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On coefficient valuations of Eisenstein

polynomials

par MATTHIAS KÜNZER et EDUARD WIRSING

RÉSUMÉ. Soit p ~ 3 un nombre premier et soient n &#x3E; m ~ 1.

Soit 03C0n la norme de 03B6pn - 1 sous Cp-1. Ainsi Z(p)[03C0n]Z(p) est

une extension purement ramifiée d’anneaux de valuation discrète
de degré pn-1. Le polynôme minimal de 03C0n sur Q(03C0m) est un
polynôme de Eisenstein; nous donnons des bornes inférieures pour
les 03C0m-valuations de ses coefficients. L’analogue dans le cas d’un
corps de fonctions, comme introduit par Carlitz et Hayes, est

etudié de même.

ABSTRACT. Let p ~ 3 be a prime, let n &#x3E; m ~ 1. Let 03C0n be
the norm of 03B6pn - 1 under Cp-1, so that Z(p)[03C0n]|Z(p) is a purely
ramified extension of discrete valuation rings of degree pn-1. The
minimal polynomial of 03C0n over Q(03C0m) is an Eisenstein polynomial;
we give lower bounds for its coefficient valuations at 03C0m. The
function field analogue, as introduced by Carlitz and Hayes, is

studied as well.
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0. Introduction

0.1. Problem and methods. Consider a primitive root of unity
(pn over Q, where p is a prime and n &#x3E; 2. One has 

Cpn-l i X To isolate the p-part of this extension, let 7rn be the norm of
under Cp_ 1; that is, the product of the Galois conjugates (~pn -1 ) ~,

where a runs over the subgroup Cp_ 1. Then 
/ J- ’B

We ask for the minimal polynomial !11fn,Q(X) == Z (X ~
of over Q. By construction, it is an Eisenstein polynomial; that is,

1 for j E 1 ~ , and vp(ao) = 1, where vp denotes the
valuation at p.
More is true, though. Our basic objective is to give lower bounds bigger

than 1 for these p-values vp(aj), except, of course, for vp (ao) . As a byprod-
uct of our method of proof, we shall also obtain congruences between certain
coefficients for varying n.
A consideration of the trace yields additional information

on the second coefficient of !11fn,Q(X). By the congruences just mentioned,
this also gives additional information for certain coefficients of the minimal
polynomials with l &#x3E; n; these coefficients no longer appear as
traces.

Finally, a comparison with the different ideal

then yields some exact coefhcient valuations, not just lower bounds.
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Actually, we consider the analogous question for the coefficients of the
slightly more general relative minimal polynomial where n &#x3E;

m &#x3E; 1, which can be treated using essentially the same arguments. Note
that 7r1 = p.

Except for the trace considerations, the whole investigation carries over
mutatis mutandis to the case of cyclotomic function field extensions, as
introduced by CARLITZ [1] and HAYES [5].
As an application, we mention the Wedderburn embedding of the twisted

group ring (with trivial 2-cocycle)

to which we may reduce the problem of calculating Z(p) ~~pn ~ ~ l (Cpn-l X Cp_ 1 )
by means of Nebe decomposition. The image is the companion matrix
of !17fn,Q(X). To describe the image of the whole ring,
we may replace this matrix modulo a certain ideal. To do so, we need to
know the valuations of its entries, i.e. of the coefficients of !17fn,Q(X), or at
least a lower bound for them. So far, this could be carried through only for
n=2 ~10~.

In this article, however, we restrict our attention to the minimal polyno-
mial itself.

0.2. Results.

0.2.1. The number field case. Let p &#x3E; 3 be a prime, and let (pn denote a
primitive pnth root of unity over Q in such a way that = ~pn for all
n &#x3E; l. Put

so Q] = P’. Letting

we have = Q(7,,). In particular,
fix m and write
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Theorem (5.3, 5.5, 5.8).

Assertion (iv) requires the computation of a trace, which can be refor-
mulated in terms of sums of (p - I )th roots of unity in Qp (5.6). Essentially,
one has to count the number of subsets of C Qp of a given cardinality
whose sum is of a given valuation at p. We have not been able to go much
beyond this reformulation, and this seems to be a problem in its own right
- see e.g. (5.9).

To prove (i, i’, ii, ii’), we proceed by induction. Assertions (i, i’) also
result from the different

Moreover, (ii) yields (iii) by an argument using the different (in the
function field case below, we will no longer be able to use the different for
the assertion analogous to (i, i’), and we will have to resort to induction).

