same expression holds in the case of the first member of (53)

is a coloured polyzéta. It can be viewed also as the consequence of Corollary
3.1.

3.3. Integral representation of Hurwitz polyzétas. Let F' be an o.g.f.
vanishing at z = 0. The associated D.g.f. Dis(F'|z) can be obtained from of
F(z) via the polylogarithmic transformation as follows [22, 27|

Lemma 3.1. The Dirichlet function Dis(F|z) can be represented as

Proof. Since
. _ Z log®1(z/t) dt
Diy(F|z) = ZSII’:/——————F —
W(FI2) = aj(eg s F) = [ SR )

then the changes of variables ¢ = zr and r = e lead to the expected
expressions. O

Example. If fi(z) = 2!7t/(1 — 2) then Di4(f;|2) is linked to the Lerch
function ®g(z;t) by Dis(fi|z) = 271 ®(z;t). We deduce the expression of
the Lerch function

1ft ftze“
1 _
zt—z/loS / uls

so the D.g.s Di(fy;s) is nothlng but the Hurwitz zéta functlon
1 ft dr ft —u du
(s;t) / log

ulfs ’

Recall also that
e~u(1-Y) Bi(t) 11

e Ui U

k>0

where By(t) is the k-th Bernoulli polynomial. Thus, by the Mellin’s trans-
formation, one obtains, for ¢ < 1, the regular expansion for the Hurwitz
zéta function

e Br(h) 1
“&”“g;mw@s—1+w
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saying that ((s;t) has also an analytic continuation to the complex plane
as a meromorphic function with only one simple pole of residue 1 at s = 1.

We first have to consider the D.g.s. with integer arguments. But this
can be studied as a complex function of s; = o; + iy, for i« = 1,..,r,
with o1 > 1,00 + 09 > 1,...,01 + -+ + o, > 1. Either, if the power
series F;(e™ %) has a suitable asymptotic expansion at 0 and at oo then the
Dirichlet generating functions associated to the sequences { fin }n>1,i=1,..~
are meromorphic functions in C" and are given by

Proposition 3.5. The function Dig(F|z) can be represented as

Dis(F|2) / Hlo B 1 —F”(ZH’ 1) du
0,1]r 32

I'(s;) U
/ H Z] (ze Zz 14 du
= T
T+j 1 ) uj >

where w41 = 1.

Proof. The proof can be obtained by induction on r and by use of Lemma
3.1. O

Therefore, by taking z = 1, one finally gets

Corollary 3.2. The generalized D.g.s. can be represented as

Di ( / H 10g8j_1 1 FZJ (Hl 1 Ul) dU‘J
[0,1]"

uj L(s;)  uy
/ 1) dug
¥ 7=1 Sj) ’U,Jl»isj .

where up411 = 1.

For z = 1, the polylogarithmic transformation corresponds to the Mellin
transformation and one obtains the D.g.s. Di(F/T'(s); s) associated to F'(1)/T'(s)

with F(7) = 33> fed® and ¢ =77

Example. Let s’ = (so,...,,) and F' = (F},,..., F;,). By Lemma 3.1, the
Dirichlet function Dig(F|z) is a polylogarithmic transform of the function
F;,(z) Dig(F'|z) :

7 t

Dig(F log®1 1
is(Fl2) = /Og ( T(s1) ¢

/OO F; (ze7") Dig/(F'|ze™t) dt
0 F(Sl) tl=s1’

1, F}, (2t) Dig (F'|2t) dt
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and the D.g.s. Di(F;s) is a Mellin transform of F;, (e=*) Dig (F'|e=%)/T'(s1).
Therefore, by Corollary 3.2, Di(F;s) can be viewed as a multiple Mellin

transform of the multivariate function []’_; F;;(e™ i “) /T (s5).
Corollary 3.3. Let f(z;t) = 2 7t/(1 — z) We have

_ f(Hl LUt )du]
S t / 10 Sj 1 _—
o L H 5 s

S e

+ 1=1

Therefore, in this way, the Hurwitz polyzéta ((s;t) can be viewed as a
multiple Mellin transform of the multivariate function

1=1 Y- r e1=%) ; 1
(54) Hf Z i) ! ne

ZHl P(si) ] _ e~ Doy
Its poles are Yi_;u, for i € {1,...,r}. To isolate the poles, we use the
next proposition.

Proposition 3.6. Let s be a composition of depth r > 2 and t €] — oo, 1[".
Then,

T

-1

oo g (1-F )y y2e=1 %
t) = L dx,
s /0 L—e  T(s;)

/ 71:[1 6_(1_5) H;:Z T mizj':l S5 —
R e Wl | IR I'(s:)

Remark 3.1. Since 1 —¢e [Tiw o H;zi x; near 0, the equality of Propo-
sition 3.6 gives an holomorphic expansion of the polyzéta ((s;t) over the
set of tuples (s,t) € C"x] — 0o, 1[" such that R(s;) > 1 and R(s;) > 0,
ER(Z;-ZI sj) >iforany i € {2,...,r}.

Proof. We use the substitution
up=a1...x, us =1 —x1)x2.. . Tpy ooy Up = (1 — 2p_1) .

Note that Z§:1 uj = [[j—;x; for all i € {1,...,7}. The Jacobian J, =
o(ut,...,up)/0(x1,...,2y) is equal to [[}_o x’lz ! (see Lemma 6.1 in ap-
pendix). The change of variable is so admissible for (u1,...,u,) in [0, +o00["
i.e. when (z1,...,7,) is in D, = [0,1]"~1 x [0, +o0].

0 T[T(s:)
=1
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7(1 tl) H] 1z
S e
1 — eHJ 1%
-0 I,

I8
(H - ( — zi 1 sl 1 Hxsl—l> H 'Zz}ldxi
i=2 1— e ! i=1

+oo o~ (1- tr)x’” E’rils]-—ld

o
—
|

O
4. Analytic continuation and structure of poles
In this section we assume that t €] — oo, 1[".
4.1. Analytic continuation of Hurwitz polyzétas.
4.1.1. Generality over the regularization near 0.
Notation. We denote by f:c'fl...:c,’fT the partial differentiation 8@;; (;k]; f,

and by Z.¢ the set of negative integers.

