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The rank of hyperelliptic Jacobians in families of
quadratic twists

par Sebastian PETERSEN

Résumé. La variation du rang des courbes elliptiques sur Q dans
des familles de “twists” quadratiques a été étudiée de façon détail-
lée par Gouvêa, Mazur, Stewart, Top, Rubin et Silverberg. On sait
par exemple que chaque courbe elliptique sur Q admet une infi-
nité de twists quadratiques de rang au moins 1. Presque toutes les
courbes elliptiques admettent même une infinité de twists de rang
≥ 2 et on connaît des exemples pour lesquels on trouve une infinité
de twists ayant rang ≥ 4. On dispose pareillement de quelques ré-
sultats de densité. Cet article étudie la variation du rang des jaco-
biennes hyperelliptiques dans des familles de twists quadratiques,
d’une manière analogue.

Abstract. The variation of the rank of elliptic curves over Q in
families of quadratic twists has been extensively studied by Gou-
vêa, Mazur, Stewart, Top, Rubin and Silverberg. It is known, for
example, that any elliptic curve over Q admits infinitely many
quadratic twists of rank ≥ 1. Most elliptic curves have even infin-
itely many twists of rank ≥ 2 and examples of elliptic curves with
infinitely many twists of rank ≥ 4 are known. There are also cer-
tain density results. This paper studies the variation of the rank
of hyperelliptic Jacobian varieties in families of quadratic twists
in an analogous way.

1. Introduction

The behavior of the Mordell-Weil-rank of elliptic curves over Q in families
of quadratic twists has been extensively studied by Gouvêa and Mazur [3],
Stewart and Top [21] and in the series of papers [15], [16], [17] by Rubin and
Silverberg. See [18] for an up-to-date survey. We briefly summarize some of
the main results:

Manuscrit reçu le 20 février 2006.
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(1) Any elliptic curve over Q has infinitely many quadratic twists of
rank ≥ 1.

(2) If E is an elliptic curve over Q with jE /∈ {0, 1728}, then E has
infinitely many quadratic twists of rank ≥ 2.

(3) Examples of elliptic curves with infinitely many quadratic twists of
rank ≥ 4 are known.

If the parity conjecture holds true, then somewhat better conditional
results were shown. In case of the first two statements certain density results
were obtained - see [15] for the details. The aim of this paper is to study the
rank in families of quadratic twists of hyperelliptic Jacobians in a similar
way.

Let k be a field. Throughout this note a k-variety will be a separated,
algebraic, geometrically integral k-scheme and a k-curve will be a k-variety
of dimension 1. A hyperelliptic curve H over k will be a geometrically
regular k-curve together with a distinguished k-morphism p : H → P1 of
degree 2.

In [15, Section 6] Rubin and Silverberg pose the following problem: Find
an elliptic curve E/Q and a hyperelliptic curve S/Q such that the Jacobian
JS of S is Q-isogenous to Er × B for some abelian variety B/Q and with
r ≥ 4. Solutions (E,S, r, B) to this problem were obtained for r = 2 and
r = 3 in [15] (see also [8]). If (E,S, r, B) is a solution to this problem, then
E will have infinitely many quadratic twists of rank ≥ r by the arguments
in [15] or by applying the following more general theorem in the special
case A = E.

Theorem 1.1. Let k be a number field and A/k an abelian variety (for ex-
ample A an elliptic curve or A = JH the Jacobian of a certain hyperelliptic
curve).

(1) Suppose that there is a hyperelliptic curve S/k such that
Hom(JS , A) 6= 0. Then A admits infinitely many quadratic twists of
rank ≥ rk(Hom(JS , A)).

(2) Let S be an arbitrary hyperelliptic curve. If there is a k-isogeny
JS ∼ Ar ×B for some abelian variety B/k, then

rk(Homk(JS , A)) ≥ r · rk(Endk(A)).

The proof of this theorem is based on the specialization theorem of Sil-
verman. In fact, Theorem 4.2 below gives a more detailed statement. Our
general result on the rank in families of quadratic twists of hyperelliptic
Jacobians is:
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(1) Any hyperelliptic curve H over k admits infinitely many quadratic
twists of rank ≥ rk(Endk(JH)). (Use the above theorem with S = H
and A = JH to see this.)

(2) We remark that for any R there is a hyperelliptic curve H over k
with rk(Endk(JH)) ≥ R and thus with infinitely many quadratic
twists of rank ≥ R. Unfortunately we always have rk(Endk(JH)) ≤
4g2

H where gH = dim(JH) is the genus of H. Thus we cannot observe
arbitrarily large endomorphism rings, if we pin down the genus at
the same time.

Let k be a number field. We will then be interested in the following
problem: Construct a hyperelliptic curve H/k and a hyperelliptic curve
S/k such that there is a k-isogeny JS ∼ Jr

H × B for some abelian variety
B/k. (Compare the problem of Rubin and Silverberg above). If (H,S, r, B)
is a solution to this problem, then JH will have infinitely many quadratic
twists of rank ≥ r · rk(Endk(JH)) by Theorem 1.1. We think it is too
ambitious to try to prove the following statement: “For any hyperelliptic
curve H there exists another hyperelliptic curve S such that there is a k-
isogeny JS ∼ J2

H × B for some B”, since this statement would imply that
any hyperelliptic Jacobian (and in particular any elliptic curve) would have
quadratic twists of arbitrarily high rank. A conjecture1 of Honda [6] (see
also [16, 7.9]) implies to the contrary that the rank should be bounded in
the family of quadratic twists of an elliptic curve E/Q. Nevertheless we can
prove:

(1) There are certain quite special hyperelliptic curves H/k (but still
infinitely many for each genus) for which there exists a hyperelliptic
curve S/k such that JS ∼ J2

H×B for some B/k. Each such H admits
infinitely many quadratic twists of rank ≥ 2 · rk(Endk(JH)).

(2) There are certain very special hyperelliptic curves H/k for which
there is a hyperelliptic curve S/k such that JS ∼ J3

H×B. Each such
H admits infinitely many quadratic twists of rank≥ 3·rk(Endk(JH)).

Furthermore, in the special case k = Q, we can sharpen all our theorems
on the rank in families of quadratic twist by providing density results similar
to the density results in [15], [16], [17]. The proof of these density results
is based on strong results of Stewart and Top [21] on squarefree values of
polynomials.
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Notation

Let k be a field. If X and Y are k-schemes, then Mork(X, Y ) stands
for the set of k-morphisms X → Y . We write AbVark for the category
of abelian varieties over k. If A and B are abelian varieties over k, then
Homk(A,B) denotes the abelian group of AbVark-morphisms A → B. Fur-
thermore Autk(A) means the group of AbVark-automorphisms A → A.
Note that Autk(A) does not contain non-trivial translations. We denote by
IsAbk := AbVark ⊗Q the isogeny category of AbVark and by

Hom0
k(A,B) := Homk(A,B)⊗Z Q

the Q-vector space of IsAbk-morphisms A → B. If there is a k-isogeny
A → B, then we shall write A ∼ B and call A and B isogenous. We denote
by ks the separable closure of k. The Galois group Gk operates on the left
on Spec(ks) and on the right on ks. Finally, if C is a smooth, projective
curve over k, then JC stands for the Jacobian of C and gC for the genus of
C.

