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Characterizations of groups generated by
Kronecker sets

par ANDRAS BIRO

RiSUME. Ces dernicres années, depuis larticle [B-D-S], nous
avons étudié la possibilité de caratériser les sous-groupes dénom-
brables du tore T = R/Z par des sous-ensembles de Z. Nous
considérons ici de nouveaux types de sous-groupes: soit K C T
un ensemble de Kronecker (un ensemble compact sur lequel toute
fonction continue f : K — T peut étre approchée uniformément
par des caractéres de T) et G le groupe engendré par K. Nous
prouvons (théoreme 1) que G peut étre caractérisé par un sous-
ensemble de Z? (au lieu d’un sous-ensemble de Z). Si K est fini, le
théoréme 1 implique notre résultat antérieur de [B-S]. Nous mon-
trons également (théoréme 2) que si K est dénombrable alors G
ne peut pas étre caractérisé par un sous-ensemble de Z (ou une
suite d’entiers) au sens de [B-D-S].

ABSTRACT. In recent years, starting with the paper [B-D-S], we
have investigated the possibility of characterizing countable sub-
groups of the torus T = R/Z by subsets of Z. Here we consider
new types of subgroups: let K C T be a Kronecker set (a com-
pact set on which every continuous function f : K — T can be
uniformly approximated by characters of T'), and G the group gen-
erated by K. We prove (Theorem 1) that G can be characterized
by a subset of Z? (instead of a subset of Z). If K is finite, Theo-
rem 1 implies our earlier result in [B-S]. We also prove (Theorem
2) that if K is uncountable, then G cannot be characterized by a
subset of Z (or an integer sequence) in the sense of [B-D-S].

1. Introduction

Let T = R/Z, where R denotes the additive group of the real numbers,
Z is its subgroup consisting of the integers. If x € R, then ||z| denotes
its distance to the nearest integer; this function is constant on cosets by
Z, so it is well-defined on T'. A set K C T is called a Kronecker set if it
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is nonempty, compact, and for every continuous function f : K — T and
0 > 0 there is an n € Z such that

ma | (@) - nal| <.

If K C T is a finite set, it is a Kronecker set if and only if its elements
are independent over Z (this is essentially Kronecker’s classical theorem
on simultaneous diophantine approximation). There are many uncountable
Kronecker sets, see e.g. [L-P], Ch. 1.

In [B-D-S] and in [B-S], we proved for a subgroup G C T generated by a
finite Kronecker set that G can be characterized by a subset of the integers
in certain ways. In fact we dealt with any countable subgroup of 7" in [B-D-
S], and the result of [B-S] was generalized also for any countable subgroup
in [B]. For further generalizations and strengthenings of these results, see
[Bil], [Bi2], [D-M-T], [D-K], [B-S-W].

In the present paper, we prove such a characterization of a group gener-
ated by a general Kronecker set by a subset of Z? (instead of a subset of
Z). We also show, on the contrary, that using a subset of Z, the charac-
terization is impossible, if K is uncountable. More precisely, we prove the
following results.

Throughout the paper, let K be a fixed Kronecker set, G the subgroup
of T generated by K, and let € > 0 be a fixed number. Write

o) —
(z) logy
and extend it to every z > 0 by {(0) =0, and I(z) =1 for x > 1/2.

Theorem 1. There is an infinite subset A C Z? such that for every o € G
we have

for 0 <2 <1/2,

S 1 (min (nal], nzal)) < oo, (1.1)

n=(ni,n2)€A
and if B €T satisfies

1
min (|| 3], [|n2B]]) < 10 (1.2)

for all but finitely many n = (n1,n9) € A, then 8 € G. Moreover, A has
the additional property that if aq,as9,...,ar € G are finitely many given
elements, then there is a function f : A — Z such that f(n) = ny or
f(n) =ngy for every n = (n1,n2) € A, and for every 1 <1i <t we have

> Ul f(m)aill) < oo (1.3)
neA

If K is finite, the theorem of [B-S] follows at once from Theorem 1, since
we can take all elements of K as aj,ag,...,a; (see also Lemma 2 (i) in
Section 3). Note that the statement of the Theorem in [B-S] contains a
misprint: lim inf should be replaced by lim sup there.
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Theorem 2. If K is uncountable, and A C Z is an infinite subset, then
G#{BGT: 1im||nm|:o}.
neA

This is in fact an easy corollary of a result of Aaronson and Nadkarni,
but since the proof of that result is very sketchy in [A-N], we present its
proof (see Section 4, Prop. 1.).