Definition. Let f be a function C° over an interval I which contains 0,
and C* at 0. For all s = s, +1is; € C\ Z«o,

( ) k+s+1

'mmwﬁﬁwm—QM<md+ZWMkﬂ+l

is defined for any positive real p € I independently of any integer ng >
—sy — 2. In particular, if s, > —1, then

Rolf1(5) = [ o F@)da.

0

Remark 4.1. Moreover, for any positive reals p1, p2 and A in I,

P2
RpAst>=LAI:ffcwdx+—RpJﬂ<$,
A

A
vawm+nmm@=/xvmm+namﬁ

1 P2
One can find this definition in some books about Distributions as [18].
Remark 4.2. Over any open set R(s) > —ng, the expression of definition

4.1.1 show that s — R,[f](s) is holomophic over C\Z and that the poles
are simples.
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Proposition 4.1. Let I be an interval which contains 0, let J be a real
open set, and let f be a continuous function defined over I x J. For any
positive real p € I and for any s € C\ Z<o,
(i) Rylf(x,y)](s) is defined for any y € J such that f(.,y) is indefi-
nitely differentiable at 0.
(ii) if moreover J is an interval, and if f € C*°(Ix.J), then the function
y — Rolf(z,y)](s) is C! over J and
0
@Rp[f(w, y)l(s) = Rp[afyf(x, ¥l (s).
Proof. (i) comes from the definition 4.1.1. Let s € C\ Z«g, and an integer

ns > —R(s) — 2. The function g(z,y) = z°[f(x,y) — S50 for (0, y)2" /K] is
differentiable at y over [0, p] x J and the partial derivative

dg a9 okf a:k

Y(z,y) €I x J, 8y( Y) = Zayaxk H
a Z b af SL"”

axkay k!

is continuous over [0, p] x J. So, the function g

Ng k
g : y.—>/OpxS(f(afay)—];]fzk(ovy)z,)dl’:/()p9(9573/)d95

is C! over J, with derivative
—=(x,y)dx.
o 9y =Y
Moreover, h(y) = 37 for (0, ) pF 5L /(k!(k + s+ 1)) is differentiable over

[0, p] x J and its derivative is

oh B gk af 0
oW = Loy Vi et

k+s+1

The (ii) follows. O
By recurrence, we deduce :

Corollary 4.1. Let I be an interval which contains 0, let J be a real interval
and let f € C®°(I x J). Then, for any s € C\ Z<y and any positive real
p € I, the function y — R,[f(x,y)](s) is C* over J, and, for any k € N,

k k
;;Iﬁp[f(g;, »)|(s) = Rp[;ﬂcf(w,y)](s)-
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Corollary 4.2. Let U be an open of C, let f € C*°([0,1] x U) and let
p €]0,1[. Suppose f(x,.) is holomorphic over U for each x € [0,1]. Then,
for any a € C\ Z<o, the function s — R,[f(x,s)|(a) is holomophic over U.

Proof. Thanks to the proposition 4.1, z, — R,[f(z,z, +iy.)](a) and y, —
Rolf(x,z, +1y.)|(a) are continuously differentiable and,

5o Rolf (2,22 + 102)](@) = Ryl o+ )]0
= Rylif (2. +i9:)](0)
= iR, [ (0, + i) (@)

g

Lemma 4.1. Let f € C*([0,1]), let M be an integer and let p €]0,1].
Then, the function

~ p M g;k
Fosm [0 (f@) = Y £u(0)
0 k=0
is holomorphic over the open set Upr = {s € C/R(s) > —M — 1}.

Proof. Given a compact set K C Ujs, and the function

M
g:(z,8) — 2°(f(x) — Z fx(0)
k=0

e For any z € [0, p|, the function s — g(z,s) is holomorphic over K.

e For any s € K, the function = — g(z, s) is integrable over [0, p].

e The function ¢ is continuous over the compact [0, p] x K, so there
exists My € Ry such that

V(z,s) € [0,p] X K, |g(z, )] < M.
The function x — My is integrable over [0, p].

So the function f = J§ g(x, s)dzx is holomorphic over each compact included
in Ups and so, over Uyy. Il

Lemma 4.2. Let f € C*([0,1]?). We have the equality
Rpa[Ropu [f (2, 9))(a1))(a2) = Ropy [Rpo[f (2, y)] (a2)] (a1)

as meromorphic function of (a1, az) over C2.
Proof. The functions

fiz (a1, a2)
faq (a1, a2)
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are meromorphic in C? with set of poles (Z<0)2 so discrete. But, over the
open set R(ay) > 0, R(az) > 0, we have

fralas,a2) = Ry R [fle,p)l(an))(a2) = [ a®y™ f(a,y)dady

[0,1]2
= Roi[Rpf (2, y)](a2)](a1)
= fai1(a1, az).
So functions fi 2 and fo; are equal [32]. O

4.1.2. Regularization between 0 and 1.

Lemma 4.3. Let f be a function C° over the interval [0,1], and C*° at 1
For all s = s, +1is; € C\ Z<o,

/pl(l—x Zf

G () (1—-p
+Z ! k+s+1

1)k]da:

)k+s+1

is defined for any p € [0,1] mdependently of any integer ng > —s, — 2 and
is egal to Ri—,[f(1 — x)](s).

Proof. The function z — (1 — z)%[f(x) — S for (1) (x — 1)* /Y] is con-
tinuous over [1 — p,1[, equivalent to (z — 1)* with @ > —1 at 1, so the
expression is defined. The change of variables x — (1 — x) shows that its
egal to Ri_,[f(1 — x)](s), so its is independent of n. O

We have to study integral of type fol f(z)z%(1 — x)’dz, with a function f
in C*°([0, 1]). It is defined for R(a) > —1, R(b) > —1. To continue for any
(a,b) € C2%, we decompose the integral between the singularities and use of
regularized : for #(a) > —1 and R(b) > —1 (where the integral is defined),
and with p; and po in ]0, 1],

bz — [ e — ) dx pzxm“ — 2)%dz
[ - apae = "o (@0 - oy + [T ot
1
(55) + pgl—m)b(f(a:):z:“)dfc
= R [F()(1 = 2)")(a) + pf?f(x)x“(l — 2)da
(56) +Ri_p[F(1 = )(1 = 2)°](b).