Suppose m = 1. Let us call an index j E ~1, p2 - 1] exact, if either

j  p2(p-2)-1) and piJr m exactly divides j ai,j, or j 2: pi (p - 2) / (p - 1)
and pi exactly divides If i = 1 and e.g. p E {3, 19, 29, 41}, then all
indices j E [I, p - 1] are exact. If i &#x3E; 2, we propose to ask whether the
number of non-exact indices j asymptotically equals as p - oo.

0.2.2. The function field case. Let p &#x3E; 3 be a prime, p &#x3E; 1 and r = pP.
We write Z = Fr~Y~ and Q = Fr(Y). We want to study a function field
analogue over Q of the number field extension Ca (~pn ) ~ (a. Since 1 is the only
pnth root of unity in an algebraic closure Q, we have to proceed differently,
following CARLITZ [1] and HAYES [5]. First of all, the power operation of
p~ on Q becomes replaced by a module operation of ¡n on Q, where f E Z
is an irreducible polynomial. The group of pnth roots of unity 

’

becomes replaced by the annihilator submodule

Instead of choosing a primitive pnth root of unity (pn, i.e. a Z-linear gen-
erator of that abelian group, we choose a Z-linear generator On of this
Z-submodule. A bit more precisely speaking, the element 0,, E ~ plays the
role of dn := ~ 2013 1 E Q. Now is the function field analogue of

See also [3, sec. 2].
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To state the result, let f (Y) be a monic irreducible polynomial and
write q = r deg f . Let çY := Y~ + çT define the Z-linear Carlitz module
structure on an algebraic closure Q, and choose a Z-Iinear generator On of

ann.fn Q in such a way that Bn+1 - On for all n &#x3E; 1. We write = so

Theorem (6.6, 6.7, 6.9) .
. I., -

A comparison of the assertions (iv) in the number field case and in the
function field case indicates possible generalizations - we do not know what
happens for for 2 in the number field case; moreover, we
do not know what happens for f # Y in the function field case.

0.3. Notations and conventions.

(o) Within a chapter, the lemmata, propositions etc. are numbered con-
secutively.

(i) For a, b E Z, we denote by [a, b] := {c E Z : a  c  b~ the interval
in Z.

(ii) For m E Z -, f 0} and a prime p, we denote by m[p] := p’p(’) the
p-part of m, where vp denotes the valuation of an integer at p.

(iii) If R is a discrete valuation ring with maximal ideal generated by r,
we write vr(:r) for the valuation of x E R --, ~0~ at r, i.e. x/rvr(x) is a
unit in R. In addition, := +oo.

(iv) Given an element x algebraic over a field K, we denote by Px,K (X) E
K[X] the minimal polynomial of x over K.

(v) Given a commutative ring A and an element a E A, we sometimes
denote the quotient by A/a := A/aA - mainly if A plays the role of
a base ring. For b, c E A, we write b ma c if b - c E aA.
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(vi) For an assertion X, which might be true or not, we let {X} equal 1
if X is true, and equal 0 if X is false.

Throughout, let p &#x3E; 3 be a prime. I
1. A polynomial lemma

We consider the polynomial ring Z[X, Y].
Lemma 1.1. We have I

where the second inequality follows from j &#x3E; 2 if = 0, and from

Corollary 1.2.

Corollary 1.3.

2. Consecutive purely ramified extensions

2.1. Setup. Let T~S and 81R be finite and purely ramified extensions
of discrete valuation rings, of residue characteristic char R/rR = p. The
maximal ideals of R, S and T are generated by r E R, s E S and t E T,
and the fields of fractions are denoted by K = frac R, L = frac S and
M = fracT, respectively. Denote m = [M : L] and 1 = [L : K~. We may
and will assume s = and r = 

We have S = R[s] with

and T = R[t] with

. 

Cf. [9, I.§7, prop. 18]. The situation can be summarized in the diagram
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Note that rip, and that for z E M, we have vt (z) = = mZ.vr(z).
2.2. Characteristic 0. In this section, we assume char K = 0. In partic-
ular, Z(p) C R.

Assumption 2.1. Suppose given x, y E T and k E [1, Z - 1] such that

Lemma 2.2. Given (2.1), we have c ~ I !-ls,K(tm) .
Proof. We may decompose

Now since tm = s + zy for some z E T by (2.1.i~, we have

The following proposition will serve as inductive step in (3.2).