We give the proof of Theorem 1 in Section 2. We mention that the basic
idea is the same as in [Bi2]. Some lemmas needed in the proof of Theorem
1 are presented in Section 3. We remark that Lemma 4 is very important
in the proof, and it provides the main reason why we need an € > 0 in the
theorem. The proof of Theorem 2 is given in Section 4. Section 5 contains
a few comments and open questions.

2. Proof of Theorem 1

We will use Lemmas 2, 3 and 4, these lemmas are stated and proved in
Section 3, so see that section if we refer to one of these lemmas.

If x € R, we also write x for the coset of x modulo Z, so we consider z
as an element of T'. The fractional part function {x} is well-defined on T
Let T3 be the subgroup of T defined by

2) _ }J @ | N
T<>_{2N. N>0,1<a<2 }
For N >0and 1 <a <2V let
a—1 a
KN,a—{OéGKI 2]V<{a}<2]V}

Since K is a Kronecker set, we can easily see that K N T = @, and so
every Ky 4 is an open-closed subset of K, and
2N
K=|JEKna
a=1
(disjoint union). Let F be the set of functions f : K — T(?) which are
constant on each small set of one of these subdivisions, i.e.

for some N >0
and for every 1 < a < oN [

F:{f:K—>T(2):]f(KN7a)]<1

where |f(Kn )| denotes the cardinality of the set f(Kn,), and we write
< 1 because it may happen that some set Ky, is empty. Observe that
F' is countable. Every element of F' is a continuous function on K, and
F is a group under pointwise addition. For a pair (N,a) with N > 0 and
1<a<2V let Fyn, < F be the subgroup

Fyo={f€eF:fla)=0fora € K\ Kng, |f(Kna)| <1}.
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For any N > 0 let gy € F be defined by

a
gy (a) = o for every a € Ky, and for every 1 < a < 2V,

and let fn o, € F,, be defined by (N >0,1<a < 2N > 1 are fixed):

277 ifae KN,a

[Nar (@) = {07 ifae K\ Kyg.

Clearly
max lgn(a) —a| <27V for every N > 0. (2.1)
«

Remark that the functions gy are not necessarily distinct, but if N > 0 is
fixed, then

Hy >0: g, =gn}| < o0, (2.2)
since otherwise (2.1), applied for the elements v of this set, would give
gn(a) = a for every o € K, which is impossible by K N T(2) = (.

For every f € F take a number C(f) > 0, and for every N > 0 a number
R(N) > 0, we assume the following inequalities:

> C(f) ™ < oo, > R(N)™ < oo, (2.3)
fer N=0
and (it is possible by (2.2)):
C(gn) > N for every N > 0. (2.4)

For every f € F and for every integer j > 1 we take an integer m;(f) such
that

max | f(a) —m;(fall < 279720, (2.5)

which is possible, since K is a Kronecker set. Moreover, we can assume that
if j,j* =1, f, f* € F, then

my(f*) # m;(f) if (G, f) #6757 (2.6)

Indeed, there are countably many pairs (j, ), and for a fixed pair (j, f)
there are infinitely many possibilities for m;(f) in (2.5), so we can define
recursively the integers m;(f) to satisfy (2.5) and (2.6).

Let j(N,a,r) > 1 be integers for every triple (N,a,r) € V, where

V:{(N,a,r): N>0,1<a<2V, 7“>R(N)},

satisfying that if (N*,a*,r*) € V is another such triple, then
J(N,a,r) # j(N*,a*,r), if (N,a,r)# (N*,a*,r%). (2.7)
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We easily see from (2.6) and (2.7) that for (N,a,r),(N*,a*,r*) € V we
have

mj(N,a.r) (fN,a,r) 7& mj(N*,a*,r*) (fN*,a*,r*)a if (N,CL,T) 7£ (N*,(I*,’I“*).