Definition. Let J be an interval of R. Let f € C°([0,1]) and indefinitely
differentiable at 0 and 1. The expression

R, [f(2)(1 = 2)°)(a) + p?(l‘)x“(l — 2)’dw +R1-p[f(1 — 2)(1 — 2)?](b)
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is defined for all (a,b) € (C\ Z<0)2 independently of any reals p; and ps in
10, 1[. We call it R}[f](a,b).

For sake of simplicity, we will always use the above definition with p; =
p2 = p. Note that if (a) > —1 and R(b) > —1, then

57 RS0 = [ 7)1 - o)

Remark 4.3. >From Remark 4.2, we deduce that (a,b) — R[f](a,b) is
holomorphic over (C\ Z<0)2 and these poles are simples.

Proposition 4.2. Given f € C*([0,1] x J). Then, for any (a,b) € (C\

Z<0)2, the function y — R{[f(z,v)](a,b) is C> over J, and, for any k € N,
we have

O RS (@, y))(a,b) = R S (@)l (a,b)
3yk 0 7y Cl, - 0 3yk %y CL, .

Proof. It comes from

Rolf (2, 9))(a,b) = Ry[f(z,y)(1 = 2)")(a) + Ra-p[f (1 — 2, y)(1 — 2)"](b)
for p €]0, 1], and from Corollary 4.1. O

Corollary 4.3. Let U be an open set over C and let f € C*>([0,1] x U).
Assume f(z,.) is holomorphic over U for each x € [0,1]. Then, for any
(a,b) € (C\ Z<0)2, the function s — R{[f(x,8)](a,b) is holomorphic over
U.

Proof. According to Proposition 4.2, z, — R}[f(z, x,+iy.)](a,b) and y, —
RY[f (z, 7. +iy.)](a, b) are continuously differentiable and,

0 0
R o+ i) 0:8) = Rl - o + 1))
= Ré[iﬁf(x, z, +1y.)](a,b)

o0x,

L R s + 1y)](asb).

=i
oz,

g

Lemma 4.4. Given f € C*®([0,1]%). We have the equality of meromorphic
functions of (a1, b1, az,by) over C* :

Ro[Rolf (,9)](ar, b1))(az, b2) = Rp[Rg[f (,y))(az, b2)] (a1, b1).-
Proof. It comes from

Rolg(@)](a,0) = Rylg(x)(1 = 2)°)(a) + Ra—plg(1 — 2)(1 — 2)](b)
for p €]0, 1], and from Lemma 4.2 as show in appendix (Lemma 6.2). O
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4.1.3. Analytic continuation of Hurwitz polyzétas. In order to sim-

plify the expression of {(s, s) found in proposition 3.6, let h(x,t) = xe*(lft)m/(l—

e~®). The function h(.,t), as product of z/(1 — e~*) and e~(1=9% can be
developed, for any real ¢, in a power series of radius of convergence 27 :

+0o0
(58) h(z,t) = Z Bzgt) P
k=0 ’

where the By are the Bernoulli polynomials. To simplify the expression of
h(.,t;) as a power series, we use the notation :

Notation. 3}, = By (%;)/k!.

The function A(.,t) is so in CT°°(] -2, 2[), but its definition shows that
h(.,t) € CT*(R\ {0}); consequently, the function A(.,t) is in C*OO(R).

For R(s1) > 1, R(s;) > 0 and %(ZJ 18i) >dforallie{2,...,r},
+ooh _ y;;—lsjrld
it) = b ) ———=7———dyr
oty = [ bl i) Py
Z; 185 i—1
(59) / H h( Hyz, i %(1 — )" dy;.
0171 i ['(s;)
By splitting the integral [;7* onto [} and [;7°,
1
it) = =———(P1(s;t Py(s;t
(60) C(55t) = T (P1(550) + Bafsit)

where, with s,41 =1,

AN § 01 U e e e
0,1

=1 k=1
and,
+oo _ Tosi—r—1
Dy(s;t) =/ h(yr,tr)y;*l T dy,
sj—i—1 o
(62) /on ; Hh Hywtz Yi S (1—yo)* 1~ dy;.
=1 k=1

Lemma 4.5. The function ®1 defined in (61) can be extended in a mero-
morphic function over C". Its set of poles is s; € =N, 3751 s; € i — N, for
i€{l,...,r—1}. These poles are all simple.

For ¢« € {1,...,r}, we put g;(z,y) = h(zy,t;). Note that all g; are in
C*(R?). In this way, ®; can be written, for R(s1) > 1, R(s;) > 0 and
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%(Z;Zl si)>iforallie{2,...,r},
Oy (s;t) =Ry [A(yr, 8 )R (yrtpr—1, )R .. RE[R(yr - - - 2, T2)
Rolh(yr - y1, 1)) (s1 — 2,82 — D] (s1 + 52— 3,83 — 1) ...
(63) st spmr—rysr = D](s1+ .o+ s — 1 —1,0)
=R 9r (Urs DRY[gr—1(yr—1,4r) R4 - - Rblg2(y2, yr - - y3)
R(l)[gl(yl,yr o y2)](s1— 2,82 —1)](s1+s2—3,s3—1)...
(64) st spor = s —D](s1 4.+ s — 1 —1,0)
Proof. Thanks to proposition 4.2, y — R[g1(y1,y)](a1,b1) exists and is in
C>®(R) for (a1,b1) € ((C\Z<0)2. So
(y2,9) — 92(y2, ) Ro 91 (y1, y2v)](ar, b1) € C>([0,1] x R)
and so (proposition 4.2)

y — Rolg2(y2, ¥)Rolgr (w1, y2)] (ax, b1)] (az, b2)

exists and is in C*°(RR). Step by step this process checks that the expression
(64) is defined — and so gives an expansion of ®; — for s1—2, so—1, s1+52—3,

ss—1,..,8-1—1,s1+...+8 —r—11in C\ Z-o. Moreover, thanks to
Remark 4.3 and proposition 4.2, these poles are simples. O
Notation. Let g(y1,...,yr) ng YisYr - - Yit1) H h(yr ... yi, ti).