2. Hyperelliptic curves and quadratic twists

In this section we collect basic material on hyperelliptic curves and on
their quadratic twists.

Let k be a field of characteristic 0 and K = k(X) the function field
of P1. In the introduction we defined a hyperelliptic curve H/k to be a
smooth k-curve together with a distinguished degree 2 morphism H → P1.
Sometimes we want to give a hyperelliptic curve by an explicit equation.
We define Adm(k) := K× − k×K×2, Adm standing for admissible, and
for f ∈ Adm(k) we denote by Hf,k (or simply Hf if the ground field is
understood) the normalization of P1 in the function field

k(X,
√

f(X)) := k(X)[Y ]/(Y 2 − f(X)).

One may think of Hf,k as the smooth, projective model for the equation

Y 2 = f(X).

There is a canonical degree 2 morphism Hf,k → P1, thus Hf,k is a hyperel-
liptic curve. Jf,k stands for the Jacobian of Hf,k. If E|k is a field extension
and f ∈ Adm(k), then f ∈ Adm(E) and Hf,E = Hf,k ⊗k E. Let D ∈ E×.
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We denote by HD
f,E := HD−1f,E the E-curve which is the smooth projective

model for the equation
DY 2 = f(X).

Note that there is an obvious E(
√

D)-isomorphism

HD
f,E ⊗ E(

√
D) ∼= Hf,E ⊗ E(

√
D),

that is HD
f,E is an E(

√
D)|E-twist of Hf,E .

We will be concerned with twists of an arbitrary abelian variety A/k in
several places of this paper. Let E|k be a field extension (usually E = k
or E = k(T ) in our applications) and L|E be a Galois extension. An L|E-
twist of A is an abelian variety B/E, for which there is an L-isomorphism
BL → AL.

Let B be an L|E-twist of A and f : BL → AL an L-isomorphism. Then
ξ : GL|E → AutL(AL), σ 7→ fσf−1 is a cocycle in Z1(GL|E ,AutL(AL))
whose cohomology class neither depends on the choice of f nor on the E-
isomorphism class of B. It is well-known, that this sets up a bĳection of
pointed sets

α : TL|E(A) → H1(GL|E ,AutL(AL)).
Here TL|E(X) stands for the set of E-isomorphism classes of L|E-twists of
A.

We shall be mainly concerned with quadratic twists. For any abelian
variety A/k we can identify µ2 with a subgroup of AutEs(AEs). We obtain
maps

E× → H1(GE , µ2) → H1(GE ,AutEs(AEs)) → TEs|E(A),

where the left hand map D 7→ (σ 7→
√

D
σ−1

) comes from Kummer theory,
the middle map is induced by the inclusion µ2 ⊂ AutEs(AEs) and the right
hand map is the inverse of the map α described above. For D ∈ E× denote
by AD

E (or simply by AD) the image of D ∈ E× under this sequence of maps.
The abelian varieties2 AD

E are called the quadratic twists of AE . Clearly
AD

E depends only on the residue class of D in E×/E×2. If f ∈ Adm(k) and
D ∈ E×, then JD

f,E turns out to be the Jacobian of HD
f,E .

We recall a convenient description of the Mordell-Weil group of a qua-
dratic twist AD. If G is a profinite group, M is a discrete G-module and
ξ ∈ Hom(G, µ2), then we denote by

M ξ := {a ∈ M | aσ = ξ(σ)a∀σ ∈ G}
the eigenspace of ξ in the sequel.

2In fact, AD
E is an E-isomorphism class of abelian varieties rather than an abelian variety.
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Remark 2.1. Let A/k be an abelian variety, E|k an extension field and
D ∈ E×. Let L|E be a Galois extension field containing

√
D. We define

ξ ∈ Hom(GL|E , µ2) by ξ(σ) :=
√

D
σ−1

for σ ∈ GL|E. Then there is an
isomorphism AD(E) ∼= A(L)ξ.

Proof. By the constructions above, there is an L-isomorphism f : AD
L
∼= AL

such that ξ(σ) = fσf−1 for all σ ∈ GL|E . One checks easily, that the
isomorphism f : AD(L) → A(L), which needs not be GL|E-equivariant,
induces an isomorphism AD(E) ∼= A(L)ξ, as desired. �

We conclude this section by an important remark on the Mordell-Weil
group of an abelian variety in a Kummer extension of exponent 2. If G is
a 2-group, then we shall write Ĝ := Hom(G, µ2) for its character group
in the sequel. Furthermore, for abelian groups M and N , we shall use the
notation M ∼ N if there is a Q-isomorphism M ⊗Q ∼= N ⊗Q.

Proposition 2.2. Let E|k be an extension field and L|E a finite Kummer
extension of exponent 2. Let A/k be an abelian variety. Let ∆ := (L×2 ∩
E×)/E×2. Then ⊕

D∈∆

AD(E) ∼=
⊕

ξ∈ĜL|E

A(L)ξ ∼ A(L).

In particular A(E(
√

D)) ∼ A(E) ⊕ AD(E) for D ∈ E× \ E×2. One may
rewrite this as A(E(

√
D))/A(E) ∼ AD(E).

Proof. This is a consequence of 2.1 and a well-known purely algebraic the-
orem on modules over 2-groups (see [14, 15.5] for example). �

3. Specialization of generic twists

Let k be a number field and A/k an abelian variety. Let T be an inde-
terminate and K := k(T ). The quadratic twists of AK are called generic
twists of A in the sequel. One may think of such a generic twist A

D(T )
K ,

D(T ) ∈ K× as a 1-parameter family of abelian varieties. Specializing the
variable T to a value t ∈ P1(k) which is neither a pole nor a zero of D(T )
leads to a usual abelian variety A

D(t)
k over k which is a quadratic twist

of A. The following Theorem 3.1 is a quite immediate consequence of the
specialization theorem of Silverman [20] (see also [9] and the account [2] of
B. Conrad.).
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Theorem 3.1. (Silverman, Conrad) Suppose that D(T ) ∈ Adm(k).
Then there is a finite set S ⊂ P1(k) which contains the zeros and poles of
D(T ) such that

rk(AD(T )(K)) ≤ rk(AD(t)(k))
for all t ∈ P1(k) \ S. �

The main case of interest is the case where A is a hyperelliptic Jacobian.

Let A/k be an abelian variety and D(T ) ∈ Adm(k). We will now give
a description for the number rk(AD(T )(K)). Recall that the k-curve HD is
the smooth, projective model for the equation Y 2 = D(T ). The function
field R(HD) of HD is K(

√
D(T )).