(2.8)
Define
Hy = {mj(van(frar): (Noar) €V}, (2.9)
We claim that
Z 1 (|lnal)) < oo (2.10)
neH,
for every a € K. Indeed, let o € K be fixed. We have
—1—9i(N,a,r)
Hmj(N,a,r)(fN,a,r)aH < HfN,a,r(a)H +2 1=2 C(fn.ar) (211)

by (2.5). Now, on the one hand,

oN [e%e)
Y var (@) =027, Y0 > IR <o (212)
a=1

N=07>R(N)

by (2.3); on the other hand, using (2.7) and (2.3), we get

ST e (2N < 373 (C(f)2ﬂ')_(1+€) < oo.
(N,a,r)eV feFj=1
(2.13)
In view of Lemma 2 (i), (2.11)-(2.13), and the definition of H; in (2.9), we
get (2.10).
If s is a nonnegative integer, the following set is a compact subset of T :

t
t>1 alag...atGK
K.=da= kv - ) ) ) ) ’ .
s { ZZZ]. B kl,kQ,...,ktEZ, Zf:1|k1|§3

Lemma 1. There is a subset H of the integers such that Hy C H and on
the one hand we have

S ([nal]) < oo (2.14)
ncH

for every a € K; on the other hand, if B € T has the property that
1
— 2.15
Infll < 35 (215)

for all but finitely many n € H, then there is a group homomorphism
¢p = ¢ : F' — T which satisfies the following properties:
(i) for all but finitely many pairs (f,j) with f € F, j > 1 we have

16(f) —m;(f)B| < 27, (2.16)
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(ii) for every (N,a) pair with N >0, 1 <a <2V if Ky, # 0, there is
a unique integer ky o for which
O(f) = knaf(@) (2.17)
for every f € Fynq, where a € Ky, is arbitrary; if Kyo = 0, we put
kna = 0, and then for large N we have

 ax, [kyal < 28, (2.18)

(iii) if N is large enough, then writing s = 2311 |kn.al, there is an
a € K, such that
1
oo = B < ¥ + 527N, (2.19)

Proof. Define
Hy ={2" (mja(f) —m;(f)): fEF j=1,0<r<j—-1+C(f)}.

Let us choose for every triple f1, fo, f3 € F with f3 = fi + fo an infinite
subset Jy, ¢, r, of the positive integers such that (the first summation below
is over every such triple from F’)

Si= 3 Y (Ymin(C().C(R),Cf) <o (2:20)
Fs=fi+f23€J5 0,15

Since C(f) > 0 for every f € F, ¢ > 0 and F is countable, this is obviously
possible. Then define (we mean again that f1, f2, f3 run over every such
triple from F)

r = + f2, JEJ )
Hs = {2 (m;(f1) +m;(f2) —m;(fs)) : gBS Tf; i {22‘7 frufafs } :
Hy={2"(mi(gn)—1): N>1,0<r<logy,N}.
Let H = Ule H;. We first prove (2.14). If f € F, j > 1 and « € K, then
mjy1 —m; ol <270 ~D-(2- .
(g1 (f) = my(f)) af| < 27 0FEN=D==0CW) (2.21)
by (2.5), therefore, using also Lemma 2 (ii) and (2.3), we obtain
Z max 17 (|[nal]) < m Z ZC(f)_e(T —1)7° < o0. (2.22)
netz “€F ferj>1
faekK, fi,fo,fs€F, fs= fi+ foand j € Jy, 4, 45, then by (2.5) we get
)+ m(F2) — () o] < 27022 min(CUR)CUD.CU),

(2.23)
and so by Lemma 2 (ii) and (2.20) we get

g max 17 (|na)) < m¥ < oco. (2.24)
acK
neHs
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If N >1and a € K, then

I(m1(gn) = 1) all < [[ma(gn)e = gn (@)l + llgn(@) — ol < 2177 (2.25)
by (2.1), (2.4) and (2.5), so by the definition of Hy, we obtain

o

- max ™ ([nal) < 37 (1 -+ logy N) I (2! ) < o0, (2.26)
nEH4 N=1

The relations (2.10), (2.22), (2.24) and (2.26) prove (2.14).