Remark 4.4. The equality (64) extended to C" gives the expression of the
meromorphic continuation of ®1, thus
Dy(s;t) =RO[RY. ..
CRORSg s - - ye)] (81 — 2,89 — 1)](s1 + 82 — 3,83 — 1) ...
s+ s —rse—D](s1+ ...+ s, — 7 —1,0),
fors; —2,89—1,81+82—2,83—1,...,8_1—1,814+...4s —r—1in
C\ Z<p. Note that, thanks to lemma 4.4, this expression is independent

of the order of the regularized Rj. In other term, any variable is privileged
because the operator

f I R(l)[ e R(l)[f(yla cee 7uT)](a0(1)7 ba(l)) . '](aa(r)7 ba(r))
is the same for all permutation o in &,.
Lemma 4.6. The function ®5 defined in (62) can be continued as a mero-

morphic function over C". Its set of poles is s; € =N fori € {2,... 1},
> i=18j €1 =N forie{1,...,r —1}. These poles are all simples.
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Note that @, verify, for R(s1) > 1, R(s;) > 0 for i € {2,...,r} and
R(Y %oy i) >iforalli € {2,...,r},

—+00

Bo(s, t) = RY. ..R(l)[/l 9,y )dy] (51— 2, 59 — 1)
(65) s A s — s — 1),

Proof. The function g is C*° over R”, and, for any compact, each partial

derivative gk is absolutely majorized over R’ by a function Me™Y,
1 Ir—1

with M € Ry (the function x — x/(1 —e™*) is C* so the derivatives are

bounded over any compact - in particular ones containing 0 - and their

expression is P(z,e™%)/(1—e™*)¥, where P is a polynom; so by multiplying

by the derivatives of e~(1=8% we get the announced form). So the function

400
(y17.'.,yr—1)H/1 9y, .., yr)dyr,

is C'*° over ]Rffl and the use of Proposition 4.2, applied step by step, shows
that ®2 can be defined by equality (65) for s; —2, sa—1, s1+s2—3, s3—1,

o Sr—1,814...4+8,—1—7in C\Z-o. Moreover, Remark 4.2 and Corollary
4.3 show step by step that this extension is holomorphic over this domain,
and, thanks to Remark 4.3 and Proposition 4.2, these poles are simple. [

Remark 4.5. The equality (65) gives the expression of the meromorphic
continuation of ®5 over C". Note that this expression is independent of the
order of the operator R}.

Theorem 4.1. Given t €] — oo, 1[", there exists an analytic continuation
of the function ((s;t) over C", which is holomorphic over the set of s € C"
such that s1 # 1, 23:1 s; €i—N forallie{2,...,7}. Moreover, the poles
of this continuation are simple.

Proof. This comes from the fact that the poles of ®; and ®9 are simple,
and so the poles s; € N, i € {1,...,r} disappear since

((s;t) = !

m ((1)1(55 t) + Pos; t))

4.2. Structure of poles.

Notation. We say that a series >.,/%5,  f,(2) verifies the Weierstrass M-test

over X if there exists a positive real M such that

—+00
> sup |fal2)] < M < +oo.

n=ng TEX
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4.2.1. Calculation of the regularization near 0. To know the value of
the regularization for “good” power series, we need this following lemma :

Lemma 4.7. Let Z,‘l‘;’g anz™ be a power series with radius of convergence
r >0 and let s = s, +is; € C. Let ng be an integer such that ng > —s,.
Then
(i) S o an 2" verifies the Weierstrass M-test over any closed disc
of radius strictly smaller than r.
(ii) If the series converge absolutely at z = r, 3 22 0. an 2" werify the
Weierstrass M-test over the closed disc of radius r.

Proof. For any p €]0,r[, and for any integer N > ng + 1,

N N
Z sup |anz""°| < Z lan|p" o because n + s, > 0!
n=nsg E(O,p) n=ns

< pr Z lan|p" which converges

n=ns
We have (i7) thanks to the same calculation with p = r. O
So, now we can calculate the regularized for “good” power series :

Proposition 4.3. Let f(z) = 3/ 0 an2" be a power series with radius of
convergence v > 0 and let p €]0,r[. Then, for all s € C\ Zo,

400 pk—l—s—l—l

R o
oL kz "Fts+1
0
Proof. Let ng be an integer such that ny > —R(s) — 1, then
/ Z . Z plts+l
apz dr + ap——
kmmo 1 k: +s+1
+oo
Thanks to lemma 4.7, we know that the series Z apz"te is uniformly
k=ns+1
convergent over [0, p] and that
Z / et Z k+s+1 400 pk+s+1
apz" " dr + ap———— ap———.
k=ns+1 IH' 1 im0 ktstl

O
Corollary 4.4. Let p be a positive real, let f(2) = 3720 an2™ and g(z) =
Zn: w2 be two power series with radius of convergence strictly greater

than p. Then, for all s € C\ Z,

Rolf(@)g(@)](s) = 3 by —

a0 ni+ne+s+1

ni+na+s+1
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Proof. f(2)g(z) is the power series 3,70 S°7_ agb, ;2™ and its radius of
convergence is strictly greater as p, so thanks to Proposition 4.3,

R,lf(x)g(x)](s) = agbp_———
n=0 k=0 + s+1
pn1+n2+s+1
= a
m%;o " n2n +ng+s+1°

g

4.2.2. Regularization between 0 and 1. Near 0, we have to calculate
R,lf(z)(1 — z)b]. To use result of subsubsection 4.2.1 we have to develop
(1 — ), so we note :

Notation. Let s € C and n € N. We note (s), = [[}_o(s + k) =
(s+n—1)and [s], = (=1)"(=$)n/n!
Let us recall that the Taylor series of (1 — 2)* is >..7°9[s],2"™, which has

1 for radius of convergence (so they coincide for |z| < 1).