Remark 3.2. We have
AD(T )(K) ∼ A(R(HD))/A(K) = A(R(HD))/A(k) ∼=

∼= Mork(HD, A)/A(k) ∼ Homk(JD, A)

by 2.2, the fact [10, 3.8] that A(K) = A(k), the canonical isomorphism
A(R(HD)) ∼= Mork(HD, A) (recall that any rational map from a smooth
curve C to an abelian variety B is defined on the whole of C) and Lemma
3.3 below. The case A = Jf , f ∈ Adm(k) is of particular importance.

Lemma 3.3. Let A/k be an abelian variety and C/k a geometrically reg-
ular, projective curve. Then Mork(C,A)/A(k) ∼ Homk(JC , A).

Proof. Note that C(k) can be empty. Nevertheless C(ks) 6= ∅. Hence, by
the universal mapping property of JC as Albanese variety of C (see [11, 6.1]
and also [11, Section 1]), there is a Gk-linear epimorphism Morks(Cks , Aks)
→ Homks(JC,ks , Aks) with kernel A(ks). Taking Gk-invariants one obtains
an isomorphism

ϕ : (Morks(JC,ks , Aks)/A(ks))Gk → Homk(JC , A).

Furthermore there is an exact Galois cohomology sequence

0 → Mork(C,A)/A(k) i−→ (Morks(Cks , Aks)/A(ks))Gk → H1(Gk, A(ks))

and H1(Gk, A(ks)) ⊗Z Q = 0. Hence ϕ ◦ i becomes an isomorphism when
tensored with Q. �

The main case of interest is the case where A = Jf , f ∈ Adm(k) is
a hyperelliptic Jacobian. We will be interested in generic twists of high
rank. The next remark gives some a priori information in this direction.
Let f ∈ Adm(k). The generic twist H

f(T )
f,K of Hf by f(T ) will be called the

generic eigentwist of Hf . Note that the hyperelliptic curve H
f(T )
f over
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K = k(T ) is the smooth, projective model of the equation f(T )Y 2 = f(X)
and J

f(T )
f is its Jacobian.

Remark 3.4. It follows from Remark 3.2 that rk(Jf(T )
f (K)) =

rk(Endk(Jf )) for all f ∈ Adm(k). Furthermore rk(Endk(Jf )) ≥ 1 provided
g(Hf ) ≥ 1.

The next remark suggests that one should search for useful twist poly-
nomials for Jf among expressions of the form f ◦g(T ). For f(X) ∈ Adm(k)
we define

Admf (k) := {g ∈ k(X)× − k×|f ◦ g ∈ Adm(k)}.

Remark 3.5. Let f ∈ Adm(k) and g ∈ Admf (k). Then there is an abelian
variety B/k such that Jf◦g ∼ Jf ×B and rk(Jf◦g

f (K)) ≥ rk(Jf
f (K)).

Proof. The obvious k-algebra monomorphism

α : k(X,
√

f(X)) → k(X,
√

f ◦ g(X))

induces a finite morphism Hf◦g → Hf . Hence there is a splitting Jf◦g ∼
Jf ×B. Thus

rk(Jf◦g
f (K)) = rk(Homk(Jf◦g, Jf )) ≥ rk(Endk(Jf )) = rk(Jf(T )

f (K)),

by 3.2 and 3.4. �

4. Counting functions

Let k be a number field and A/k an abelian variety. For d, a ∈ k× we
have Ad ∼= Ada2 (compare the definition of Ad). Hence for D ∈ k×/k×2

the expression AD is well-defined (at least as an isomorphism class). Let
∆k := k×/k×2. The main object of interest in this note is the question
whether the subset

∆k,R(A) := {D ∈ ∆k|rk(AD(k)) ≥ R}
of ∆k is infinite. Throughout this note we use the following terminology:

We shall say that A has infinitely many quadratic twists of rank ≥ R if
and only if ∆k,R(A) is an infinite set. Similarly, for a hyperelliptic curve
H/k, we say that H has infinitely many quadratic twists of rank ≥ R iff
∆k,R(JH) is infinite.

Note that obviously isomorphic twists Ad and Ada2 are only counted once
in the sequel. It will be important to study the following image modulo
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k×2 of a function D(T ) ∈ Adm(k)

B(D) := {D(x)|x ∈ P1(k) neither a pole nor a zero of D} ⊂ ∆k.

Here we write a for the image of a ∈ k× in ∆k.

Lemma 4.1. The set B(D) is infinite.

Proof. This uses a standard argument which is built on the Hilbert irre-
ducibility theorem (see [9] and [13, 2.5]). �

In the special case k = Q we can define a counting function which can
be used to measure the size of a subset of ∆Q. Denote by S ⊂ Z \ {0} the
set of squarefree integers and define S(x) = {s ∈ S : |s| ≤ x} for x ∈ R.
Note that S is a system of representatives for ∆Q = Q×/Q×2. If ∆′ ⊂ ∆Q
is an arbitrary subset, then we use the counting function

ν(∆′, x) := |{s ∈ S(x)|s ∈ ∆′}|

to measure the size of ∆′. For non-negative functions h1, h2 on [0,∞) we
shall write h1 � h2 if there are constants C,D > 0 such that h1(x) ≤
Ch2(x) for all x ≥ D. Furthermore we shall write h1 ∼ h2 provided |h1−h2|
is bounded.

Let A/Q be an abelian variety. We are mainly interested in the counting
function

δR(A, x) := ν(∆Q,R(A), x) = |{d ∈ S(x)|rk(Ad(Q)) ≥ R}|.

If A has infinitely many quadratic twists of rank ≥ R, then lim
x→∞

δR(A, x) =
∞ and we will look for asymptotic lower bounds of δR(A, x) as x →∞. In
the derivation of these lower bounds the counting function

b(D(T ), x) := ν(B(D), x),

D(T ) ∈ Adm(k) will play a key role.

Note that the question on asymptotic lower bounds b(D,x) more or
less comes down to a difficult question in elementary number theory not
involving curves, Jacobians, ranks and so forth. The question is simply:
How many different classes mod Q×2 occur in the image of the rational
function D(T )?

Theorem 4.2. Let A/k be an abelian variety and D(T ) ∈ Adm(k). Let
R := rk(AD(T )(k(T ))) be the rank of the corresponding generic twist of A.
(Recall from 3.2 that R = rk(Homk(JD, A)).)

(1) If JD ∼ Ar×B for some abelian variety B/k then R ≥ r·rk(Endk(A)).
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(2) The abelian variety A has infinitely many quadratic twists of rank
≥ R.

(3) If k = Q, then δR(A, x) � b(D,x) as x →∞.

The case where A = Jf , f ∈ Adm(k) is a hyperelliptic Jacobian is of
particular interest.

Proof. The first statement is obvious - we just recalled it because of its
importance.