Now, assume that for a § € T we have an ng > 0 such that (2.15) is
true if n € H and |n| > ng. Since K is a Kronecker set, so ||na| > 0 for
0#n € Z, a € K. Therefore, we see from (2.21) (and (2.3)) that

0 < fmj1(f) =m; ()l < no

can hold only for finitely many pairs f € F, j > 1; we see from (2.23) that
if f1, fo, f3 € F are given with f3 = f; + fo, then

0 < |m;(f1) +m;(f2) —m;(f3)] < no
can hold only for finitely many j > 1; and from (2.25) that
0 < |mi(gn) — 1 < ng

can hold only for finitely many N. Then, by Lemma 3, we obtain the
following inequalities (using Ho C H, H3 C H, Hy C H, respectively):

[m1(5) = mi () Bl < 5oy (2.27)

for all but finitely many pairs f € F, j > 1;

[ (m;(f1) +my(f2) —m;(f3)) Bl <

for every triple fi, fo, f3 € F with f3 = f1 + fo and for large enough
J € Jp fo, g5

1/10

(2.28)

1/10

[(m1(gn) — 1) Bl < N2 (2.29)

for large enough N.
Then from (2.27), for all but finitely many pairs f € F, j; > 1 we have

J2—1
[mpa () = my, (£)) Bl < =S 27 (2.30)
J J1
for every jo > ji. This implies that m;(f)3 is a Cauchy sequence for every
feF,so
¢(f) == lim m;(f)5 (2.31)

j—oo
exists, (2.16) is satisfied for all but finitely many pairs f € F, j > 1 by
(2.30), and since every Jy, f, r, is an infinite set, ¢ : F — T is a group
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homomorphism by (2.28) and (2.31). We also see that for large N, by
(2.16), (2.4) and (2.29), we have

1
lo(gn) =Bl < - (2.32)

If (N,a) is a fixed pair with N >0, 1 <a <2V and Ky, # 0,, then

||¢(fN,a,r)|| < “¢(fN,a,r) - mj(N,a,r) (fN,a,T)ﬁH + Hmj(N,a,r) (fN,a,r)/B } y

and so

1
l. a,r S oA
1}ﬂnjogpH¢(fzv, )l 10

by (2.16), (2.7), using also the assumption on [, (2.8) and H; C H. Then
(2.17) follows from Lemma 4, because Fy , is obviously isomorphic to T(2).
We now prove (2.18). Assume that N is large and

[y af > 27V (2.33)
for some 1 < a < 2N. Take an integer r such that
2[kNal <27 <4lknal- (2.34)

Then r > R(N), s0 mj(n,q,)(fNar) € Hi € H, and so for large N we have
(see (2.8)) that

1
H”%‘(N,a,r) (fN,am)BH <10 (2.35)
But (2.34) and (2.17) imply

16 (ranll >

which contradicts (2.35) for large N by (2.16) and (2.7). Therefore (2.33)
cannot be true for large N, so (2.18) is proved. To prove (2.19), if N > 0,
1 < a < 2V are arbitrary and kno # 0, which implies Ky, # 0 by
definition, we take an oy, €Kn,q, and then, by the definition of gn and
by the already proved properties of ¢, we have

2N
l¢(gn) — Z kNaaN ol < 27N Z kNl
1<a<2N iy 4 #0 a=1
and together with (2.32), this proves (2.19). O

Proof of Theorem 1. For every N > 0 we take some integer j(N) > 1 such
that the sequence j(IV) is strictly increasing and

i N1 (R(N) + 2) 11+ (2*1'(N>) < 0. (2.36)
N=0

Let
U: {(N,a) : N Z 0,1 § a S 2N_1>KN,2(Z—1 # ®7>KN,211 7& @}7
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define A* C Z? as

x . (N,a) €U,
A" = {(mj(N) (fN,Qafl,T1)7mj(N) (fN,Za,rg)) 1<, < R(N) +2 [
and let A = A*U{(n,n) :n € H}. Note that if (N,a),(N*,a*) € U, and
1<r1 <R(N)+2,1<r7<R(N*)+2, then

M (N) (fN,2a—1,r1) # Mj(N~) (fN*Qa*—l,r;) , if (N,a) # (N*,a%). (2.37)

Indeed, this follows from the fact that j is strictly increasing (so one-to-
one), using (2.6) and the definition of U.