Lemma 4.8. Let f(z) = 329 0 anz" be a power series which verifies the
Weierstrass M-test over |0, 1] Then, for any (a,b) € (C\ Z<0)2,

(i) Rolf(2))(a;b) = 232 oanRo[ "1(a,b),
(ii) If the power series g(z) = 3,720 b, 2™ verifies the Weierstrass M-test
over [0, 1] then,

Rolf(2)g(@))(a,b) = D an,bayRole™ ] (a,b).
ni,n2>0
Proof. Let (a,b) € ((C\Z<0)2.

(i) For any p €]0,1[, we have R[f(2)](a,b) = R,[f(z)(1 — z)*)(a) +
Ri—p[f(1 — 2)(1 — 2)?](b). But, f and (1 — z)® are power series of
radius of convergence greater than 1, so, thanks to Corollary 4.4,

we have
+o00
Rolf(z)(1 — ) Z anz™ Y [b]na"](a)
n=0
n+k+a+1
P
D D (] —
kS0 n+k+a+1
+oo )
- Z an Z +n](a>
k=0

= Zan "1 —x)"(a).
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_ “+o0o +oo (n
In the same way, because f(1 —z) = > /20[(=1)" X2 (7)ax]z"
and (1 — ) are power series radius of convergence strictly greater
than p, we have

Ra[f(1 —2)(1 — 2))(b

But Rj[a"](a,b) = Rpla"(1 — 2)"|(a) + R,[(1 — 2)"(1 — 2)°)(b), s0
the (i) is proved.

(ii) (fg)(2) = 3720 (Fo akbn_k) 2™ is a power series which verify the
Weierstrass M-test over [0,1] : so we just have to apply (i).

O
To explicit the series given by lemma 4.8 we need the following lemma :
Lemma 4.9. For any (a,b) € (C\ Z<0)2 and any k € N,
+00 a +00
R0 = Sl iy + ek AT
for any p €]0,1].
Proof. Let p €]0,1[ and let (a,b) € (C\ Z<0)2. Then,

Rila"(a,b) = Rpla™(1 — 2)"](a) + R,[(1 — 2)*(1 — )] (b)

400 +o0
= Rl [blyra®] @) + Ry[3_[a+ K2 (b):
q=k q=0

The power series Z;ﬁ,’;[b]q_kxq and Z;;Og[a + k]4z7](b) have 1 for radius
of convergence and p < 1. So, we can apply Proposition 4.3 and get the
announced result. O

4.2.3. Structure of ®1. Moreover, we can have an explicit expression of
this continuation thanks to the following lemma.
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Lemma 4.10. Let j be a positive integer, and let ai,...,a;,b1,...

complezx numbers in C\ Z<g. For all xj41 € Ry,

+oo
R%)[Z ,8%].’[} j-i-IRO RO Z /8]{1 .. ]+1](a1,bl)...
ki=1

i k=1
(a1, b 1)](%%)

- ¥ H/Bk (HRO ki +k](a“bl)) fﬂ Ay

K1,k >0 i=1

k

Proof. The power series Y727 (8{a5) 2% verifies the Weierstrass M-test over

[0,1] (the radius of convergence is 27), so, thanks to Lemma 4.8 (i),

k k
RO Z ﬁk1x11m21 (a1,b1) 720 Z ﬁkle acl |(a1,b1)
kl 1 kl 1

Z Bi, 25 Ryl )(ar, by).

ki1=1

This proves the lemma in the case j = 1. Now, assume it is true for an

integer 7 > 2. Then,

RO Z ﬁk $J+1%+2) JRO[

. R[l)[ Z B,ilxlfl e (a;j+1xj+2)k1}(a1, bl) e
ki1=1

~(aj-1,b5-1)](ay, b;)

J J
= > (I8 (T Rolai T (ai, b)) (@ 1j0) 1

K1,k >0 =1 i=1

~+00 J
= Z( > (85 IIZ— —1]:]] Hﬁllcz (Rlzy "] (ar, by)
k=0

koo kj 20
/k2+“.+k]’ <k

J
k—kiy1...—k; k k
< [T Rolz; J](aiabi)))xj-&-lxj-&-?
i=2

Consequently, thanks to Lemma 4.8 (ii),

j+1 k; k
RO Z /Bi: i1 jf:ll 33:_21 RO Z /Bkl k1 ..l‘jirl](a]_,b]_)...

kji1=1 k=1

](aja b )](aﬁl, b]+1)
= Ro[
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400 J
Jj+1 ki1 k+1 k ka—...—k;
Y oandndn Y (Y el 1160)
k]+1 1 k=0 ko,..., k;>0
[ka+.. +k;i<k
k—ko—...—k; k ki —k;
(R[‘rl 2 (Ll, bl H RO +1-- ](aiu bi))ﬂf?+2)$§?+1
=2
J(aj+1,b5+41)
s e k: k K 7
J j+1 2=
Z Zﬁk]+l ]i2 ( Z k ko—.. —k]] Hﬁlzfz
kjr1=1k=0 kg,....k; >0
/k2+ Ak <k
k—k —...—k k—kit1..—k;
(R[le 2 (Il, b1 H RO +1-- ](ai, bl))x§+2)
=2
17 k+k;
Rolz; 1" (g1, b541)
Replacing k by k1 =k — 25:1 k; gives the result for j + 1. (|

Proposition 4.4. The function ®1 defined by (61) can be continued as a
meromorphic function over C" x| — oo, 1[" with

<I>1(Sat) = . .
ro o \r-l ,+o0 pz;:1 sj*i+z;:1 kj+qi
6}%) ( [Si+1 - 1](11 ‘ . 3
k1 21;>0(H zl_Il ;:0 j=15j — Z+Z§’:1kj+q1‘
‘ ' (1 _ pi)5i+1+(h>
+ Si + k’ — 17— 1 R
ZO ; ’ Z Si+1 Tt qi
X

Z;:l S5 —T + Z;Zl kj ’
where p1,...,pr—1 can be arbitrary chosen in ]0,1].