By 3.1 there is a finite subset S ⊂ ∆k such that B(D) \ S ⊂ ∆k,R(A).
Now B(D) is infinite by the Lemma 4.1 above. Hence A has infinitely many
quadradic twists of rank ≥ R.

Now suppose that k = Q. It follows that

b(D,x) ∼ ν(B(D) \ S, x) � δR(A, x),

as desired. �

Of course the theorem is of use only if rk(AD(T )(K)) > 0. Consider the
important special case where A = Jf , f ∈ Adm(k). One can then apply
the theorem with D = f , that is, in the case of the generic eigentwist.
The following corollary is an immediate consequence of Corollary 3.4 and
Theorem 4.2.

Corollary 4.3. Let f(X) ∈ Adm(k). Suppose that g(Hf ) ≥ 1. Let R :=
rk(Endk(Jf )). Then R ≥ 1 and Hf has infinitely many quadratic twists of
rank ≥ R. Furthermore

δR(Jf , x) � b(f, x)

as x →∞, provided k = Q.

In 4.2 and 4.3 above and in the forthcoming Theorems 5.2, 7.4, 8.4, 8.8
a function of the form b(D,x), D ∈ Adm(Q) occurs as an asymptotic lower
bound for a function δR(A, x) we are really interested in. Thus information
on the asymptotic behavior of b(D,x) is interesting in connection with these
theorems. There is a vast literature on the asymptotic behavior of b(D,x),
see [7], [5] and [21]. We quote a strong theorem3 due to Stewart and Top
from their paper [21] in order to make Theorems 4.2, 4.3, 5.2, 7.4, 8.4, 8.8
more explicit.

3For simplicity we do not restate the result in the sharpest form possible.
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Let D(T ) ∈ Adm(Q) be a squarefree polynomial of degree d ≥ 3. Let

ε(D) := min({a | a ∈ N, 2a ≥ d})−1.

Theorem 4.4. (Stewart and Top)

(1) We have b(D,x) � xε(D) log(x)−2 as x →∞.
(2) If D(T ) splits into linear factors, then b(D,x) � xε(D) as x →∞.

Proof. This is an immediate consequence of Theorems 1 and 2 of [21]. �

5. The generic eigentwist

Let k be a number field. In the light of 4.3 it is interesting to construct
f ∈ Adm(k) for which the rank of the generic eigentwist rk(Jf(T )

f (k(T ))) =
rk(Endk(Jf )) is large. Note that there is a natural upper bound for the rank
of the generic eigentwist in terms of the genus gf of Hf as rk(Endk(Jf )) ≤
4g2

f by [10, 12.5].

Let h(X) ∈ Adm(k) be a monic, squarefree polynomial of degree 3.
Suppose that h(0) 6= 0. (We can take h(X) = X3 − 1 for example.) Let
fr(X) := h(X2r

). Let Cr := Hfr and Ar := Jfr . Note that C0 is an elliptic
curve. Clearly fr is a monic, squarefree polynomial of degree 2r · 3. For
r ≥ 1 the genus of Cr satisfies g(Cr) = 2r−1 · 3 − 1. (One computes the
ramification of Cr(k) → P1(k) and applies the Hurwitz genus formula to
see this. Compare 6.6 below.)

Proposition 5.1. There are abelian varieties Bi over k with the following
properties.

(1) The dimensions are given by dim(B0) = dim(B1) = 1 and dim(Br) =
2r−2 · 3 for r ≥ 2.

(2) There is an isogeny Ar ∼ B0 ×B1 × · · · ×Br for all r.

Proof. Let B0 = A0. Obviously fr+1(X) = fr(X2). By 3.4 there is a finite
morphism Cr+1 → Cr. Hence there is a decomposition Ar+1 ∼ Ar × Br+1

with some abelian variety Br+1, and Br+1 must have dimension g(Cr+1)−
g(Cr). The two assertions are immediate from that. �

Theorem 5.2. The rank of the generic eigentwist of Cr is

rk(Afr
r (k(T ))) = rk(Endk(Ar)) ≥ r + 1.

Hence Cr = Hfr has infinitely many twists of rank ≥ r + 1. Furthermore,
if k = Q, then δr+1(Ar, x) � b(fr, x) and b(fr, x) →∞.



664 Sebastian Petersen

See Theorem 4.4 for information on the asymptotic behavior of b(fr, x).

Proof. It follows from the decomposition Ar ∼ B0 × B1 × · · · × Br that
rk(Endk(Jr)) ≥ r + 1. The rest is a consequence of 4.3. �

By the above result, there is a hyperelliptic curve Cr for any r which
admits infinitely many quadratic twists of rank ≥ r + 1. Unfortunately in
our example the genus g(Cr) grows exponentially with r.

6. Kummer extensions of P1

Let k be a number field. In view of Theorem 4.2 it seems natural to
study the following question: Given (possibly equal) hyperelliptic curves
C1, C2, · · · , Cs over k, is there a hyperelliptic curve C/k such that JC ∼
JC1 × · · · × JCs × B for some abelian variety B/k? As mentioned in the
introduction, this seems to be a very difficult question. Nevertheless it is
quite easy to construct a Kummer extension T → P1 of exponent 2 and
degree 2s such that JT ∼ JC1 × · · · × JCs ×B for some B/k. Under certain
very restrictive hypotheses one can show that this Kummer extension T ,
to be constructed below, is hyperelliptic again (that is admits a degree 2
morphism to P1.)

Let K = k(X) be the function field of P1 and consider a finite subgroup
∆ ⊂ K×/K×2. Suppose that K(

√
∆)|k is a regular extension. Such sub-

groups will be called admissible in the sequel. Denote by H∆,k (or by H∆)
the normalization of P1 in K(

√
∆). Then H∆ is a geometrically regular k-

curve. There is a canonical map p : H∆ → P1 of degree |∆| and this map is
a Galois cover with Galois group isomorphic to ∆. Furthermore J∆ stands
for the Jacobian variety of H∆. Note that these definitions are in a sense
compatible with the definitions in Section 2: If f ∈ Adm(k), then the group
〈f〉 ⊂ K×/K×2 genenrated by f is admissible, Hf = H〈f〉 is the smooth
projective model of Y 2 = f(X) and Jf = J〈f〉 is the Jacobian of Hf . For
an abelian variety A/k and D ∈ k× the definiton of AD from Section 2 is
still in force.

Theorem 6.1. There is a k-isogeny J∆ ∼
∏

d∈∆ Jd for any admissible
subgroup ∆ ⊂ K×/K×2 .

Proof. Let A be an arbitrary abelian variety. Then the homomorphism⊕
d∈∆

A(K(
√

d))/A(K) → A(K(
√

∆))/A(K)
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becomes an isomorphism when tensored with Q by 2.2. Furthermore the
canonical map

A(K(
√

∆))/A(K) → Hom(J∆, A)

becomes an isomorphism when tensored with Q. (Indeed, the left hand side
is isomorphic to Mork(H∆, A)/A(k) as every rational map from a smooth
variety V to an abelian variety is defined on the whole of V . Furthermore
Mork(H∆, A)/A(k) ∼ Hom(J∆, A) by 3.3.) This shows that the canonical
homomorphism ⊕

d∈∆

Homk(Jd, A) → Homk(J∆, A)

becomes an isomorphism when tensored with Q. Furthermore⊕
d∈∆

Homk(Jd, A) ∼= Homk(
∏
d∈∆

Jd, A).