Assume that § € T satisfies (1.2) for all but finitely many n = (ny,n2) €
A. Then (2.15) is true for all but finitely many n € H, we can apply Lemma
1. If N is large, and we assume that knoq—1 7 0 and kn 2, 7# 0 for some
1 < a < 2NV=! (this implies (N,a) € U by the definitions), then by (2.18)
we can take a pair 1 < ry, 7y < R(NN) + 2 such that

2|kn2a—1] < 2™ < A4lkn2a-1], 2|kn 24| <27 < 4|kN 24l -
Then by (2.17), we have
1

1
& (fn2a—100)]l = 1 o (fn2am)] = T

and, in view of (2.16), j(N) — oo, the definition of A, (2.37) and the
property of 3, this is a contradiction for large N. Therefore, if N is large,
then kno2q—1kn2s = 0 for every 1 <a < 2N*1, and since clearly kyoq—1 +
kng2a = kn—1,4, this easily implies that Zzil |kn,q| is constant for large
N. In view of (2.19) and the compactness of the sets Kj, this proves that
6 eq.

Now, let ay, as,...,a; be given distinct elements of K. Then it is clear
that if N is large enough (N > Np), then for any 1 < a < 2V~! we can
take a §(N, a) €{0,1} such that

aq, g, ...,04 ¢ KN,2CL*6(N,CL)7
ie.
fN,Qa—(S(N,a),T(ai) =0

for every » > 1, 1 < ¢ < t. Then, defining 6(N,a) €{0,1} arbitrarily for
0< N < Ny, 1<a<2¥"1 by (2.5) and (2.36) we have

00 2N71

Z Z Z llJre (Hmj(N)(fN,2a75(N,a),r2_5(N,a))ai”> <0

N=0 a=1 1<r; ra<R(N)+2

for 1 <4 < t. This, together with (2.14), means that defining f on A* by

f ((mj(N) (fN2a—1,m1) s M) (fN,Za,'rg))) = m(N) (fN,20—6(Na),r5s(xa) )
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(the definition is correct by (2.37)), and extending f to A by f ((n,n)) =n
for n € H, we have (1.3) for every 1 < ¢ < t. We proved the existence

of such an f for ai,as,...,ap € K, but since K generates G, such an f
exists also for a1, as, ..., € G, in view of Lemma 2 (i). Then (1.1) follows
easily, so the theorem is proved. O

3. Some lemmas
Lemma 2. (i) There is a constant M > 0 such that if x,y > 0, then
l1+6(ﬂc+y) < M(l1+€($) _}_ll-‘re(y))‘
(ii) There is an m > 0 constant such that for any a > 0 we have
o0
Z l1+5(2—r—a) < ma"¢.
r=0

Proof. For statement (i) we may obviously assume that 0 < z,y < 1/4.

Then
v +y < 2max(z,y) < /max(z,y),
and so

1<l y) < 14 (yfmax(o,y) ) = (~1ogs ( max<x7y>))(l+€)

= 2" (max(z, y))
which proves (i). Statement (ii) is trivial from the definitions. O

Lemma 3. Ifwe T, k> 1 is an integer, and

1
k
el 1291, 4l . 125w ] <6 < 5.

then ||lwl|| < iik.
Proof. This is easy, and proved as Lemma 3 of [B-S]. O
Lemma 4. If ¢ : T® — T is a group homomorphism and

1 1

=<~ 3.1
()< o

then there is a unique integer k such that ¢(a)) = ka for every a € T®,

lim sup ‘
T—00

Proof. The uniqueness is obvious, we prove the existence. It is well-known
that the Pontriagin dual of the discrete group T® is the additive group Zs
of 2-adic integers. Hence there is a 0-1 sequence b, (r > 0) such that

o) = (i bTZT> a (3.2)
r=0
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for every o € T?), hence
1 b() bl br—l
— ==+ —4+... 3.3
¢<27‘> 2r+27"—1 + + 2 ( )
for every r > 1. We see from (3.3) that if b,_1 = 1, b,_9 = 0, then

<{e(5)} <3

which is impossible for large enough r, in view of (3.1). Consequently, the
sequence b, is constant for large enough r. If this constant is 0, i.e. b, =0
for r > rg, then using (3.2), we get the lemma at once. If the constant is 1,
so b, = 1 for r > rg, then, since

oo
d 2r=-1
r=0

in Zs, one obtains the lemma from (3.2) with

k=1 ((1=b) +2(1=b1)+...+ 277 (1 = b))

4. Proof of Theorem 2

If G is a group and d is a metric on G, we say that (G,d) is a Polish
group, if d is a complete metric, and G with this metric is a separable
topological group.