Proof. Thanks to Equality (64) and using Lemma 4.10 with j = r and
zjt1 =1,
Dy(s,t) =
Z (Hﬁk)(HRl Fite +k Zs] —7—1 sz+1—1))
kiyeonky >0 i=1
with the convention s,4; = 1. Lemma 4.9 ends the proof. g

4.2.4. Structure of ®3. Let i € {1,...,r — 1}, a1, b1, ai—1, bi—1, ait1,
bit1, ar—1, by—1 € C and define the function r; from [0,1] to C by

+00
Ty Ré[Ré[Ré[Ré[ . 9(y1, ... yr)dyrl(a1,by) ...
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(66) . .](ai,l, bi,l)](aHl, bi+1) .. .](ar,l, brfl).

In Proposition 4.2, the function r; is C* over [0, 1] for any aq, b1, a;—1, bj—1,
@it1, bit1, ar—1, by—1 € C\Z<g. By now, let us suppose this is verified. Then,
R{[ri](ai, b;) exists and, for any positive integer M, when R(a;) > —M,

Ro[ril(az, bi)

M L a;+ki+1
1 oki P
= > (1= y)"ri(y2)) (0)
k;=0 kl'ayfl ’ +kl+ !
4 a; b M akl Ukz
+/ y/<(1 =y i) = . S (1= )" i) (0) kl">dyz
0 k=0 yl "

(67)  +R1-p[(1 = z)%ri(2)](bi),

for any p €]0, 1[. But the function 7

g

M ) k;
ap / ( 1 _yz 7’1 yz 1 _yz rl(yz))(o) Z )dyz

(68) FR1-p[(1 = 2)%7; (fﬂ)](bz’)

&

is holomorphic when R(a;) > —M (lemma 4.1 and corollary 4.2).
On the other hand, the first terms are given by
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Lemma 4.11. For anyi € {1,...,r —1} and any k; € N,

- 3 ) (Hﬁﬂ,)(l‘[nl i=1 J al,bl)>R(1)[y,]f_1...

+o0o
‘~yf+27€%)[yf+1/ H Hyz, )dyr|(@it1, bit1)] - -
1 j=i+1 =j
cJ(ar—1,00-1) [bi]; k-
Proof. For any k € N,
ok T Bk(fj)y;?...yf_lyfﬂ...y?’f ifj<i
Tzﬂgh(n yi, )(0) = S Br(E)yky...yh ifj=i
E / 0 if 7 > 1.
807 Wlth Y? - (yh s 7yi—1707 yi-‘rlv s 7y7‘>7

oF 0
Tykg(ylw . ayr)(yz)

k! r
= Yi,
) kka (T,

k»'1+---+k3r:
k! :
= > ermrnl | o Hyz, H Hyz,
k1+..+ki=k ] 1 =3 Jj=i+1l I=j
= k! Z Hﬁijle H Hylat_]
ki+4...+ki=k j=1 I=j Jj=i+l  I=j
l#i
r mf(ll)k]
= k! H Hyla Z Hﬁk Hyl = .
J=i+l =5 ki+...+ki=k j=1 é;éi

In the proof of Lemma 4.6, we verified the conditions of differentiation
under the sum sign so

10
k! 0yk/y

mf(llz)k] k
= Z Hﬁk Hylj / H

ki14...+ki=k j=1 =1 j=i+1
l#1

YEa(yr, . yr)dye(y?)

h([ T v ) dyr-
1=
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Thanks to proposition 4.2, we deduce,

| o, it
Lo _m w14 T "

k
Kl 9y; k1. Aki=k j=1 1=1
1#1
< [0k TT Lo EdulGon, b)) J(os b
j=i+1l I=j
- S k
- Z (H ﬂi]) (HRl Y = abbl))R(l)[yf—l e
ki+..4ki=k j=
yz+2R0 yz+1/ yf H Hyla dyr](az+lvbz+1)] .-
j=i+1 I=j
J(ap—1,br—1].

We only have to use this result in

1 ok b
gy (= )" i) (0)
_ Z 1 8’% 1 R k(1 — gy o)
Moy V—mn gy
O
Proposition 4.5.
_Palsit)
H; 1F(3j)
ks
Z j Fs ZZSZ“ g,k > <Hﬁl)
=1 J ki >0 ki =0 i+ +l=k, " j=

- . k!
<HR(1)[yj =t ](sl—f—...—l—sj—]—1,sj+1—1)>7?,(1][y7,2_1...

RO yz+2RO yz—i—l / H H yl7 dyr 81+ .
j=t+1 I=j

..+SZ'+1—Z—2,81'+2—1)](81+ +si+2—z—3,si+3—1)]...
s s —yse — 1]

S1+...+s—i+ ki

Proof. Any pole of ®(s)/[];=; I'(sj), can be writen S _ s =1i—q, with
i €{l,...,r =1} and ¢ € N (Lemma 4.6). Thanks to Lemma 4.4, ®(s)
is Ry[ril(a;, b;) when a; = >7_;si—j—1and b; = sj41 — 1 for all j €
{1,...,r}. Equality (67) shows that the singular part of R}[r;] over R(a;) >
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—q — 2 is the sum

zq: (7“@(.%)(1 — x)bz)xk 0 par‘rk—i-l

= k! ai+k+1
The singular part of Laurent series at Zle S; = —1—q is so
(@)@ = 2)") e
q! ai+q+1
and Lemma 4.11 ends the proof. O

4.2.5. Structure of (. Using Proposition 4.4, Proposition 4.5 and Lemma
4.9, we obtain

Theorem 4.2. The analytic expansion of ((s;t) has for set of poles s; = 1
and 3754 s; €4 —N for all i € {2,...,7}. These poles are simple and
the residue at Z§:1 sj=q,r>t>1landgci—N,is

—re(,, 2 (114)

kit1,..,kr>0
r—1 , 400 Zizl SJ—HZ;:l kjt+a
H Z [s141 — 1, l
1=1 <ql=0 E] 18 — 1+ ijl ki +a
l;éi
i+1 — 1] i
1 — p)si+1ta [SZJFl R

+ZZSJ+Zk _y—q, L=p) ) ; Crrgak

—0 =1 Si+1 T+ q Zj:l Sj— 1T+ Ej:1 k;
+ Z [si+1 = 1igk > ( H ﬂ] )

kg:O ki+...+k;=i—q

I s JJrZL Lkota;