Hence there is a natural isomorphism between the functors Hom0
k(J∆,−)

and Hom0
k(
∏

d∈∆ Jd,−) from IsAbk to the category of Q-vector spaces. By
Yoneda’s Lemma, J∆ and

∏
d∈∆ Jd must be isomorphic as objects of IsAbk.

�

Remark 6.2. In the situation of Theorem 6.1, let Γ be a subgroup of ∆ of
index 2. Let f ∈ ∆ \ Γ.

(1) The field inclusion K(
√

Γ) ⊂ K(
√

∆) induces a degree 2 morphism
H∆ → HΓ.

(2) Suppose that K(
√

Γ) = k(U) is a rational function field. (Unfortu-
nately this happens only very rarely.) Then HΓ

∼= P1 and H∆ is a
hyperelliptic curve. Furthermore there is a rational expression r(U)
such that X = r(U) (recall K = k(X)) and

K(
√

∆) = K(
√

Γ,
√

f) = k(U,
√

f ◦ r(U)).

In particular there is a k-isomorphism Hf◦r ∼= H∆ and a k-isogeny
Jf◦r ∼

∏
d∈∆ Jd. (Jd = 0 for d ∈ Γ.)

We are naturally led to the following question: Under which (restrictive)
hypothesis is K(

√
Γ) a rational function field? There is the following general

criterion.

Remark 6.3. Let C/k be a geometrically regular, projective curve. Then
the following statements are equivalent.

(1) The function field R(C) is a rational function field.
(2) There is a k-isomorphism C ∼= P1.
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(3) The genus of C is zero and C(k) 6= ∅.

We thus need a formula for the genus of a curve H∆ where ∆ ⊂ K×/K×2

is an admissible subgroup. We will now briefly describe the ramification
behavior of the projection p : H∆ → P1 and then compute the genus of
H∆ by the Hurwitz formula. For P ∈ P1(k), the valuation vP : k(X)× → Z
induces a homomorphism vP : k(X)×/k(X)×2 → Z/2. Let

S(∆) := {P ∈ P1(k) | ∃d ∈ ∆ : vP (d) 6= 0}
and s(∆) := |S(∆)|.

Proposition 6.4. Let P ∈ P1(k). Then

|{Q ∈ H∆(k) | p(Q) = P}| =
{
|∆| P /∈ S(∆),
|∆|/2 P ∈ S(∆).

Thus S(∆) is the ramification locus of p and each P ∈ S(∆) has ramifica-
tion index 2.

Proof. Note that 2 ∈ k× is a unit in each local ring of P1. The proposition
hence follows from general facts on the ramification behavior of a discrete
valuation ring in an exponent 2 Kummer extension of its quotient field. �

Corollary 6.5. The genus of H∆ is given by g(H∆) = 1 + |∆|( s(∆)
4 − 1).

Proof. By 6.4 the ramification divisor R ∈ Div(H∆,k) has degree s(∆) |∆|2 .
The Corollary is now immediate from the Hurwitz formula. �

Corollary 6.6. We have g(Hf ) = 1
2s(〈f〉)− 1 for f ∈ Adm(k).

Remark 6.7. (1) If l(X) = aX + b ∈ k[X] is a linear polynomial and
U =

√
l, then k(X,

√
l) = k(U) is a rational function field and

X = U2−b
a .

(2) Let l1(X), l2(X) ∈ k[X] be linear polynomials which are k-linearly
independent. Then the subgroup ∆ ⊂ K×/K×2 generated by l1 and
l2 is admissible and of order 4. Furthermore S(∆) = {∞, a1, a2}
where ai is the root of li. Thus s(∆) = 3 and g(H∆) = 0. If there
is a solution (t, s1, s2) ∈ k3 of the equations l1(t) = s2

1, l2(t) = s2
2,

then the function

U :=
√

l1(X)− s1√
l2(X)− s2

∈ R(H∆) = k(X,
√

l1,
√

l2)

has a simple pole and a simple zero and hence defines an isomor-
phism H∆ → P1. Then k(X,

√
l1,
√

l2) = k(U) and there is a ratio-
nal expression rl1,l2 such that X = rl1,l2(U).
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(3) Let ∆ ⊂ k(X)×/k(X)×2 be an admissible subgroup. If |∆| ≥ 8 or if
∆ contains the class of a squarefree polynomial of degree ≥ 3, then
s(∆) > 4 and g(H∆) ≥ 1.

7. Construction of useful generic twists: rank 2.

Let k be a number field and K = k(T ). If f ∈ Adm(k) and Hf (k) 6= ∅,
then the generic eigentwist has rank

rk(Jf(T )
f (K)) = rk(Endk(Jf )) ≥ 1.

(Recall 3.2.) Sometimes one can achieve better results when considering
other generic twists. In this section we construct examples of f(X), D(T ) ∈
Adm(k) such that JD ∼ J2

f × B for some abelian variety B/k and conse-
quently

rk(JD(T )
f (K)) ≥ 2 · rk(Endk(Jf )).

The author learned the main ideas used in this construction from the papers
[15], [16], [17] of Rubin and Silverberg.

Theorem 7.1. Let f ∈ Adm(k) and g1, · · · , gs ∈ Admf (k). Let k1, · · · ,
ks ∈ Adm(k). Suppose that

f(gi(T )) · f(T ) ∈ ki(T )K×2

for all i. Let ∆ ⊂ K×/K×2 be the subgroup generated by {f(T ), k1(T ), · · · ,
ks(T )} and Γ the subgroup of ∆ generated by {k1(T ), · · · , ks(T )}. Suppose
that ∆ is admissible of order 2s+1.

(1) There is an abelian variety B/k such that J∆ ∼ Js+1
f ×B.

(2) Furthermore rk(Jf(T )
f (K(

√
Γ))) ≥ (s + 1)rk(Endk(Jf )).

Proof. We have J∆ ∼
∏

d∈∆ Jd by 6.1. ∆ contains the set {f, f ◦ g1, f ◦
g2, · · · f ◦ gs} of order s + 1, as ki(T )f(T ) ∈ f ◦ gi(T )K×2 by hypothesis.
Hence J∆ must contain Jf ×

∏s
i=1 Jf◦gi

as an isogeny factor. Furthermore
Jf◦gi

contains Jf as an isogeny factor, because there is a finite morphism
Hf◦gi

→ Hf by 3.5. The first assertion follows readily from that.
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To prove the second assertion we use 2.2 and 3.5 to compute

rk(Jf(T )
f (K(

√
Γ))) ≥ rk(Jf(T )

f (K)) +
s∑

i=1

rk(Jf(T )ki(T )
f (K) =

= rk(Jf(T )
f (K)) +

s∑
i=1

rk(Jf(gi(T ))
f (K) ≥

≥ (s + 1) · rk(Jf(T )
f (K))

and use rk(Jf(T )
f (K)) = rk(Endk(Jf )). �

Corollary 7.2. Suppose in addition that K(
√

Γ) = k(U) is a rational
function field4. Then there is a rational expression r such that r(U) = T .
(Recall K = k(T ).)