The following proposition essentially appears on p. 541. of [A-N], but
since they give only a brief indication of the proof, we think that it is
worth to include a proof here.

Proposition 1. Assume that K is an uncountable compact subset of T,
and K is independent over Z. Let G < T be the subgroup generated by K.
Let d be a metric defined on G such that (G,d) is a Polish group. Then the
injection map

i:(G,d) =T, i(g) = g for every g € G
is not continuous (we take on T its usual topology, inherited from R).

Proof. Let @ be a countable dense subgroup in (G,d) (such a subgroup
clearly exists, since (G, d) is separable). Consider @) with the discrete topol-
ogy (discrete metric). Then (@, G) is a Polish (polonais) transformation
group in the sense of [E|, moreover, it clearly satisfies Condition C on p.
41. of [E]. Since @ is not locally closed in G by our conditions, conditon
(5) of Theorem 2.6 of [E] is not satisfied. Hence (9) of that theorem is also
false, therefore there is a Borel measure p on G with p(G) = 1 such that

(i) each @-invariant measurable subset of G has measure 0 or 1;

(ii) each point of G has measure 0.
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Indeed, u(G) = 1 can be assumed, since p is nontrivial and finite by
[E], (i) follows since pu is ergodic in the sense of [E], and (ii) is true by (i),
because p is not concentrated in a Q-orbit.

The measure p then has the following additional property, which is a
strengthening of (ii):

(iii) if ' C G is a closed subset (in the d-topology) and p(F) > 0, then
there is an A C F with 0 < u(A) < pu(F).

It follows by another application of Theorem 2.6 of [E]. Indeed, let {0}
be the trivial group, then ({0}, F') is a polonais transformation group sat-
isfying Conditon C on p.41. of [E], (5) of Theorem 2.6 is true, hence (8) of
Theorem 2.6, using (ii), gives (iii).

Now, we are able to prove the proposition. Assume that i : (G,d) — T
is continuous, and we will get a contradiction. For ¢t > 1, n1,ne,...,n € Z
set

E(ny,ng,...,ny) = {nixy + noxo + ... + g 0 x1,29,...,00 € K}

Every E(ni,na,...,n;) is a closed set in (G, d), since it is closed in T" and
7 is continuous. Since

G:U U E(n17n27"'7nt)7

t>1ni,no,....,nt€Z

hence p (E(n1,ng,...,n)) > 0 for some values of the parameters.
Let ge G, t > 1, ny,no,...,n: € Z be minimal with the property that

w(g+ E(ng,ng,...,ng)) >0,
in the sense that
p(h+ E(mi,mg,...,m;)) =0 (4.1)
for every h € G, r > 1, mi,ma,...,m, € Z with
|mi| + [mal + ...+ |me| + 7| < |ni| + |ne| + ...+ [ne] + 8] (4.2)
By (iii), writing F' = g + E(n1,na,...,n), there is an A C F with 0 <
pu(A) < u(F). Then u (quQ(q +A)) > 0, hence (quQ(q +A)) =1 by

(
i). We prove that
7 ((U(fﬂm‘ﬂ) ﬂ(F\A)) = 0.
(S

This will give a contradiction, because p (F'\ A) > 0. Since @ is countable,
it is enough to prove that u((¢+ A)NF) = 0 for every 0 # ¢ € @), which
follows, if we prove

n(@+F)F) =0 (4.3)
for every 0 #£ q € Q.
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Assume that ¢ + f1 = fo, fi = g+ e1, fo = g+ eg, where f1, fo € F,
er,es € E(ny,ng,...,n). Fori=1,2 let
€; = N1Ti1 + N2Zi2 + ... MTit
with z;; € K for i =1,2,1 < j <t. Let
q = V1%o1 + V2T02 + . . . VsTos

with s > 1, and v; € Z, xq; € K for 1 <1 < s. Since ¢ + e; = e, q # 0,
and K is independent over Z, there are integers 1 < ¢ <2, 1 <5 <t and
1 <1 < s such that z;; = zg;. Therefore, if