Proposition 2.3. Given and
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Proof. From (2.2) we take

Since the summands have pairwise different valuations at t, we obtain

2.3. As an illustration: cyclotomic polynomials. For n &#x3E; 1, we
choose primitive roots of unity (p. over Q in such a manner that (P,+l -
(pn. We abbreviate dn = ~ 2013 1.
We shall show by induction on n that writing

This being true for n = 1 since = ( (X -~ 1 )p -1 ) /X , we assume
it to be true for n - 1 and shall show it for n, where n &#x3E; 2. We apply the
result of the previous section to R = Z~p~, r = -p, S = s = 

and T = = In particular, we have 1 = pn-2(p - 1) and

finally, we have lfpn (X + 1).
We may x = pn-2 and k = pn-2 (p - 2) + 1 in (2.1).

Hence c = By (2.3), we obtain that 
divides lf j -p 0 and that it divides dn,j if j ~p 0. Since the
coefficients in question are in R, we may draw the following conclusion.

By induction, this establishes the claim.
Using (1.4), assertion (I) also follows from the more precise relation
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for n &#x3E; 2, which we shall show now. In fact, by ( 1.4) we have I

and the result follows by division by the monic polynomial

Finally, we remark that writing

we can equivalently reformulate (II) to

2.4. Characteristic p. In this section, we assume char Is~ = p.

Assumption 2.4. Suppose given and 1~ E (1, l - l~ such that

Lemma 2.5. Given (2.4), we have c ~ 
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Proof. We may decompose

Now since i

Proposition 2.6. Given (2.4), we have

This follows using (2.5), cf. (2.3).

3. Towers of purely ramified extensions

Suppose given a chain

of finite purely ramified extensions of discrete valuations rings, with
maximal ideal generated by ri E Rï, of residue characteristic char Ri /rj Ri =
p, with field of fractions Ki = frac Ri, and of degree Ki] = p’ = q
for i &#x3E; 0, where ~ ~ 1 is an integer stipulated to be independent of i. We
may and will suppose that = ri for i ~ 0. We write

For j &#x3E; 1, we denote vq(j) := max{ 0152 E mqm 01. That is, vq(j) is
the largest integer below We abbreviate g := (q - 2)/(q - I).

Assumption 3.1. Suppose given f E Ro such that ri_l for all
i &#x3E; 0. If char Ko = 0, then suppose p I f q. If char Ko = p, then suppose
H)!/.

Proposition 3.2. Assume (3.1).
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Proof. Consider the case charKo = 0. To prove (i, i’), we perform an
induction on i, the assertion being true for i = 1 by (3.1 ) . So suppose

given i &#x3E; 2 and the assertion to be true for i - l. To apply (2.3), we let
R = Ro, r = ro, S = Ri_1, s = ri_1, T = Ri and t = ri. Furthermore, we
let y = rq 1 f, ~ _ Ji-1 and k = qi-1 - (qi-1 - 1)/(q - 1), so that (2.1) is

satisfied by (3.1) and by the inductive assumption. We have c = 
Consider j E ~1, q2 - 1]. If j ©q 0, then (2.3) gives

whence f 2 divides ai,j; f ’ Z strictly divides ai,j if j  since

0(~-1)-~=1/(9-!)!.
If j mq 0, then (2.3) gives

whence f i divides ai,j - ai-1,j/q; strictly, if j  q2g. By induction,
divides ai-1,j/q’ 

. strictly,  q2 1 g . But ai,j,
and therefore divides also ai,j; strictly, if j  q’g. This proves

(i, i’ ) .
The case (3 = 1 of (ii, ii’) has been established in the course of the proof

of (i, i’) . The general case follows by induction.
Consider the case char Ko = p. To prove (i, i’), we perform an induction

on i, the assertion being true for i = 1 by (3.1). So suppose given i &#x3E; 2 and

the assertion to be true for z - l. To apply (2.6), we let R = Ro, r = ro,
S = ri _ 1, T = Ri and t = ri . Furthermore, we let g = 
x and k = qi-1- (qi-1-1 ) ~ (q _ 1 ), so that (2.4) is satisfied by (3.1 )
and by the inductive assumption. In fact, = divides

fi-1-Vq(j) both if j ~p 0 and if j -p 0; in the latter case we make use of
the inequality p‘~-1 (p -1 ) &#x3E; a ~-1 for 0: ~ 1, which needs p &#x3E; 3. We obtain
c - .