(1) There is an abelian variety B/k such that Jf◦r ∼ J∆ ∼ Js+1
f ×B.

(2) Furthermore rk(Jf(r(U))
f (k(U)) ≥ (s + 1)rk(Endk(Jf )).

Proof. The first statement follows from Theorem 7.1 and Remark 6.2.

The second statement follows from the first and the fact 3.2 that

J
f(r(U))
f (k(U)) ∼ Homk(Jf◦r, Jf ).

Alternatively one can use part (2) of 7.1 to prove the second statement. �

We need to produce relations of the form f(g(T )) ∈ k(T )K×2 with k(T )
a linear polynomial in order to apply the above results. We will identify
PGL(k) := GL2(k)/k× with the automorphism group of P1 in the sequel.

The matrix
(

a b
c d

)
corresponds to the automorphism X 7→ aX+b

cX+d . Thus

PGL(k) operates on P1(k) and also on P1(k).

Lemma 7.3. Let f(T ) ∈ k[T ] be a monic, squarefree polynomial of odd
degree d. Let σ(T ) ∈ PGL(k) be an automorphism which permutes the roots
of f . Suppose that σ(T ) does not have a pole at ∞. Then there is a linear
polynomial l(T ) = f(σ(∞))(T − σ−1(∞)) such that

f(σ(T )) · f(T ) ∈ l(T )K×2.

Proof. We claim that

f(σ(T )) = f(σ(∞))(T − σ−1(∞)))−df(T ).

4As mentioned before, this rarely happens.
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To see this, note that both sides of the equation have the same divisor and
evaluate to f(σ(∞)) at ∞. This implies f(σ(T )) · f(T ) ∈ l(T )K×2 as d is
odd. �

Theorem 7.4. Let f(X) ∈ k[X] be a monic, squarefree polynomial of odd
degree d. Suppose that there is an automorphism σ(X) ∈ PGL(k) which
permutes the roots of f . Suppose furthermore that σ(X) does not have a
pole at ∞. Let D(T ) = f( T 2

f(σ(∞)) + σ−1(∞)).

(1) There is a k-isogeny JD ∼ Jf × Jf .
(2) We have rk(JD(T )

f (K)) = 2 · rk(Endk(Jf )).
(3) Let R = 2 · rk(Endk(Jf )). Then Hf has infinitely many quadratic

twists of rank ≥ R. Furthermore, if k = Q, then δR(Jf , x) �
b(D,x). See Theorem 4.4 for information on the asymptotic be-
havior of b(D,x).

Proof. Let l(T ) = f(σ(∞))(T − σ−1(∞)). Then f(T ) · f(σ(T )) ∈ l(T )K×2

by 7.3. The subgroup ∆ ⊂ K× generated by f(T ) and l(T ) is admissible of
order 4. Let Γ be the subgroup of ∆ generated by l(T ). If we let U :=

√
l(T ),

then K(
√

Γ) = k(U) is a rational function field and T = U2

f(σ(∞)) + σ−1(∞)
by 6.7. By 7.2 there is an isogeny JD ∼ J2

f ×B with an abelian variety B/k.
By 6.6 we have dim(Jf ) = d−1

2 . Furthermore D(T ) is of degree 2d and thus
dim(JD) = d − 1. This shows that dim(B) = 0. The first statement is
clear from that. The second statement follows from the first. The rest is an
immediate consequence of 4.2. �

Remark 7.5. One can explicitly construct polynomials f(X) ∈ Adm(k)
which meet the hypothesis of the theorem as follows: Start with an auto-
morphism σ ∈ PGL(k) of finite order which has a k-rational fixed point
and which does not have a pole at ∞. There are plenty of choices for such
σ. Then choose pairwise different orbits B1, · · · , Bs ⊂ P1(k) of σ such that
no Bi contains ∞ and such that

∑
|Bi| is odd. This is possible as there is

an orbit of order 1. Then the polynomial

f(X) =
s∏

i=1

∏
a∈Bi

(X − a)

is monic, squarefree and of odd degree and σ permutes the roots of f .

We go through an explicit example.

Example. Suppose that k is a number field. We shall work with the au-
tomorphism σ(X) = 1/X in this example. It is of order 2, has a zero
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at ∞ and a pole at zero and its fixed points are 1 and −1. Let s ∈ N and
s ≥ 2. Then σ permutes the roots of the monic, squarefree polynomial

f(X) = (X + 1)(X − 2)(X − 1
2
)(X − 3)(X − 1

3
) · · · (X − s)(X − 1

s
).

The degree of f is visibly odd. Furthermore f(σ(∞)) = f(0) = 1. Hence,
by the theorem,

rk(Jf(T 2)
f (k(T )) = 2 · rk(Endk(Jf )).

In particular Hf has infinitely many quadratic twists of rank ≥
2 · rk(Endk(Jf )). Moreover Jf(T 2) ∼ Jf × Jf . The author speculates that
Endk(Jf )) is Z, but he has not checked it. �

8. Construction of useful generic twists: rank 3.

Let k be a number field and K = k(T ). In this section we construct
examples of f(X), D(T ) ∈ Adm(k) such that JD ∼ J3

f ×B for some abelian
variety B and

rk(JD
f (k(T ))) ≥ 3 · rk(Endk(Jf )).

The construction is analoguous to the construction of Rubin and Silverberg
in [15, Section 4].

Let G ⊂ PGL(k) be a finite subgroup. If b ∈ P1(k) and b /∈ G · ∞, then
we define

fG,b(X) =
∏
σ∈G

(X − σ(b)).

Note that fG,b is squarefree iff |G · b| = |G|. Furthermore we define

f−G,b(X) =
∏

c∈Gb

(X − c).

Note that f−G,b(X) is a squarefree divisor of fG,b(X) and that f−G,b(X) =
fG,b(X) iff |G · b| = |G|. One can show that |G · b| < |G| only for finitely
many b.

Proposition 8.1. Let η ∈ G. Suppose that η(∞) 6= ∞.

(1) The quantity fG,b(η(∞)) does not depend on b.
(2) If there is a c ∈ P1(k) \ G · ∞ whose orbit G · c has length |G|/m,

then fG,b(η(∞)) ∈ k×m is an m-th power.
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Proof. We view

fG,b(η(∞)) =
∏
σ∈G

(η(∞)− σ(b)) ∈ k(b)

as a rational function in a variable b. Its divisor∑
σ∈G

(σ−1η(∞)− σ−1(∞)) = 0

is zero. Hence fG,b(η(∞)) does not depend on b.