E = U U U (mx0l+E(m17m27"‘7mT‘))7
1<I<s m€Z (r,m1,m2,....,m,)EH
where
H = {(rmy,ma,...,my):r>1, my,ma,...,m, € Z, (4.2) is true},

then e; € F for some 1 < < 2. Hence

faeg+E)JW+a+E).
Since p(g+ E) =p(g+q+ E) =0Dby (4.1), (4.2), so (4.3) is true, and the

proposition is proved. O
Proof of Theorem 2. Assume that
G= {5 €T : lim |ng| :0}
neA
for some infinite A C Z. For z,y € G let
d(z,y) = ||z — y|| + max|n(z —y)]. (4.4)
neA

It is clear that d is a metric on G, and (G, d) is a topological group. We
show that d is complete. Let 3; € G, j > 1 be a Cauchy sequence with
respect to d. Then f3; is a Cauchy sequence also in T" by (4.4), so there is
a ( € T such that ||3; — || — 0 as j — oco. Now, for n € A, ji,j2 > 1 we
have

[l (B = B < [l (Bj = Bi)l + [In (Bj, = B - (4.5)

Letting jo — oo for fixed n and j; we get

[nB| < Hnﬁng + thUP d(ﬁjuﬁjé)a

J2—00

and 3, € G gives

c J2—00
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for every j; > 1, which proves g € G. Let € > 0, then we can take jo, N > 1
so that

Hn (ﬂ]é - /B)H + sup d(ﬁjuﬂ]&) <€

J1272
for every n € A, |n| > N. Hence for j; > jo, n € A, |n| > N we have
|ln(Bj, —B)|| < e by (4.5). Since for any fixed |n|] < N we know that
|n (B, — B)|| = 0 as ji — oo, this proves d(f;,,5) — 0, so d is complete.
Let X be a countable dense subset in 7', and for N, > 1 integers, x € X

let
Uxs —{BEG' 18 — | +maxn€Av|n|§N||n(ﬁ—:c)H}
36T T *

by 5 v I8 <

It is easy to check that if we take an element from each nonempty Un; s,
then we get a countable dense subset of (G, d). So the conditions of Propo-
sition 1 are satisfied, hence i : (G,d) — T is not continuous. But this
contradicts (4.4), so the theorem is proved. O

5. Some remarks and problems

If K is finite, it follows from [Bi2], Theorem 1 (ii) that Theorem 1 of the
present paper would be false for ¢ = 0. But we cannot decide the following

Problem 1. Let K be uncountable. Is Theorem 1 true with e =07¢

The following proposition is a consequence of [V], p.140, Theorem 2’ (the
quoted theorem of Varopoulos is stronger than this statement):

Proposition 2. Let L C T be a compact set with L NG = (), then there is
an infinite subset A C Zi such that

G:{ﬁeGUL: lim ||| :o}.
neA

Compare Proposition 2 with our Theorem 2. We do not know whether
Proposition 2 can be strengthened in the following way:

Problem 2. Let L C T be a compact set with L N G = 0. Is there an
infinite subset A C Z such that

G—{ﬂeGUL: lim [[n3] _0},
neA

and

Z |Ina|| < oo

ncA
for every o € G?

We state without proof our following partial result in this direction.
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Theorem 3. Let L C T be a compact set with LN G =0, and let v be a
strictly increasing continuous function on the interva [0,1/2] with v(0) = 0.
Then there is an infinite subset A C Z such that we have

> (llnall) < oo

neA
for every a € G, but
Y v([ns) = o
neA
for every 8 € L.

Remark that this theorem implies at once the result mentioned on p.40.
of [H-M-P], namely that G is a saturated subgroup of 7" (for the definition of
a saturated subgroup, see [H-M-P] or [N], Ch. 14). We note that the above-
mentioned Theorem 2’ on [V], p.140, also implies that G is saturated.

Finally, we mention that Theorem 2 and Proposition 2 together show that
if K is uncountable, then G is a g-closed but not basic g-closed subgroup of
T in the terminology of [D-M-T]. This answers the question of D. Dikranjan
(oral communication) about the existence of such subgroups of T
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