7 +o00
11 < > Isirn — g, jpj

jfl q]=0 p 1sL—j+Ei 1k + g
‘ Sj+17+4; o
S Zst_j_sz I
4=0 =1 %H+%
00 +1
Ro[yz+1 /1 yy 4 H H Yi, t] dyy] Z s, —1—2,8142—1)]...
j=i+1  I=j

r—1
.(ZSL—T,ST — 1)),
=1
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the residue at s;1 = 1 is

;Zzlp(sj)< ) (ﬁé ﬁﬁz’c)

K2y kr >0 1=2
r—1 ( +oco ,02;22 SjJrl*lJrZ;:z kj+aq
l
H Z [s141 = o I
12 O j= 2'9] —l+2j:2kj+q1

(1- Pl)s”ﬁql)

+ZZS]+1+Zk —t= Si+1 +q

=0 j=2

X
j—asitl—r+3 ok
4o T T B
ORI R T Ty (o2~ 2,0 = 1) .
=2 I=j

r—1
.(Zsb—l—l—r,sT — 1)),
1=2

the residue at 371 sj =q €r—Nis

ol T (11a)

[1j=1T(s5) Fitothn<r—q
, Too pzi L1 5j— Z+Z§:1k‘j+ql
ll_[l < ZO[Slel Ha Zg 185 — 1+ Zé‘:l ki +q
1 — pp)serta
P X 3k -1 ),
where
By (t; — tit1 Wi (k —s)

Gio= 2 ad sl = (1)

n!

forallkeN,ie{l,...,r} (t,41=0), s€ C, neN.

5. A translation relation and prospects

5.1. The translation relation of Hurwitz polyzétas. Recall that, for
seC, (s)p=1and

(5) = s(s+1)...(s+k—1) _ Ml (s +1) _ (s +k)
k! k! KT (s)
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for all k£ € N*. To adapt Ecalle’s idea to Hurwitz polyzétas [15], we use the
relation, with £ < 1 and n > 2,

(69) S N T .
(n—=1=t) =" " (n—t)hkts

we obtain (see Lemma 6.3 in Appendix) :

Lemma 5.1. Let s be a convergent composition of depth r. If t €] —oo; 1[",

((s;t) =
r 1
(85)k; :
k17'§r>0 ]1_‘[1 D/ R;j n1>,Z>:nT>1 (nl _ t1)31+k1 . (nr _ tr)8r+kr

We can express the right member in Lemma 5.1 in term of polyzétas,
which gives raise to the following equality :

Proposition 5.1. Let s be a convergent composition of depth r and let
t €] — oo; 1[". Then,

(-1~

A=t (1 tr)SrC(SJ’ 2 (1—t1)s ... (1 —t,)s

+ ) (H(sj-)kj) (¢s+Kt)
K,k >0 j=1
(kl 7]‘57“)76(07 ’0)
r—1 i
()™ Kt
+ = (1 _ tj+1)5j+1+kj+1 . (1 _ tT)ST"Hfr C(S] + k]7tj>
(="
+ (1 —ty)si k. (1— tr)sr*‘k’r)’
r
where (s) = m for all k € N.

5.2. Translation equality and analytic continuation. We want see
now if the equality of Proposition 5.1 can give the analytic continuation of
((s;t) by induction over the depth r. So, let us have a first look at what
happens with r = 2.

Example. When r = 2, Proposition 5.1 becomes :
-1 1

AN (R T A

+ Yo (50)m(s2)k (C(S1 + k1, 52 + ko3 t)
kq.,ko>0
(k1;k2)#(0;...50)

— 1
+WC(82 + kojt2) + (1—t1)1(1 — t2)52>
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Yo (s0)k(52)kC(s1 A+ iy 52+ k2st)

kq,kg>0
(k1;k2)#(0;...50) X
1
(1 _t2)52 4(827 2) (1 —tl)sl(l —t2)82

Y 0l (o + ket

k1 ,kg>0
(k1;k2)#(05...50)
1

'Y1—my41—@yﬂ'

Remark 5.1.

(1)

3)

The right part of the last equality can be continued as a meromor-
phic function over C?. Unfortunately, no term of the left part is in
principle continuable as a meromorphic function over C2?, and we
can’t isolate this terms with the equality only. We can not define
((s;t) for s with negative values in Z too because the (s); cancel
each other out (which is in agreement with our assertion that there
are poles for these values).

Thanks to the integral representation, we can define the function
((s;t) for Re(s1) > 1 and Re(s2) > 0. We can try to progress
by stripe : for example, for 1 > Re(s;) > 0 et Re(s2) > 0, the
terms ((s1 + k1, s2 + ko;t) are defined for all k9 and all &y > 1.
Unfortunately, there are still the terms ((s1, so + ko; t), for all ks €
N* which can not be defined in principle over C2.

The remarks still remain true for r > 2.

6. Conclusion

This article gives the analytic continuation and the structure of poles
of the Hurwitz poyzéta function. Thanks to Proposition 3.3, this result
gives too the analytic continuation and the structure of poles of the peri-
odic Parametrized Dirichlet generating series (so of the coloured polyzéta
functions).

Howerever, some coefficients of this analytic continuation are not ex-
plicit : it would be nice to have an algorithm given explicit coefficients.

An other way is to start with a translation relation. A development of all
variables simultaneously (as Proposition 5.1) gives an infinite sum of terms
with same depth prevent from obtaining directly the analytic continuation.
It seems that we need woork with a development in only one variable, and
make a induction variable by variable and stripe by stripe.

We will study these differents points in a next article.
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Appendix

Lemma 6.1. Consider the substitution

(70) z1=v1-..yry 2= —y1)Y2. - Yry - ooy Tr = (L — yp—_1)Ypr.