Suppose that there is a c ∈ P1(k) \ G · ∞ whose orbit G · c has length
|G|/m. Then

fG,b(η(∞)) = fG,c(η(∞)) =
∏
σ∈G

(η(∞)− σ(c))

is an m-th power as any factor occurs m times in the product. �

We will now specialize to a subgroup G ∼= S3 of PGL(k). Let λ ∈ k\{0, 1}
and consider the automorphisms

σ(X) =
λ2X − λ2

(2λ− 1)X − λ2
and η(X) =

−X + λ

(λ− 2)X + 1
.

The map σ switches 0 and 1 and has λ as a fixed point. η swiches 0 and λ
and has 1 as a fixed point. Let G be the subgroup of PGL(k) generated by
η and σ. Then G is isomorphic to the symmetric group S3. Let b1, · · · , bs ∈
P1(k) \G · ∞ and assume |G · bi| = 6 for all i. Suppose that G · bi 6= G · bj

for i 6= j. Consider the squarefree polynomial

f(X) = f−G,λ(X)fG,b1(X) · · · fG,bs(X).

Lemma 8.2. (1) Let lσ(X) := λ(1− λ)((2λ− 1)X − λ2). Then

f(X)f(σ(X)) ∈ lσ(X)k(X)×2.

(2) Let lη(X) := (1−λ)((λ−2)X+1). Then f(X)f(η(X)) ∈ lη(X)k(X)×2.
Note that lσ(X) and lη(X) do not depend on the bi. But they do de-
pend on λ.

Proof. We have f−G,λ(X) = X(X − 1)(X − λ) and a straightforward com-
putation yields

f−G,λ(σ(∞)) = f−G,λ

(
λ2

2λ− 1

)
= λ(1− λ)(2λ− 1) mod k×2

and
f−G,λ(η(∞)) = f−G,λ

(
− 1

λ− 2

)
= (1− λ)(λ− 2) mod k×2.
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Furthermore we have

f(τ(∞)) = f−G,λ(τ(∞)) ·
s∏

i=1

fG,bi
(τ(∞)) = f−G,λ(τ(∞)) mod k×2

for all τ ∈ G which do not have a pole at ∞. Indeed, any factor fG,bi
(τ(∞))

is a square by 8.1, as G has an orbit {0, 1, λ} of order 3.

Clearly f(X) is of odd degree and the elements of G permute the roots
of f . Hence, by 7.3, we obtain

f(X) · f(τ(X)) ∈ f(τ(∞))(X − τ−1(∞))k(X)×2

for all τ ∈ G which do not have a pole at ∞. Putting these equations
together we compute

f(X)f(σ(X)) = λ(1− λ)(2λ− 1)

(
X − λ2

2λ− 2

)
= lσ(X) mod k(X)×2

and

f(X)f(η(X)) = (1− λ)(λ− 2)
(

X − 1
λ− 2

)
= lη(X) mod k(X)×2,

as desired. �

Lemma 8.3. Suppose that there is an a ∈ k× such that λ = −2a2. Let

U :=
√

lσ(T )− a(λ− 1)√
lη(T )− a(λ− 1)

Then k(T,
√

lσ(T ),
√

lη(T )) = k(U) is a rational function field. In particular
there is a rational expression rlσ ,lη such that T = rlσ ,lη(U).

Proof. Note that lσ(λ+1
2 ) = a2(λ− 1)2 is a square and lη(λ+1

2 ) = a2(λ− 1)2

is a square as well. The assertion follows from Remark 6.7. �

We want to mention that the statement of the above Lemma 8.3 is in-
cluded in the proof of [15, Theorem 4.1, p. 7]. In this paper Rubin and
Silverberg even determine the rational expression rlσ ,lη explicitly.

Theorem 8.4. Suppose that there is an a ∈ k× such that λ = −2a2. Let
D(U) = f(rlσ ,lη(U)).

(1) There is an abelian variety B/k such that JD ∼ J3
f ×B.

(2) We have rk(JD(U)
f (k(U))) ≥ 3 · rk(Endk(Jf )).



The rank of hyperelliptic Jacobians in families of quadratic twists 673

(3) Let R := 3 · rk(Endk(Jf )). Then Hf has infinitely many quadratic
twists of rank ≥ R. Furthermore, if k = Q, then δR(Jf , x) � b(D,x)
and b(D,x) →∞. See Theorem 4.4 for information on the asymp-
totic behavior of b(D,x).

Proof. The subgroup ∆ ⊂ K×/K×2 generated by f , lσ and lη is admissible
of order 8. The subgroup Γ of ∆ generated by lσ and lη is of order 4 and
K(
√

Γ) = k(U) is a rational function field by Lemma 8.3 above. Further-
more T = rlσ ,lη(U). The first two statements follow by 8.2 and 7.2. The
third statement is then an immediate consequence of 4.2. �

We give an explicit example.

Example. We shall work with λ = −2. Then

σ(X) =
4X − 4
−5X − 4

and η(X) =
−X − 2
−4X + 1

.

Consider the polynomial

f(X) := f−G,−2(X)fG,−1(X) = X(X − 1)(X + 2)·

· (X + 1)(X + 8)(X +
1
5
)(X − 8

5
)(X − 2

11
)(X − 2

3
).

Then, by Theorem 8.4 above, Hf has infinitely many quadratic twists of
rank ≥ 3 · rk(Endk(Hf ))). Furthermore there is a D ∈ Adm(k) such that
JD = J3

f × B for some abelian variety B/k. The author speculates that
Endk(Jf ) is no larger than Z in this example. �

We will now consider certain cyclic subgroups G ∼= Z/3 of PGL(k) in
order to obtain further examples. Let a, b, c, d ∈ k× and assume that a+d =
−1 and ad− bc = 1. Consider the automorphism

σ(X) =
aX + b

cX + d

of P1.

Remark 8.5. The order of σ in PGL(k) is 3.

Proof. The matrix A :=
(

a b
c d

)
has characteristic polynomial X2 +X +

1 = (X−ζ3)(X−ζ3), where ζ3 ∈ k
× is a primitive third root of unity. Thus

the matrix A is diagonalizable and this suffices. �

Let G be the subgroup of PGL(k) generated by σ. Let v1, · · · , v2s+1 ∈
P1(k)\G·∞ and assume that |G·vi| = 3 for all i. Suppose that G·vi 6= G·vj
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for i 6= j. Consider the squarefree polynomial

f(X) = fG,v1(X) · · · fG,v2s+1(X).

Lemma 8.6. Let l1(X) = cX + d and l2(X) = −cX + a.

(1) Then f(X)f(σ(X)) ∈ l1(X)k(X)×2.
(2) Furthermore f(X)f(σ2(X)) ∈ l2(X)k(X)×2.