Using (2.6) instead of (2.3), we may continue as in the former case to
prove (i, i’), and, in the course of this proof, also (ii, ii’). D

4. Galois descent of a divisibility

Let
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be a commutative diagram of finite, purely ramified extensions of discrete
valuation rings. Let E T generate the respective
maximal ideals. Let L = frac S, M = frac T, L = frac S and M = frac T
denote the respective fields of fractions. We assume the extensions MIL
and LIL to be linearly disjoint and M to be the composite of M and L.
Thus m := [M : L] = [M : L] and [L : L] = [M : M]. We assume ilL to be
galois and identify G := Gal(LIL) = Gal(MIM) via restriction. We may
and will assume that s = NLIL(a), and that t = 

Lemma 4.1. In T , the element 1 - im /s divides 1 - 

Proof. Let d = 1 - P’19, so that = s(1 - d). We conclude

5. Cyclotomic number fields

5.1. Coefficient valuation bounds. For n &#x3E; 1, we let (pn be a primitive
pnth root of unity over Q. We make choices in such a manner that Ç§n =p 

- . -- - - .. 

pn -

The minimal polynomial (X + 1 )p - 1 shows that
hence also Note that 7ri = p

and Ei = Q.
Let 0 be the integral closure of Z(p) in En . Since = 7r1 = p,

we have Z(p)/pZ(p) 2013~ O/7rnO_. In particular, the ideal in 0 is prime.

U*. Thus 0 is a discrete valuation ring, purely ramified of degree pn-l over
Z(p), and so 0 = [9, 1.§7, prop. 18]. In particular, En = Q(7rn) .
Remark 5.1. The subring of Q (7rn) , however, is not integrally closed
in general. For example, if p = 5 and n = 2, then = X5 - 20X4 +
100X3 - 125X2 + 50X - 5 has discriminant 5g ~ 76, which does not divide
the discriminant of (D52 (X), which is 535.

Lemma 5.2. We have
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Now suppose given m ~ 1. To apply (3.2), we let f = q = p, Ri =
Z(p) [7r.+il and r2 = 7rim+1 for i &#x3E; 0. We keep the notation

Theorem 5.3.

Assumption (3.1) is fulfilled by virtue of (5.2), whence the assertions
follow by (3.2).

Example 5.4. For p = 5, m = 1 and i = 2, we have

Now v5 (a~,22) = 6 -I- 5 = v5 (a4,5.22), so the valuations of the coefficients
considered in (5.3.ii) differ in general. This, however, does not contradict
the assertion a;3,22 =54 a4, 5~22 from loc. cit.

5.2. A different proof of (5.3. i, if) and some exact valuations. Let
m ~ 1 and i &#x3E; 0. We denote Ri - ri = ’7rm+i, Ki = frac Ri,
Ri = and ri = Denoting by 0 the respective different

[9, III.g3], we = ( rp- 2 ) [9, III.§3, prop. 13],
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whence
/ I

cf. [9, III.§3, cor. 2]. Therefore, divides for

j E ~1, pi - 1~, and (5.3. i, i’) follow.
Moreover, since only for j = p2 - (pi - 1)/(p - 1) the valuations at ri of

Pir?i-1-(pi_1)/(P-1) and J’a’ .r1-1 are congruent modulo p2, we conclude by
(*) that they are equal, i.e. that p2 exactly divides 

Corollary 5.5. The element exactly divides for

Proof. This follows by (5.3.ii) from what we have just said. D

E.g. in (5.4), 51 exactly divides a2,25-5 = a2,20, and 52 exactly divides
a2,25-s-1 = a2, 19.

5.3. Some traces. Let denote the group of (p - l)st roots of unity
in Qp. We choose a primitive (p - l)st root of unity E and may
thus view C Qp as a subfield. Note that [Q((p-1) : Q] = p(p - 1),
where cp denotes Euler’s function. The restriction of the valuation vp at

p on Qp to (a(~p), is a prolongation of the valuation vp on Q to 
(there are cp(p - 1) such prolongations).

Proposition 5.6. For n &#x3E; 1, we have

where

We have so = 0, and 5~ E Z for n &#x3E; 0. The sequence becomes

stationary at some minimally chosen No(p). We have

An upper estimate for N(p), hence for No(p), is given in (5.13).
Proof. For j E ~l, p - 1] the p-adic limits

exist since jPn-l = pn jP" by (1.3). They are distinct since ~(j) -p j, and,
thus, form the group = ~~(j) ~ j E (1,p- 1~~. Using the formula
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and the fact that we obtain

whence

Now so = 0 E Z by the binomial formula. Therefore, by induction, we
conclude from E Z that E Z. Since (p - E Z,
too, we obtain sn E Z.