Its Jacobian Jr = O(x1,...,2:)/0(y1,- .., yr) is equal to H yr

k=2
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Proof.
Hyk _Hyk 0
k#1 k=2
[Iv -9 [T o o 0
k#2 kg{1,2}
j,r — T ™ .
H?Jz‘ (=) H Yyi o - —Yn—1Yn 0
k#n—2 kg{1, n72}
Iy a-w H yi o (L=yn-2)yn —Yn
k#n—1 kZ{l,n—1}
Hyi (1 —w1) H yi o (1=Yn—2)Yn—1 1—yn—1
k#n kg{1,n}
T T
Mo Ix o - :
kg{1,2} k=3
T I v - I v v 0
- Hy"' kg{1,n—2} kg{1,2,n—2}
k=2 T T
IIT v -w) [ » - (Q-peo2wm ~Yn
kZ{1l,n—1} k€{12n71}
H Yi (I —y2) H yi o (I—=yn—2)yn—1 1—yn_1
kZ{1,n} kg{1,2,n}
_ k—1
= Ye -
k=2

Lemma 6.2. Let f € C*°([0,1]?). We have the equality
Ro[Rolf (2, 9)](a1, b1))(az, b2) = Rp[Rglf (,9))(az, b2)] (a1, b1)
as meromorphic function of (ay, b1, as,bs) over C*.
Proof. Using Lemma 4.2, for any p1, p2 €]0, 1],
Ro[Rolf (2, y))(a1, b1))(az, b2)

= R[Rp, [f (, y) (1 — 2)"](a1)
+R1—ps [f(1 = 2, y) (1 — )" ](b1)](az, b2)
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= R [(Rp [f (2, 9) (1 — 2)"](an)

[f(1 =2, y)(1 = 2)™](b1)) (1 — y)**](az)
R [(Rpy [f (2,1 = y)(1 = 2)"](a1)

[f(1 ==, 1 —y)(1—=z)"](b1))(1 — y)**](b2)
= R [Rp [f (,9)(1 = 2)" (1 = 9)*] (a1)] (a2)
R [Ri—p, [f(1 = 2, y)(1 = 2)™ (1 = )*](b1)] (a2)
FR1—po[Rp [f (2, 1—y)(1—$)b1(1 y)*](a1)](b2)
FR1-p[Ri—p [f(1 — 2, 1 = y) (1 — )" (1 — y)**](b1)] (b2)
= R [Rps [f (2, 9) (1 = 2)" (1 = )] (a2)] (1)
+R1-p [Rpp [f(1 = 2, 9)(1 = 2)™ (1 = )] (a2)] (b1)
+ R, [Ri—pp [f (@, 1 = y)(1 = 2)" (1 = y)*2](b2)] (1)
FR1-p [Ri—pp [f(1 — 2,1 = y) (1 — )" (1 — y)**](b2)](b1)
= Ro[Rps £ (,9)(1 = y)*)(a2))(ar, 1)
FRO[Ri—py [f (2,1 = y)(1 = 1)™2](b2)) (a1, b1)
= Ro[Rolf (2, y)](az, b2)] (a1, b1).

+R1-p

+R1 P1

a
Lemma 6.3. Lets be a convergent composition of depth r. If t €] —oo; 1[",
. 1
((sit) = (85)k; ,
k17.§20 ]1;[1 J /R n1>.§nr>1 (nl _ t1)81+k1 . (nr _ tT)ST‘J’_kT‘
r k
where (), = lf:('gl“—i(_s)> for all k € N.
Proof. Note that, if t < 1, for all n > 2,
1 1 1 1 X 1
- - O
T D = e o
+o00 1
(72) = Z(S)km

and the serie verify the Weierstrass M-test for n > 2 (thanks to the in-
equalities
0<1/(n—t)<1/(2—1t)<1).



Analytic and combinatoric aspects of Hurwitz polyzétas

So, if t in | — oo; 1[", for any convergent composition s,

C(Sat) = Z 51 1( — tr)ST

ni>...>n>0 (nl o tl)

ni>..>n,>1 (nl — 11— 1)51 . (nr —t, — 1)sr

1
= Z H Z 8-7 4. Sj+k:j
n1>..>np>1 j=1k; >0 ( Uz t])
1
(73) = > > H T
ki, kr>0n1>. >np>15=1 ( — 1)

thanks to the Weierstrass M-test. The lemma follows.
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O

Proposition 6.1. Let s be a convergent composition of depth r and let

t €] —oo; 1[". Then,
(1)

V- 55 t5) +
]Z:: (1 —=tjpa)%+ . (1= t)5r ((s5:t5) e A )
- 2 (H(Sj)kj) (¢s+ k)
k1yeees kyr>0 jil
(k155K ) #(05...50)
+ r—1 (_1)7”*j ((S"Fk"t')
= (1 —tjyg)serthien (1 —t,)srthkr j ity
(="
+ (1 — tl)s1+k1 o (1 _ tr)sr'*‘kr)’
_T(s+k)
/LUh:eTe (S)k’ - k'F(S) for all k: E N

Proof. For all convergent composition s of depth r, for all integers k1, . ..

and all t €] — oo; 1[",

1
R DR e e e A
1
= e (n]_ o t1)51+k1 . (n’f' — tr)Sr"l‘k’r

1
- (n1 — t1)1 k0 (n, — t,)5rHer

ny>..>n._1>1
ny=1

=((st+k;t)
1

1

7]{:7’7

(1 —ty)srthe 2 (ny —t1) TR (np_y — typ_q)sr—1 ke

ny>..>np_1>1
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(~1y
= (s +kt) + ; (1-— tj+1)5j+1+kj+1 oo (1=t )srthe <

(="

(1 —tq)srth (1 — ¢, )srthe

Sj + kj; tj)

_|_

(74)

Injecting equality (74) in equality of lemma 6.3, we obtain, for t €] —oo; 1["
and for convergent composition s,

((sit) = ) (ﬁ(sg')kj) (C(S+k;t)

k1, kr>0 \j=1
r—1 —J
(= ,
+ Z:l (1 _ tj+1)sj+l+kj+1 o (1 _ tT)ST+kT C(S] + k]7t])

=

(75) + (=1 )

(1 —tq)sthe (1 —t,)srthr
Note that, if ki = ... =k, =0, [[(sj)x, =1 and {(s + k; t) = ((s; t). The
j=1

lemma follows. O
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