Proof. We make use of 8.1 and the relations a + d = −1, ad − cb = 1 to
compute

fG,vi(σ(∞)) = fG,0(
a

c
) =

a

c
(
a

c
− b

d
)(

a

c
+

b

a
) =

=
a

c

ad− cb

cd

a2 + bc

ca
=

a2 + bc

c3d
=

=
a2 + ad− 1

c3d
=

a(a + d)− 1
c3d

=
−(a + 1)

c3d
= c−3

and similarly

fG,vi(σ
2(∞)) = fG,0(−

d

c
) = −d

c
(−d

c
− b

d
)(−d

c
+

b

a
) =

=
d

c

d2 + bc

cd

−ad + bc

ca
= −d2 + bc

c3a
=

= −d2 + ad− 1
c3a

=
d(a + d)− 1

c3a
=
−d− 1

c3a
= −c−3.

Hence f(σ(∞)) ∈ ck×2 and f(σ2(∞)) ∈ −ck×2. Obviously f is of odd
degree and the elements of G permute the roots of f . Furthermore σ and
σ2 do not have a pole at ∞. Otherwise σ or σ2 would be a translation, but
a translation cannot have order 3 in PGL(k). Lemma 7.3 implies

f(X)f(σ(X)) = c

(
X +

d

c

)
= (cX + d) mod k(X)×2

and

f(X)f(σ2(X)) = −c

(
X − a

c

)
= (−cX + a) mod k(X)×2

as desired. �

Lemma 8.7. Suppose that k× contains a fourth root of unity ζ4. Let
U =

√
cX+d√

−cX+a−ζ4
. Then k(X,

√
l1(X),

√
l2(X)) = k(U) is a rational func-

tion field. In particular there is a rational expression rl1,l2 such that T =
rl1,l2(U).
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Proof. Let x0 := −d
c . Then (x0, 0, ζ4) is a solution to the equations l1(X) =

Y 2, l2(X) = Z2 and the assertion follows by 6.7. �

Theorem 8.8. Suppose that k× contains a fourth root of unity. Let D(U) =
f(rl1,l2(U)).

(1) There is an abelian variety B/k such that JD ∼ J3
f ×B.

(2) We have rk(JD(U)
f (k(U))) ≥ 3 · rk(Endk(Jf )).

(3) The hyperelliptic curve Hf has infinitely many quadratic twists of
rank ≥ 3 · rk(Endk(Jf )).

Proof. The subgroup ∆ ⊂ K×/K×2 generated by f , l1 and l2 is admissible
of order 8. The subgroup Γ of ∆ generated by l1 and l2 is of order 4 and
K(
√

Γ) = k(U) is a rational function field by Lemma 8.7 above. Further-
more T = rl1,l2(U). The first two statements follow by 8.6 and 7.2. The
third statement is then an immediate consequence of 4.2. �

Example. We shall work with σ(X) = X+3
−X−2 that is, with a = 1, b = 3,

c = −1 and d = −2, to obtain an explicit example. Consider the polynomial

f(X) := fG,0(X)fG,1(X)fG,2(X) = X(X +
3
2
)(X + 3)·

· (X − 1)(X +
4
3
)(X +

5
2
)·

· (X − 2)(X +
5
4
)(X +

7
3
).

Then, by Theorem 8.8 above, Hf has infinitely many quadratic twists of
rank ≥ 3 · rk(Endk(Jf ))). Furthermore there is a D ∈ Adm(k) such that
JD ∼ J3

f ×B for some B. Again, the author speculates that Endk(Jf ) is no
larger than Z, but he has not checked it. �

References

[1] L. Brünjes, Über die Zetafunktion von Formen von Fermatgleichungen. Ph.D. Thesis, Re-
gensburg (2002).

[2] B. Conrad, Silverman’s specialization theorem revisited. Preprint (2004).
[3] F. Gouvêa, B. Mazur, The squarefree sieve and the rank of elliptic curves. J. Amer. Math.

Soc. 4 (1991), no. 1, 1–23.
[4] A. Grothendieck et al., Eléments de Géometrie Algébrique. Publ. Math. IHES, 4, 8, 17,

20, 24, 28, 32.
[5] H. Helfgott, On the square-free sieve. Acta. Arith. 115 (2004), 349–402.
[6] T. Honda, Isogenies, rational points and section points of group varieties. Japan J. Math.

30 (1960), 84–101.
[7] C. Hooley, Application of sieve methods to the theory of numbers. Cambridge University

Press 1976.



676 Sebastian Petersen

[8] E. Howe, F. Leprévost, B. Poonen, Large torsion subgroups of split Jacobians of curves
of genus two or three. Forum Math. 12 (2000), 315–364.

[9] S. Lang, Fundamentals of Diophantine Geometry. Springer (1983).
[10] J. Milne, Abelian Varieties. In: Arithmetic Geometry, edited by G. Cornell and J. Silverman,

Springer 1986.
[11] J. Milne, Jacobian Varieties. In: Arithmetic Geometry, edited by G. Cornell and J. Silver-

man, Springer 1986.
[12] D. Mumford, Abelian Varieties. Oxford University Press (1970).
[13] S. Petersen, On a Question of Frey and Jarden about the Rank of Abelian Varieties.

Journal of Number Theory 120 (2006), 287–302.
[14] M. Rosen, Number Theory in Function Fields. Springer GTM 210 (2002).
[15] K. Rubin, A. Silverberg, Rank Frequencies for Quadratic Twists of Elliptic Curves. Ex-

perimental Mathematics 10, no. 4 (2001), 559–569.
[16] K. Rubin, A. Silverberg, Ranks of Elliptic Curves. Bulletin of the AMS 39 (2002), 455–

474.
[17] K. Rubin, A. Silverberg, Twists of elliptic curves of rank at least four. Preprint (2004).
[18] A. Silverberg, The distribution of ranks in families of quadratic twists of elliptic curves.

Preprint (2004).
[19] J. Silverman, The Arithmetic of Elliptic Curves. Springer, GTM 106 (1986).
[20] J. Silverman, Heights and the specialization map for families of abelian varieties. J. Reine

Angew. Mathematik 342 (1983), 197–211.
[21] C.L. Stewart, J. Top, On ranks of twists of elliptic curves and power-free values of binary

forms. J. Amer. Math. Soc. 8 (1995), 943–973.

Sebastian Petersen
Universität der Bundeswehr München
Institut für Theoretische Informatik und Mathematik
D-85577 Neubiberg
E-mail : sebastian.petersen@unibw.de

mailto:sebastian.petersen@unibw.de

	 1. Introduction
	 2. Hyperelliptic curves and quadratic twists
	 3. Specialization of generic twists
	 4. Counting functions
	 5. The generic eigentwist
	 6. Kummer extensions of P1
	 7. Construction of useful generic twists: rank 2.
	 8. Construction of useful generic twists: rank 3.
	 . References