As soon as n &#x3E; N(p), the conditions 
+00 on H C become equivalent, and we obtain

which is independent of n. Thus

Lemma 5.7. We have s, = 1. In particular,

Proof. Since TrQIQ(p) - p, and since so = 0, we have sl = 1
by (5.6). The congruence for follows again by (5.6). D

Corollary 5.8. We have

2.

Proof. By dint of (5.7), this ensues from (5.3. i’, ii). D

Example 5.9. The last n for which we list sn equals N(p), except if there
is a question mark in the next column. The table was calculated using
Pascal (p  53) and Magma (p &#x3E; 59). In the last column, we list the upper
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bound for N(p) calculated below (5.13).
11 1 1 1 1 1

So for example if p = 31, then = 271~313-315-312, whereas
= 259 ~ 317 - 259 ~ 31~. Moreover, No(31) = N(31) = 4  6.

Remark 5.10. Vanishing (resp. vanishing modulo a prime) of sums of
roots of unity has been studied extensively. See e.g. [2], [6], where also
further references may be found.

Remark 5.11. Neither do we know whether sn &#x3E; 0 nor whether
0 always hold. Moreover, we do not know a prime p for

which No(p)  N(p).
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Remark 5.12. We calculated some further traces appearing in (5.3); using
Maple and Magma.

For

For

For

For

where

5.4. An upper bound for N(p). We view as a subfield of Qp,
and now, in addition, as a subfield of C. Since complex conjugation com-
mutes with the operation of Gal(Q((p-1)IQ), we have 

and therefore N(p)  tp(p - 1). We shall ameliorate this bound by a
logarithmic term.

Proposition 5.13. We have
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Proof. It suffices to show that We will actually
show that

from which this inequality follows using x3/6 and p &#x3E; 5.
Choose H C such that JE(H)L ] is maximal. Since p - 1 is even,

the (p - I )st roots of unity fall into pairs (q, 20137~). The summands of E(H)
contain exactly one element of each such pair, since + 2 + 
r12 = 21(H)12 +2 shows that at least one of the inequalities +r1 

] and JE(H) - ] fails.

By maximality, replacing a summand q by -q in E(H) does not increase
the value of I E(H)1, whence

and thus

Therefore, the (p - 1)/2 summands of E(H) lie in one half-plane, whence
the value of . D

6. Cyclotomic function fields, after Carlitz and Hayes
6.1. Notation and basic facts.

We shall give a brief review while fixing notation.
Let p &#x3E; 1 and r := pP. Write Z := Fr ~Y~ and Q := Fr (Y), where Y is

an independent variable. We fix an algebraic closure Q of Q. The Carlitz
rrtodule structure on Q is defined by the Fr-algebra homomorphism given
on the generator Y as

We write the module product of ~ E ~ with e E Z as Çe. For each e E Z,
there exists a unique polynomial P,(X) C Z[X] that satisfies 
for all E Q. In fact, Pl (X ) = X, = YX + Xr, and 

+ for i &#x3E; 1. For a general e E Z, the polynomial Pe(Y)
is given by the according linear combination of these.

Note that Pe(0) = 0, and that = e, whence Pe (X ) is separable,
i.e. it decomposes as a product of distinct linear factors in ~~X~. Let

be the annihilator submodule. Separability of Pe (X ) shows that #~e =
deg = rdege. Given a Q-linear automorphism Q of Q, we have (~e) 0’ =
pe(~)a - Pe(~a) - (~)~. In particular, Àe is stable under or. Therefore,
Q(Àe) is a Galois extension of Q.
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Since #anneÀe = #Aj = rdeg e for e e, we have Z/e as Z-modules.
It is not possible, however, to distinguish a particular isomorphism.
We shall restrict ourselves to prime powers now. We fix a monic irre-

ducible polynomial f = and write q := rdeg f . For n &#x3E; 1, we let
On be a Z-linear generator We make our choices in such a manner

that == On for n &#x3E; 1. Note that = since the elements of

are polynomial expressions in 0~.
Suppose given two roots ~, ~ G Q of

i.e. ~, ~ Since ~ is a Z-linear generator of Àfn, there is
an e E 2 such that ~ = Çe. Since çe/ç = is a

multiple of ~ in Reversing the argument, we see that ~ is in fact a
unit multiple of ~ in Z [0,,].
Lemma 6.1. The is irreducible.

Fi (X) in its distinct monic irreducible factors Fi(X) E Z [X] . One
of the constant terms, say Fj (0), is thus a unit multiple of f in Z, while
the other constant terms are units. Thus, being conjugate under the Galois
action, all roots of Fj (X) in are non-units in and the remaining
roots of are units. But all roots of W¡n(X) are unit multiples of
each other. We conclude = Fj (X) is irreducible. D

By (6.1), is the minimal polynomial of 9n over Q. In particular,
[Q(O.) : Q] = qn-1(q - 1), and so

In particular, Z(f ) is a discrete valuation ring with maximal ideal gen-
erated by On, purely ramified of index qn-1(q - 1) over ~~ f), cf. [9, 1.§7,
prop. 18]. There is a group isomorphism

well defined since Bn is a root too; injective since On generates
a fn over .~; and surjective by cardinality.

Note that the Galois operation corresponding to e E 
coincides with the module operation of e on the element On, but not every-
where. For instance, if f # Y, then the Galois operation corresponding to
Y sends 1 to 1, whereas the module operation of Y sends 1 to Y + 1.
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The discriminant of over Z is given by

Lemma 6.2. The ring Z[On] is the integral closure of Z in Q(On).

Proof. Let e E Z be a monic irreducible polynomial different from f . Write
C~o ~_ Z(e) and let C~ be the integral closure of C~o in Q( On). Let

Then C7~ C (7 C (~+ C ot. But 00 = ot, since the Z-linear determi-
nant of this embedding is given by the discriminant which is a

unit in El

We resume.

Proposition 6.3 ([1],[5], cf. [3, p. 1151). The extension Q(O,)IQ is ga-
lois of degree [Q(On) : Q] = (q - l)qn-l, with Galois group isomorphic to
(~/f’n)*. The integral closure of Z in Q(On) is given by We have

In particular, On is a prime element of 3 [On], and
the extension [On] of discrete valuations rings is purely ramified.

6.2. Coefficient valuation bounds. Denote ’
-- - . _ -~ -- 1 -

The minimal polynomial = together with the
fact that X divides shows that = whence

= Note that = 0? = W/(0) = f.
The extension is a discrete valuation ring with maximal ideal

generated by purely ramified of index qn-1 over ~(n. In particular,
= 
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Example 6.4. Let r = 3 and f (Y) = y2 + 1, so q = 9. A Magma
calculation shows that

With regard to section 6.4, we remark that ~72 7~ =L 

Lemma 6.5. We have n wn-1 for n &#x3E; 2.
n /

Proof. We claim that 8n In fact, the non-leading coefficients of
the Eisenstein polynomial BI!f(X) are divisible by f , so that the congruence
follows by 9n_ 1-8n = = Letting f = 
and (~~~) = (4.1) shows that 1 - divides

1 - Therefore, I Wn-1 - D

Now suppose given 1. To apply (3.2), we let R.L = and

ri = for i ~ 0. We continue to denote

Theorem 6.6. 
-. __ ., .

Assumption (3.1) is fulfilled by virtue of (6.5), whence the assertions
follow by (3.2).
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6.3. Some exact valuations.

an empty assertion if j -p 0. Thus (6.6. i, i’) do not follow entirely.
However, since only for j = qi - (qi -1)~(q -1) the valuations at ri of

and are congruent modulo q2, we conclude byi ’t,J i ,

(**) that they are equal, i.e. that f exactly divides 

Corollary 6.7. The element exactly divides 

Proof. This follows by (6.6.ii) from what we have just said. D

6.4. A simple case. Suppose that f (Y) = Y and m &#x3E; 1. Note that

Lemma 6.8. We have
, -rrB

Proof. Using the minimal polynomial

Corollary 6.9. Let m, i &#x3E; 1. We have

Proof. This follows from (6.8) using (6.6.ii). D

Remark 6.10. The assertion of (6.8) also holds if p = 2.

Conjecture 6.11. Let 1. We use the notation of (#) above, now
in the case f (Y) = Y. For j E [1, qi], we write q’ - j = dkqk with

[0, q - 1]. Consider the following conditions.
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(i) There exists k E [0, i - 2] such that  d~.
(ii) There exists 1~ E ~0, i - 2] such that vp(dk+1) &#x3E; vp(dk)-

If (i) or (ii) holds, then = 0. If neither (i) nor (ii) holds, then

Remark 6.12. We shall compare (6.7) with (6.11). If j - q2 -
(qi _ 1) for some 0 E [0, i - 1], then q2 - j = qi-1 -F- ... + qf3.
Hence - 0, and so according to (6.11), VWm(ai,j) should
equal qm-1(i - 0), which is in fact confirmed by (6.7).
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